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Abstract: Clustering analysis seeks to partition a given dataset intogroups or clusters so that the data objects within a cluster are more
similar to each other than the objects in different clusters. A very rich literature on clustering analysis has developed over the past three
decades. But a crucial question still remains unanswered: how many clusters are contained in the population on earth when only an
observed set of samples is available? The goal of this paper is to provide a comprehensive review of approaches on determining the
”correct” number of clusters. In particular, we divide these approaches into three categories: internal measures, external measures, and
clustering stability based methods. Then, we introduce several representative examples, and present specific challenges pertinent to
each category. Finally, the promising trends are suggestedin this field.
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1. Introduction

As the amount of data we nowadays have to deal with
becomes larger and larger, clustering analysis is the
formal study of algorithms and methods that help us to
detect structures in the data and to identify interesting
groups or clusters so that the data objects within a cluster
are more similar to each other than the objects in different
clusters [35]. Adopting a machine learning perspective,
clusters correspond tohidden patterns, and the search for
clusters is unsupervised learning. Algorithms and
methods for clustering analysis provide core techniques
for exploratory data analysis and play an outstanding role
in numerous applications, such as information retrieval
and text mining [14], web log analysis [82], and many
others.

While people are extremely good at pointing out the
relevant structure in the data just by looking at the 2-D
plots, it is not easy to automatically reorganize underlying
clusters from the data. A major challenge is to estimate
the ”correct” number of clusters in the population as well
as the interpretation of the clusters. The idea of directly
asking the question has its origins in population statistics,

and some early papers are [22,12,26] and references
therein. In fact, part of the difficulty [57] comes from the
absence, in general, of an objective way to assess the
clustering quality and to compare two clusterings of the
data. The goal of this survey is to provide a
comprehensive review on how to determine the ”correct”
number of clusters in the population when only an
observed set of samples is available, also known as
cluster validation[35,34].

The broad question ”How to determine the number of
clusters” is addressed in two ways: (1) to run clustering
algorithms with different number of clusters, and use
cluster/model validity indexes to select one of them, and
(2) to automatically fit a particular number of clusters.
The paper mainly focuses on the first way. Our main
contributions in the paper include: (1) This paper provides
a comprehensive review of approaches on determining the
”correct” number of clusters with a goal of providing
useful advice and references to broad community of
clustering practitioners. (2) This paper presents a
taxonomy of corresponding approaches, introduces
several representative examples and challenges & recent
advances.
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The organization of the rest of this paper is as follows.
After the related concepts and notations are introduced in
Section 2, we divide cluster validation into three
categories: the internal measures in Section3, the external
measures in Section4, and the clustering stability based
methods in Section5. In respective section, we introduce
several representative examples, and present specific
challenges pertinent to each category. Finally, we
conclude this paper and suggest the promising trends in
this field.

Note that strictly speaking, the internal measures
should not belong to cluster validation, since a general
principle for cluster validation should not be restricted to
a specific group of clustering algorithms, that is, model
free, but internal measures usually assume compact
clusters tightly packed around cluster centroids [45]. The
internal measures are contained here only for
completeness. Apart from the cluster validation
approaches described in this study, the Akaike
information criterion (AIC) [2], the Bayesian information
criterion (BIC) [62], the minimum description length
(MDL) [ 59], and so on, are also often used to score each
model, and then the appropriate model is selected
according to corresponding scores. But due to space limit,
they are excluded in this review.

2. Definitions and Notations

Given a set ofn objectsS= {o1,o2, · · · ,on}. Suppose the
objectsoi can be described bym explanatory variables,
denoted asxi = (xi,1,xi,2, · · · ,xi,m)

t , i = 1,2, · · · ,n. Let
X = (x1,x2, · · · , xn)

t be data matrix forn objects. Heret
denotes the transpose of a vector or matrix. Aclustering
is a set of non-empty disjoint subsets, called ascluster, of
S such that their union equalsS. Of course, clusters need
not be disjoint. Soft-cluster memberships [14], fuzzy
clustering [5] and overlapping clustering [6] are instances
where each object can actually belong to two different
clusters, and are often used in cluster analysis. Though in
this study we restrict ourselves to hard-cluster case, some
methods can be applied directly to soft-cluster case, such
as variation of information (see further), etc. Additionally,
one can also convert soft-clusters later into disjoint
subsets, then utilize the corresponding methods in the
work.

For a,b ∈ S and a clusteringC of S, we write a ∼C

b whenevera andb are in the same cluster of clustering
C anda 6∼C b, otherwise. The set of all clusterings ofS
is denoted byP(S). In addition, for any clusteringC ∈
P(S), one can define a discrete random variableXC as
follows:

XC :

(
1 2 · · · k

|C1|/n |C2|/n · · · |Ck|/n

)
. (1)

Suppose C = {C1,C2, · · · ,Ck} ∈ P(S) and
C ′ = {C′

1,C
′
2, · · · ,C′

l} ∈ P(S) represent two different

ClusteringC

ClusteringC ′

C′
1 C′

2 · · · C′
l ∑

C1 n1,1 n1,2 · · · n1,l |C1|
C2 n2,1 n2,2 · · · n2,l |C2|
...

...
...

. . .
...

...
Ck nk,1 nk,2 · · · nk,l |Ck|
∑ |C′

1| |C′
2| · · · |C′

l | n

Figure 1: The Contingency Table of the PairC , C ′.

clusterings ofS. Of course, bothk andl must be less than
or equal ton. Let ni, j denote the number of objects that
are common to clustersCi in C andC′

j in C ′, viz.,

ni, j = |Ci ∩C′
j |,1≤ i ≤ k∧1≤ j ≤ l . (2)

A trivial clustering is either the one-clustering,
denoted as1̂, that consist of just one cluster or the
singleton clustering, denoted as0̂, in which every element
forms its own cluster. In fact, all criteria for comparing
clustering can be described using the so-calledconfusion
matrix, or association matrixor contingency tableof the
pair C ,C ′ ∈ P(S). The contingency table is ak × l
matrix, whose(i, j)-th entry isni, j , as shown in Fig.1.

For a given clustering ofS into 1≤ k≤ n clusters,C =
{C1,C2, · · · ,Ck}, each cluster with covarianceΓ , Bk and
Wk are defined to be them×m matrices of between and
within k-clusters sums of squares and cross-products.

Wk =
k

∑
r=1

∑
xi∈Cr

(xi − x̄r)(xi − x̄r)
t (3)

Bk =
k

∑
r=1

|Cr |(x̄r − x̄)(x̄r − x̄)t , (4)

wherex̄r andx̄ denote centroid or medoid of clusterr and
the whole data set, respectively. Note thatB1 is not
defined.

The clustering C ′ ∈ P(S) is a refinement of
C ∈ P(S) (or C is acoarseningof C ′), if each cluster of
C ′ is contained in a cluster ofC , formally:

∀C′
j ∈ C

′,∃Ci ∈ C s.t.C′
j ⊆Ci . (5)

TheproductC ×C ′ of two clusteringsC ,C ′ ∈ P(S)
is the coarsest common refinement of the two clusterings:

C ×C
′ = {Ci ∩C′

j |Ci ∈ C ,C′
j ∈ C

′,Ci ∩C′
j 6= /0}. (6)

The productC ×C ′ is again a clustering inP(S), and if
C ′ is a refinement ofC , thenC ×C ′ = C ′.

3. Internal Measures

To estimate the number of clustersK on the data setS,
one intuitive approach is to look fork that provides the
strongest significant evidence against the null hypothesis
H0 of k = 1, that is, ”no clusters” inS. Two popular null
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hypotheses are unimodality hypothesis [61] and
uniformity hypothesis [35,13,30]. Under the former
hypothesis, the data are thought to be a random sample
from a multivariate normal distribution. Under the latter
hypothesis, the data are sampled from a uniform
distribution in m-dimensional space. For both types of
hypotheses, evidence against H0 can be summarized
formally under probability models forS or more
informally by using internal measures as described here.
By internal measures, we mean that they are calculated
from the same data set that are used to create the
clusterings.

Many approaches have been put forward for testing
H0 and estimating the number of clusters in a data set.
Jain & Dubes [35] provided a general overview of such
methods and Milligan [52] and Milligan & Cooper [53]
conducted an extensive Monte Carlo evaluation of 30
internal measures. However, the majorities of existing
methods do not attempt to formally test H0, but rather
look for the clustering structure under which a summary
statistic of interest is optimal, being large or small
depending on the statistic. The following 6 internal
measures are commonly used to estimate the number of
clusters in a data set.

3.1. CH Index

For each number of clustersk ≥ 2, Calinski &
Harabasz [17] define the index:

CH(k) =
tr(Bk)/(k−1)
tr(Wk)/(n− k)

, (7)

wheretr(·) denotes the trace of a matrix, that is, the sum
of the diagonal entries. The value ofk, which maximizes
CH(k), is regarded as specifying the number of clusters.
Note thatCH(1) is not defined and hence cannot be used
for testing one cluster versus more than one. Even if it were
modified by replacingk− 1 with k, its value at 1 would
be zero. SinceCH(k) > 0 for k ≥ 2, the maximum would
never occur atk= 1.

3.2. KL Index

For each number of clustersk≥ 2, Krzanowski & Lai [41]
define the index:

KL(k) =

∣∣∣∣
DIFF (k)

DIFF (k+1)

∣∣∣∣ , (8)

where

DIFF (k) = (k−1)2/mtr(Wk−1)− k2/mtr(Wk). (9)

The value ofk, which maximizesKL(k), is regarded as
specifying the number of clusters. Note thatKL(k) is not
defined fork= 1.

3.3. H Index

For each number of clustersk ≥ 1, Hartigan [29] defines
the index:

H(k) = (n− k−1)

(
tr(Wk)

tr(Wk+1)
−1

)
. (10)

The idea is to start withk= 1 and to add a cluster as long
asH(k) is sufficiently large. One can use an approximate
F-distribution cut-off, instead Hartigan suggested that a
cluster be added ifH(k) > 10. Hence, the smallest value
of k ≥ 1, such thatH(k) ≤ 10, is regarded as specifying
the number of clusters. This estimate is defined fork = 1
and can potentially discriminate between one versus more
than one cluster.

3.4. Silhouette Statistic

For objecti, let a(i) be the average dissimilarity between
objecti and all other objects in the cluster to which object
i belongs. For any other clusterC, let d(i,C) denote the
average dissimilarity of objecti to all objects ofC and let
b(i) denote the smallest of thesed(i,C). Then the
silhouette statistic [38,60] of object i is defined by

s(i) =
b(i)−a(i)

max{a(i),b(i)} . (11)

And the overall average silhouette statistic is simply the
average ofs(i) over all objects, namely,

s̄=
1
n

n

∑
i=1

s(i). (12)

Intuitively, objects with large silhouette statistic are well
clustered, whereas those with small silhouette statistic
tend to lie between clusters. Kaufman & Rousseeuw [38]
proposed to choose the value ofk, which maximizes the ¯s,
as specifying the number of clusters. Note thats(i) is not
defined fork= 1.

3.5. Gap and GapPC Statistic

The Gap statistic [73] investigates the relationship
between the log(tr(Wk)) for different values ofk and the
expectation of log(tr(Wk)) for a suitable null reference
distribution, which is defined:

Gap(k) = E[log(tr(Wk))]− log(tr(Wk)). (13)

Here E denotes the expectation under the null
distribution. To estimate the expectation of log(tr(Wk)),
generateB reference data sets under the null distribution
and apply the clustering algorithm to each, calculating the
within-cluster sums of squares
tr(W1

k), tr(W
2
k), · · · , tr(WB

k ). Thus, compute the
estimated Gap statistic

Ĝap(k) =
1
B

B

∑
b=1

log(tr(Wb
k))− log(tr(Wk)). (14)
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Let sd(k) denote the standard deviation of
log(tr(W1

k)), log (tr(W2
k)), · · · , log(tr(WB

k )) and define

s(k) = sd(k)
√

1+1/B. (15)

The smallest value ofk, such that̂Gap(k)≥ Ĝap(k+1)−
s(k+1), is regarded as specifying the number of clusters.

Tibshirani et al. [73] chose the uniform distribution as
null distribution and considered two approaches for
constructing the region of support of the distribution. In
the first approach, the support forj-th explanatory
variable, 1≤ j ≤ m, is the range of the observed valued
for that variable. In the second approach, the variables are
sampled from a uniform distribution in a box aligned with
the principal components of the centered designed matrix.
Specifically, suppose that the columns ofX have mean 0
and compute the singular value decomposition
X = UDVt . Tibshirani et al. [73] transformed via
X′ = XV and then drew uniform featuresZ′ over the
ranges of the column ofX′, as in the first approach.
Finally to back-transform viaZ = Z′Vt to give reference
data setZ. Whereas the first approach has the advantage
of simplicity, and the second one takes into account the
shape of the data distribution, and makes the procedure
rotationally invariant, as long as the clustering method
itself is invariant.

Note that in both approaches, the variables are
sampled independently. The version of the gap method
that uses the original explanatory variables to construct
the region of support is referred to as Gap statistic and the
second version as GapPC statistic, where ”PC” stands for
principle components [20].

3.6. Distortion Index

Motivated by ideas fromrate distortion theory [18],
Sugar & James [71] define a quantity that measures the
average distance, per dimension, between each object and
its closest cluster centroid or medoid, named as distortion.
Formally, for each number of clustersk≥ 1, the distortion
is defined as follows.

d̂k =
1
m

k

∑
r=1

1
|Cr | ∑

xi∈Cr

(xi − x̄r)
tΓ −1(xi − x̄r), (16)

which is simply the average Mahalanobis distance, per
dimension, between each object and its closest cluster
centroid or medoid. Note that in the case whereΓ is the
identity matrix, distortion is simply mean squared error.

Sugar & James [71] show, both theoretically and
empirically, that for a large class of distributions the
distortion curve, when transformed to an appropriate
negative powerp (a typical value isp = m/2), will
exhibit a sharp jump at the ”true” number of clusters.
Thus, the value ofk, which maximizesJk = d̂−p

k − d̂−p
k−1,

is regarded as specifying the number of clusters. Note that
d−p

0 = 0. Therefore, the distortion index can detect the
absence of clustering, i.e.,1̂.

3.7. General Remarks

The preceding measures all depends on a very strong null
hypothesis. However, the unimodality hypothesis
typically gives a high probability of rejection of H0 if the
data are sampled from a distribution with a lower kurtosis
than the normal distribution, such as the uniform
distribution [61]. Measures based on the uniformity
hypothesis tend to be conservative, that is, lead to few
rejections of H0, when the data are sampled from a
strongly unimodal distribution such as the normal
distribution. In two or more dimensions, and depending
on the test statistic, the results can be very sensitive to the
region of support of the reference distribution [61].

These measures can only make comparisons between
clusterings generated using the same model/metric.
Furthermore, they often make assumptions about cluster
structure. For example, if the particular data set that is
being studied consists of several clouds of data point,
with each cloud spherically distributed about its center,
measures that assume such structure will work well.
Otherwise, the same measure will possibly mislead. On
the other hand, since these measures are calculated from
the same observations that are used to create the
clustering. Consequently, the distributions of these
measures are intractable. In particular, as clustering
methods attempt to maximize the separation between
clusters, the ordinary significance tests such as analysis of
variance F-tests are not valid for testing differences
between the clusters. Although many internal measures
have been proposed, none of them is completely
satisfactory [20].

3.8. Axiomatic View

The authors of the respective literatures had different
motivations for looking for a ”good” measure. What’s
more, now new internal measures still emerge
continuously. But what does a ”good” internal measure
look like? Stated differently, what requirements or axioms
should a ”good” internal measure meet? One usually
considers that a good internal measure should reflect our
intuitions, e.g., scale invariance (see further). Howeverit
is not easy to formalize the intuitions and design a new
measure that meets these intuitions. Fisher & Van
Ness [21] was one of the earliest attempts to axiomatize
what is a ”good” clustering, though it does not explicitly
axiomatize a measure of clustering validity. Ackerman &
Ben-David [1] proposed 4 axioms, and the set of these
axioms is a consistent set of axioms.

3.8.1. Axioms

As described above, internal measures are typically
functions of the within-clusters, and possibly
between-clusters, sums of squares. Therefore, a distance
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functiond overS is implicitly defined. In fact, an internal
measureindex is a function that is given a clustering
C ∈ P(S) over (S,d) and returns a non-negative real
number, namelyindex : P(S) × S× D(S,S) → R

+
0 ,

where D(S,S) is the set of all interested distance
functions overS, andR

+
0 is the set of all real number

greater or equal to 0.

Definition 1(Scale Invariance [1]). Given a distance
function d∈ D(S,S) over S and a positive numberλ , an
internal measure index satisfiesscale invarianceif for
every clustering C ∈ P(S) of S,
index(C ,S,d) = index(C ,S, λd).

This is simply the requirements that the internal
measure should not be sensitive to changes in the units of
distance measurement; that is to say, it should not have a
build-in ”length scale” [1,39].

Let C ∈ P(S) be a clustering overS, andd andd′ ∈
D(S,S) be two distance functions overS, we sayd′ is aC -
consistent variantof d, if d′(a,b)≤ d(a,b) for all a∼C b,
andd′(a,b)≥ d(a,b) for all a 6∼C b.

Definition 2(Consistency [1]). Given two distance
functions d,d′ ∈ D(S,S) over S, an internal measure
index satisfies consistency if for every clustering
C ∈ P(S) of S, whenever d′ is a C -consistent variant of
d, then index(C ,S, d′) ≥ index(C ,S,d).

Intuitively, consistent changes tod should not hurt the
quality of a given clustering. In other words, the
clusterings arise from the distance functionsd and d′

should be same [39]. Though this intuition is captured, it
allows the possibility that some clusterings will improve
more than others as a result of such change [1].

Definition 3(Richness [1]). An internal measure index
satisfies richness if for each non-trivial clustering
C ∈ P(S) over S, there exists a distance function
d ∈ D(S,S) over S such that
C = arg maxC∈P(S) {index(C ,S,d)}.

Another way to say this is that the output of the
clustering function should be ”rich”—every clustering in
P(S) is a possible output. In other words, suppose we are
only given the objects inS but not the distance between
them. Richness requires that for any desired clusteringC ,
it should be possible to construct a distance functiond,
such that the value ofindex for C is maximum over
P(S).

Let C ,C ′ ∈ P(S) be two clusterings overS, andd ∈
D(S,S) be a distance function overS, we sayC andC ′ are
isomorphic, denotedC ∼=d C ′, if there exists a distance-
preserving isomorphismϕ : S→ S, such that for alla,b∈
S,a∼C b if and only if ϕ(a)∼C ϕ(b).

Definition 4(Isomorphism Invariance [1]). Given a
distance function d∈ D(S,S) over S, an internal measure
index satisfiesisomorphism invariantif for all clusterings
C ,C ′ ∈ P(S) over S where C ∼=d C ′,
index(C ,S,d) = index(C ′,S,d).

This is the requirement that clustering should be
indifferent to individual identity of clustered objects, that
is, permutation invariance[56].

3.8.2. Two Novel Internal Measures

Two novel internal measures,weakest linkand additive
margin, are proposed by Ben-David & Ackerman [1],
which reflect the underlying intuition of center-based and
linkage-based clustering, respectively. What’s more, both
of them satisfy the four axioms as described above, and
given a data clustering, can be calculated in polynomial
time. Analyzing which internal measures above meet
these axioms is the subject of our next work.

(a)Weakest Link Measure
In linkage-based clustering, whenever a pair of

objects shares the same cluster they are connected via
a tight chain of points in that cluster. The weakest link
measure focuses on the longest link in such a chain.
Particularly, LetC = {C1,C2, · · · ,Ck} ∈ P(S) be a
clustering overS, and d ∈ D(S,S) be a distance
function overS, Ben-David & Ackerman [1] define the
measure:

WL(C ) =
maxa∼C bC -WL(a,b)

mina∼C bd(a,b)
, (17)

where

C -WL(a,b) =
k

min
i=1

max
x,y∈Ci

{d(a,x),d(x,y),d(y,b)}.

(18)

Note that the range of values of weakest link measure
is (0,∞).

(b)Additive Margin Measure
Let C = {C1,C2, · · · ,Ck} ∈ P(S) be a clustering

over S, d ∈ D(S,S) be a distance function overS and
K ⊆ S be a representative set ofC . Of course,
|K | = k and for all i, K ∩Ci 6= /0. Ben-David &
Ackerman [1] define the measure:

AM(C ) = min
1
n ∑x∈S(d(x,cx)−d(x,c′x))

1
∑k

i=1 |Ci |(|Ci |−1)
∑a∼C bd(a,b)

(19)

wherecx,c′x ∈ K are the closest and second centers to
x, respectively.

4. External Measures

The term cluster validation usually refers to the ability of
a given clustering approach to recover the true clustering
structure in a data set. Bock [13] and Hartigan [31]
attempted to assess validity on theoretical ground.
However, these methods turn out to be of little
applicability in real-life tasks, especially in the context of
high-dimensional complex data sets [20]. In many
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validation studies, the performance of a clustering
approach is evaluated on some data sets witha priori
known clustering structure. In order to assess the ability
of a clustering approach to recover true clustering
structure ofS, it is necessary to define a measure of
agreement betweenC = {C1,C2, · · · ,Ck} ∈ P(S) and
C ′ = {C′

1,C
′
2, · · · ,C′

l} ∈ P(S) of S, where the former is
thea priori known clustering structure ofS, and the latter
comes from some clustering approach. In the clustering
literature, such measures are referred to as external
measures.

Though a common ground of these measures is that
they can be calculated from the contingency matrix, they
base on different ideas: pair-counting based measures,
set-matching based measures and information theoretic
based measures. The division also reflects the
chronological development of the measures [77]:
pair-counting based measures date from the 1970s and
1980s, set-matching based measures from the 1990s and
information theoretic based measures have been
developed in the 2002/2003.

4.1. Pair-Counting based Measures

A very intuitional approach to comparing clusterings is
counting the number of unordered pairs of objects that are
(or are not) placed into the same cluster according toC

and C ’. Consequently, a 2× 2 agreement/disagreement
table [16] is formed, as shown in Fig.2, wherem1,1 is the
number of unordered pairs that are placed in the same
cluster according to bothC and C ′, m1,0 (m0,1) is the
number of unordered pairs that are placed in the same
cluster according toC (C ′) but not according toC ′ (C ),
and finallym0,0 is the number of unordered pairs that are
not in the same cluster according to either ofC andC ′.
Types (m1,1) and (m0,0) are typically interpreted as
agreements in the classification of the objects from a pair;
types (m1,0) and (m0,1) represent disagreements [32].
Note that for simplification,ma,b,a,b ∈ {0,1} is also
referred to the type that the corresponding unordered
pairs belong to.

Since each unordered pair of objects must fall into one
of these four types, we have

m= m1,1+m1,0+m0,1+m0,0 =

(
n
2

)
, (20)

where

m1,1 =
k

∑
i=1

l

∑
j=1

(
ni, j

2

)
, (21)

m1,0 =
k

∑
i=1

(|Ci |
2

)
−

k

∑
i=1

l

∑
j=1

(
ni, j

2

)
, (22)

m0,1 =
l

∑
j=1

(|C′
j |

2

)
−

k

∑
i=1

l

∑
j=1

(
ni, j

2

)
, (23)

m0,0 = m+
k

∑
i=1

l

∑
j=1

(
ni, j

2

)
−

k

∑
i=1

(|Ci |
2

)
−

l

∑
j=1

(|C′
j |

2

)
.

(24)

Note that
(a

2

)
is defined as 0 whena= 0 or 1.

4.1.1. Rand Statistic, Mirkin Metric and Hurbert Statistic
I

Intuitively, two clusterings that are similar produce
relatively large values ofm1,1+m0,0 and small values for
m1,0 + m0,1. Thus, depending on howm1,1 + m0,0 and
m1,0 + m0,1 are normalized, different measures are
possible, e.g., Rand statistic (denoted asR) [67,58],
Mirkin metric (denoted asM) [54,4], and Hurbert statistic
I (denoted asH1) [33] as follows:

R(C ,C ′) =
m1,1+m0,0

m
, (25)

M(C ,C ′) =
m1,0+m0,1

m
, (26)

H1(C ,C ′) =
m1,1+m0,0−m1,0−m0,1

m
. (27)

All three of these measures have straightforward
probabilistic interpretations with respect to picking a pair
of objects at random. For example,R(C ,C ′) is the
probability of an agreement,M(C ,C ′) is the probability
of a disagreement, andH1(C ,C ′) is the difference
between the probability of an agreement and a
disagreement.

In addition, Mirkin metric [54,4] is also known as
Equivalence Mismatch Distance, which corresponds to
the normalized Hamming distance for binary vectors if
the set of all pairs of elements is enumerated and a
clustering is represented by a binary vector defined on
this enumeration [77,10]. An advantage is the fact that
this distance is a metric inP(S) [77]. As a matter of fact,
Mirkin metric is a variation of Rand statistic, since it can
be rewritten asM(C ,C ′) = 1−R(C ,C ′).

4.1.2. Wallace Index I and II, Fowlkes-Mallows Index

For comparing hierarchical clusterings, Fowlkes &
Mallows [23] proposed their index, denoted asFM.
However, it can also be used for flat clusterings since it
consists in calculating an index for each level of the
hierarchies in consideration, which can be easily
generalized to a measure for clusterings with different
numbers of clusters.

Wallace [78] in commenting on Fowlkes & Mallows’
paper [23] suggested two other measures of clustering
validation, denoted asW1 and W2, respectively. In
essence, the symmetric measure, Fowlkes-Mallows index,
is the simple geometric mean of the two non-symmetric
Wallace indices. The definitions of these three measures
are as follows:

W1(C ,C ′) =
m1,1

m1,1+m1,0
, (28)

W2(C ,C ′) =
m1,1

m1,1+m0,1
, (29)

FM(C ,C ′) =
m1,1√

(m1,1+m1,0)(m1,1+m0,1)
. (30)
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ClusteringC ′

ClusteringC

#unordered pairs same cluster different cluster ∑
same cluster m1,1 m1,0 m1,1+m1,0

different cluster m0,1 m0,0 m0,1+m0,0

∑ m1,1+m0,1 m1,0+m0,0 m

Figure 2: 2×2 Agreement/Disagreement Table.

In the context of information retrieval, all three of
measures have definite interpretations [77]. For instance,
W1(C , C ′) can be interpreted as ratio of the number of
retrieved relevant documents to the total number of
relevant documents, i.e., recall;W2(C ,C ′) can be
interpreted as ratio of the number of retrieved relevant
documents to the total number of retrieved documents,
i.e., precision;FM(C ,C ′) can be interpreted as the
geometric mean of precision and recall.

4.1.3. Jaccard Index

The Jaccard index [35], also known asJaccard similarity
coefficient, is very similar to the Rand index, however it
disregards the unordered pairs of objects that are in
different clusters for bothC and C ′. It is defined as
follows:

J(C ,C ′) =
m1,1

m1,1+m1,0+m0,1
. (31)

4.1.4. Hurbert Statistic II

In order to define Hurbert statistic II [32], one need to
define twon× n partitioned binary matrices,P and Q,
based on the cluster of then objects inS according toC
andC ′, respectively. See Fig.3 for the partitioned binary
matrix P, which is assumed to have zeros along its main
diagonal with the indicated ones and zeros defining all the
entries in the corresponding sub-matrices. The rows and
columns ofP are partitioned according to the row sums of
the original contingency table (Fig.1), whose (i, j)-th
entry is denotedP(i, j). Q can be defined similarly.

Without loss of generality, we can assume that the
objects in S that are indexed by
|Ci−1|+ 1, |Ci−1| + 2, · · · , |Ci | belong toCi(1 ≤ i ≤ k).
Note that|C0| = 0. Obviously, then row/column objects
of Q are the same as the row/column objects ofP but
reordered to be consistent with the partition represented
by Q. Therefore, letπ0(·) denote the permutation on the
first n positive integers, such that ifπ0(r) = t, then the
r-th row (and column) inP, which corresponds to object
or , is actually thet-th row (and column) inQ.

Hurbert statistic II evaluates the similarity between the
two clusteringC andC ′, based on predicting one matrix
from the other. For example, suppose we predictQ(π0(r),

Figure 3: Partitioned Binary MatrixP.

π0(s)) from P(r,s) using least-squares (r,s= 1,2, · · · ,n).
The regression coefficient obtained,b1, can be written as

b1 =

(n
2

)
∑k

i=1 ∑l
j=1

(ni, j
2

)
−∑k

i=1

(|Ci |
2

)
∑l

j=1

(|C′
j |

2

)

∑k
i=1

(|Ci |
2

)[(n
2

)
−∑k

i=1

(|Ci |
2

)] .

(32)

Likewise, we also can predictP(r,s) from Q(π0(r),π0(s))
using least-squares (r,s = 1,2, · · · ,n). The regression
coefficient obtained,b2, has almost the same form with
b1:

b2 =

(n
2

)
∑k

i=1 ∑l
j=1

(ni, j
2

)
−∑k

i=1

(|Ci |
2

)
∑l

j=1

(|C′
j |

2

)

∑l
j=1

(|C′
j |

2

)[(n
2

)
−∑l

j=1

(|C′
j |

2

)] .

(33)

To obtain a symmetric measure, Hubert [33] took the
geometric mean of the two regression coefficients, namely

H2(C ,C ′) =
√

b1b2. (34)

4.1.5. Minkowski Score

The Minkowski score [36] calculates the agreement
between a reference clusteringC and a clustering result
C ′, based on their cophenetic matrices,MC andMC ′

. A
cophenetic matrix of C is a binary matrix with
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MC
i, j = 1(i, j = 1,2, · · · ,n) if and only if object i and

object j are in the same cluster inC (i 6= j). Similarly,
one can construct the corresponding cophenetic matrix
MC ′

for C ′. The Minkowski score is defined as

MS(C ,C ′) =
||MC −MC ||

||MC || =

√
m1,0+m0,1

m1,1+m1,0
. (35)

Note that it is limited to the interval[0,+∞)

4.1.6. General Remarks

For different reasons, these measures do not seem to be
very appealing. Many of them are sensitive to cluster
sizes and number of clusters, which are undesirable for a
similarity measure. For example, the Rand statistic has
been shown to be highly dependent upon the number of
clusters [55]. Fowlkes & Mallows [23] showed that in the
(unrealistic) case of independent clusterings, the Rand
statistic converges to one as the number of clusters
increases. As another example, the Mirkin metric is also
very sensitive to cluster sizes, such that two clusterings,
for which each cluster in one clustering contains the same
amount of elements of each of the clusters of the other
clustering, are closer to each other than two clusterings
for which one is refinement of the other [74].

Other measures, like the Fowlkes-Mallows index,
make use of a very strong null hypothesis, that is,
independence of the clusterings, fixed number of clusters,
and fixed cluster sizes. When comparing clustering results
provided by clustering methods, these assumptions (apart
from the number of clusters that is fixed for some
methods) do not usually hold. None of the algorithms
works with fixed cluster sizes. Furthermore,
independence of the clusterings is against our intuition
when comparing clusterings, since the aim of our
comparison is that we suppose a certain relationship
between them and we want to know how strong it is [78].

4.2. Set-Matching based Measures

This kind of measures tries to match clusters that have a
maximum absolute or relative overlap, which is also a
quite intuitional approach. The following 5 measures are
popular in the literatures.

4.2.1. F-measure

The F-measure has its origin in the field of document
clustering [46,24,68]. Each cluster ofC is a (predefined)
class of documents and each cluster ofC ′ is treated as the
result of a query. The F-measure forC′

j with respect toCi ,
Fi, j , indicates how ”good”C′

j describesCi , which is
calculated with the harmonic mean of precision

pi, j = ni, j/|C′
j | and recall,r i, j = ni, j/|Ci |, for C′

j andCi ,
namely

Fi, j =
2r i, j pi, j

r i, j + pi, j
=

2ni, j

|Ci |+ |C′
j |
. (36)

The overall F-measure is then defined as the weighted
sum of the maximum F-measures for the clusters inC ′:

F(C ,C ′) =
1
n

k

∑
i=1

|Ci |
l

max
j=1

{Fi, j}. (37)

As we know, the range of the F-measure is(0,1]. Wu
et al. [80] proposed a procedure to find a tight lower bound
for the F-measure, denotedF−. The readers are invited to
consult [80] for details.

4.2.2. Meilǎ-Heckerman Criterion

Meilǎ-Heckerman criterion [51], also known asmaximum
match measure, can be calculated as follows: look for the
largest entryna,b of the contingency table and match the
corresponding clustersCa in C andC′

b in C ′, which is the
cluster pair with the largest (absolute) overlap. Denote by
match(a) the index of the clusterC′

b that matches cluster
Ca. Afterward delete thea-th row and theb-th column and
repeat this step until the matrix has size 0. Finally, sum up
the matches and divide it by the total number of objects:

MH(C ,C ′) =
1
n

min{k,l}
∑
i=1

ni,match(i). (38)

This measure is symmetric and takes value 1 forC = C ′.
Note that in the case ofk 6= l , this measure completely
disregards the|k− l | ”remaining” clusters in the clustering
with the higher cardinality.

4.2.3. Goodman-Kruskal Coefficient

The Goodman-Kruskal coefficient [27,37] takes a
classification view on clustering. Specially, the following
classification rule is adopted: (a) In the absence of
knowledge aboutXC , the objecta∈ Swill be classified in
the cluster argmaxj P(XC ′ = C′

j) = argmaxj |C′
j |/n in C ′;

(b) Otherwise, if one has known in advance that the object
a∈ Sbelongs to the clusterCi in C , a will be classified in
the cluster
argmaxj P(XC ′ = Cj |XC = Ci) = argmaxj ni, j/|Ci| in C ′.
The probability of misclassification committed by
applying this rule is 1−maxj P(XC ′ = Cj |XC = Ci). The
Goodman-Kruskal coefficient is the expected value of this
error:

GK(C ,C ′)

=
k

∑
i=1

P(XC =Ci)(1−
l

max
j=1

(XC ′ =C′
j |XC =Ci))

= 1− 1
n

k

∑
i=1

l
max
j=1

ni, j . (39)
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GK(C ,C ′) has an upper bound of
1− (1/n)×maxj |C′

j |. And GK(C ,C ′) = 0 if and only if
C is a refinement ofC ′. Furthermore,GK(·, ·) is
monotonic increasing in its first argument and monotonic
decreasing in its second [37]. In other words, if
C ,C ′,C ′′ ∈ P(S) such thatC is a refinement ofC ′, then
GK(C ,C ′′) ≤ GK(C ′,C ′′), and if C ,C ′,C ′′ ∈ P(S)
such that C ′ is a refinement of C ′′, then
GK(C ,C ′) ≥ GK(C ,C ′′). In addition, the purity and
micro-averaged precision (MAP) in [80] are equivalent to
this measure.

4.2.4. van Dongen Criterion

van Dongen criterion [74] is a symmetric measure, which
is also based on maximum intersections of clusters. It is
defined as follows:

VD(C ,C ′) = 2n−
k

∑
i=1

l
max
j=1

ni, j −
l

∑
j=1

k
max
i=1

ni, j . (40)

It can seen as a symmetric version ofGK(·, ·), since
VD(C ,C ′) = n × (GK(C ,C ′) + GK(C ′,C )) [80].
Therefore,VD(C ,C ′) ≤ 2n−maxi |Ci | −maxj |C′

j | [80].
Additionally, this measure has a nice property that it is a
metric inP(S) [37]. However, it ignores the parts of the
clusters outside the intersections.

4.2.5. Classification Error Metric

Similar to Goodman-Kruskal coefficient, the
classification error metric [11,50] takes a classification
view on clustering, too. Nevertheless, it tries to map each
cluster in one clustering with the lower cardinality to a
different cluster in the other clustering in order to
minimize the total misclassification rate. In specific, letσ
be an injective mapping of{1,2, · · · ,min{k, l}} into
{1,2, · · · ,max{k, l}}. Thus, eachσ can be seen as a
(partial) correspondence between the cluster labels inC

andC ′, so one can calculate the ”classification error” of
one clustering with the lower cardinality with respect to
the other clustering. The classification error metric,
denoted asε, is defined as the minimum possible
”classification error” under all correspondences:

ε(C ,C ′) = 1− 1
n

{
maxσ ∑k

i=1ni,σ(i), k≤ l
maxσ ∑l

j=1nσ( j), j , otherwise
(41)

ε(C ,C ′) has an upper bound of 1−1/max{k, l} [80].
Though the number of all correspondences are order
min{k, l}! ×

(max{k,l}
min{k,l}

)
, the maximum can be calculated in

polynomial time as the solution of a linear program
identical to the maximum bipartite matching algorithm in
graph theory [25].

4.2.6. General Remarks

It is very easy to see that set-matching based measures
have the common property of just taking the overlaps into
account and completely disregarding the unmatched parts
of the clusters or even complete clusters. Meilǎ [49]
presented a nice example that pointed out the negative
effect of this ”behavior” of a measure: supposeC ∈P(S)
is a clustering withk equal size clusters.C ′ is obtained
from C by shifting a fractionα of the objects in each
clusterCi to the ”next” clusterC(i+1) modk. The clustering
C ′′ is obtained fromC by reassigning a fractionα of the
elements in each clusterCi evenly between the other
clusters. If α < 0.5, then F(C ,C ′) = F(C ,C ′′),
MH(C ,C ′) = MH(C,C′′), VD(C ,C ′) = VD(C ,C ′′),
GK(C ,C ′) = GK(C ,C ′′), and ε(C ,C ′) = ε(C ,C ′′).
This contradicts our intuition thatC ′ is a less disrupted
version ofC thanC ′′, which is therefore not desirable.

Another drawback is the asymmetry of some of the
measures, such as F-measure, Goodman-Kruskal
coefficient. These may be appropriate indices for
comparing a clustering with an optimal clustering
solution. However, in general the optimal solution is not
known, which makes an asymmetric measure hard to
interpret.

4.3. Information Theoretic based Measures

Here we first review some of the very fundamental
concepts of information theory. For more details we refer
the readers to [18]. As stated in the section Introduction,
for any clusteringC ∈ P(S), one can define a discrete
random variableXC , theentropyof which is defined as

H(C ) = −
k

∑
i=1

P(XC =Ci) logP(XC =Ci)

= −
k

∑
i=1

|Ci |
n

log
|Ci |
n

, (42)

where log bases 2. We can understand it as follows [49]:
assuming that each object ofShas the same probability of
being picked and choosing an object ofS at random, the
probability that this object is in clusterCi ∈ C is P(XC =
Ci) = |Ci |/n. The uncertainty in this context is equal to the
entropy of random variableXC . Usually,H(C ) is called
theentropy associated with clusteringC . H(C ) is always
non-negative, which takes value 0 only whenC is a trivial
clustering.

4.3.1. Entropy

To calculate this measure [68,81], for each clusterC′
j ∈C ′,

the conditional probabilitypi| j = P(XC =Ci |XC ′ =C′
j) =

ni, j/|Cj | is first computed, and then the entropy of cluster
C′

j using the standard entropy,E j =−∑i pi| j log(pi| j). The
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total entropy, denoted asE, is computed as the weighted
sum of the entropies of each cluster inC ′, namely

E(C ,C ′) =
l

∑
j=1

P(XC ′ =C′
i )E j

= −
l

∑
j=1

|C′
j |

n

(
k

∑
i=1

ni, j

|C′
j |

log
ni, j

|C′
j |

)
. (43)

In fact, this measure is nothing but theconditional
entropy[18] of C on C ′, H(C |C ′), which implies that if
the objects in each large cluster ofC ′ are mostly from the
same cluster inC , this measure tends to be small [80].
Furthermore, this measure is always non-negative, less
than or equal to logk [80], but asymmetric.

4.3.2. Mutual Information

Themutual informationbetween two clusterings, denoted
asMI , is the information that one clustering has about the
other, which is equal to the mutual information between
the associated random variables [70,69], namely

MI(C ,C ′) = MI(XC ,XC ′)

=
k

∑
i=1

l

∑
j=1

ni, j

n
log

ni, j

|Ci ||C′
j |

= H(C )+H(C ′)−H(C ,C ′) (44)

where H(C ,C ′) is the joint entropy [18] of the two
clusterings. Intuitively,MI(C ,C ′) can be interpreted as
follows [49]: Given an object inS, the uncertainly about
its cluster inC is measured byH(C ). Assume that it is
known that which cluster the object belongs to inC ′. This
knowledge often reduces the uncertainty about its cluster
in C . This reduction in uncertainty, averaged over all
objects inS, is equal toMI(C ,C ′).

MI(C ,C ′) is always non-negative and symmetric,
and never exceed the total uncertainty in a clustering, so
MI(C ,C ′) ≤ min{H(C ),H(C ′)}. Equality in this
formula occurs when one clustering is a refinement of the
other. Another way to say this is that ifC ′ is a refinement
of C , then MI(C ,C ′) = H(C ) < H(C ′). And
MI(C ,C ′) = H(C ) = H(C ′) if and only if C = C ′.

By simple transformation, MI(C ,C ′) =
H(C )− (H(C )− MI(C ,C ′)) = H(C )− H(C |C ′), one
can easily find thatMI(C ,C ′) is equivalent toE(C ,C ′)
for any given data setS if C is the a priori known
clustering structure ofS, sinceH(C ) is a constant in this
case [80].

4.3.3. Variation of Information

By analogy with the total variation of a function, variation
of information [49,50,75] between two clusterings

C ,C ′ ∈ P(S) is defined as

VI(C ,C ′) = H(C )+H(C ′)−2MI(C ,C ′)

= [H(C )−MI(C ,C ′)]+ [H(C ′)−MI(C ,C ′)]

(45)

Informally, when going from clusteringC to
clustering C ′, the first term in the above formula
measures the amount of information aboutC that we
loose, which corresponds to the conditional entropy
H(C |C ′), while the second term measures the amount of
information about C ′ that we have to gain, which
corresponds to the conditional entropyH(C ′|C ) [49].
This implies that the variation of information is a
symmetry version of the entropy measure [80].
Additionally, by Equation (44), VI(C ,C ′) can be
re-expressed as

VI(C ,C ′) = 2H(C ,C ′)−H(C )−H(C ′). (46)

Meilǎ [49] analyzed in detail the variation of
information between two clusterings, and summarized
many properties. Here, we briefly review several main
ones:

(a)VI(C ,C ′) is a metric inP(S).
(b)VI(C ,C ′) ≤ min{logn,2logmax{k, l}}. This means

that for large enoughn, clusterings of different data
sets, with different numbers of elements, but with
bounded numbers of clusters are on the same scale in
the metric VI. This allows us to compare, add or
subtractVI metric across different clustering space
independently of the underlying data set.

(c)The product of two clusteringsC ,C ′ ∈ P(S) is
collinearwith these two clusterings, namely

VI(C ,C ′) = VI(C ,C ×C
′)+VI(C ×C

′,C ′). (47)

This also impliesVI(C ,C ′) ≥ VI(C ,C × C ′) with
equality only if C ′ = C × C ′. Thus, the nearest
neighbor of C is either a refinement ofC or a
clustering whose refinement isC . In essence, the
nearest neighbor of a clustering is obtained by splitting
one element off the smallest cluster (or by the
corresponding merging process). This means that small
changes in a clustering result in smallVI metrics.

(d)VI(C ,C ′)≥ 2/n. Thus, with increasingn, the space of
clusterings gets a finer granularity.

(e)VI(C ,C ′) can be calculated inO(n+ k× l): O(n) for
computing the confusion matrix andO(k × l) for
computingVI(C ,C ′) from the matrix.

4.3.4. General Remarks

At present, though there is no consensus on which is the
best measure, information theoretic based measures have
received increasing attention for their solid theoretical
background. Another reason that these measures seem to
be quite promising is that they do not suffer from the
drawbacks that we can find for measures that are based on
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counting pairs or on matching set. However, they possibly
suffer from other disadvantages that we do not know
yet [77].

4.4. Correction for Chance

On close examination, one can find that preceding
external measures either do not have a fixed bound, or do
not have a constant baseline value, i.e., average value
between random clusterings of a data set. Since a measure
is meant to provide a comparison mechanism, it is
generally preferable that it lies within a predetermined
range and has a constant baseline value, so as to facilitate
comparison and enhance intuitiveness [75]. Otherwise, if
they have a considerable inherent bias attributable solely
to chance, it may potentially reduce their usefulness in a
number of common situations. Therefore, it is necessary
to correct these measures for chance, also known as
normalization in the literature.

Generally speaking, normalizing techniques tend to
fall into two kinds: one (Type-I in short) is based on a
statistical view, which formulates a baseline distribution
to correct the measure for randomness; the other (Type-II
in short) uses the minimum and maximum values to
normalize the measure into the[0,1] range. Fig. 4
illustrates the normalization scheme for various external
measures, where max(index), min(index) is the
maximum, minimum value of the measureindex, and
E(index) is the expected value ofindex based on the
baseline distribution. In this study, we consider 17
external measures in total, as shown in Fig.5. By
positive/negative measures, denoted as+/−, respectively,
we mean that a higher value indicates a better/worse
clustering performance.

As for the baseline distribution, Hurbert &
Arabie [32] proposed to use the exact generalized
hypergeometric distribution [75,43] as the baseline
distribution in which the row and column sums are fixed,
but the clusterings are randomly selected. Morey &
Agresti [55] suggested an asymptotic form based on the
multi-nominal distribution. These lead to the following
expected values as follows, respectively.

E

(
k

∑
i=1

l

∑
j=1

n2
i, j

)
=

1
n(n−1)

k

∑
i=1

l

∑
j=1

|Ci |2|C′
j |2+

n2

n−1

− 1
n−1

(
k

∑
i=1

|Ci |2+
l

∑
j=1

|C′
j |2
)

(48)

E

(
k

∑
i=1

l

∑
j=1

n2
i, j

)
≈ 1

n2

k

∑
i=1

l

∑
j=1

|Ci |2|C′
j |2. (49)

The difference between expectations (48) and (49) pointed
out by Hubert & Arabie [32], can be apparent only when
the data sizen is small; otherwise they are slight. In this
study, the expectation (48) is adopted.

Based on (48), one can easily calculate the
expectation forR,M,H1,W1,W2,FM,J′,H2 and MS′,
since they are linear functions of∑i, j n

2
i, j under the

hypergeometric distribution assumption. Just as many
authors [80,3,79] observed, after correction for chance,
many of these measures become equivalent, e.g.,
Rnorm = Mnorm = H1norm = J′norm = MS′norm, and
H2norm = H2 =

√
W1norm×W2norm [32]. It is worth

mentioning that it is not trivial to calculate the
expectations forMI andVI. Nevertheless, Vinh et al. [75,
76] derived an analytical formula for the expected value
of MI and VI under the hypergeometric distribution as
follows.

E(MI)

=
k

∑
i=1

l

∑
j=1

High

∑
ni, j=Low

ni, j

n
log

(
nni, j

|Ci ||C′
j |

)

|Ci |!|C′
j |!(n−|Ci|)!(n−|C′

j |)!
n!ni, j !(|Ci |−ni, j)!(|C′

j |−ni, j)!(n−|Ci|− |C′
j |+ni, j)!

(50)

where Low = max{0, |Ci | + |C′
j | − n} and

High= min{|Ci |, |C′
j |}.

E(VI) = H(C )+H(C ′)−2E(MI) (51)

Note that there exist some criticisms [50] for
artificiality of the randomness model in Type-I
normalization technique. Since the ”amount” of similarity
of two clusterings corresponds to the deviation from the
expected value under the null hypothesis of independent
clusterings with fixed cluster sizes. Again, the strong
assumptions on the distribution make the result hard to
interpret.

4.5. Axiomatic View

As like internal measures, one usually consider what
axioms a ”good” external measure should satisfy in order
to better understand their properties, their limitations,and
the implied assumptions underlying them. Meilǎ [50]
proposed the following 6 axioms, and derived an
impossibility result for external measures: no measure in
the space of clusteringsP(S) can simultaneously satisfy
three desirable properties (see further), each of which
makes the measure intuitive in some sense.

Definition 5(Symmetry [80,50]). An external measure
index satisfiessymmetry if for any two clusterings
C ,C ′ ∈ P(S), index(C ,C ′) = index(C ′,C ).

In order words, transposing two clustering in the
confusion matrix should not bring any difference to the
measure value [80]. Obviously, this axiom is not true for
the F-measure, the Goodman-Kruskal criterion, the
classification error metric and the entropy.
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Positive Negative

Type-I I: index−E(index)
max(index)−E(index) II: E(index)−index

E(index)−min(index)

Type-II III: index−min(index)
max(index)−min(index) IV: max(index)−index

max(index)−min(index)

Figure 4: The Normalization Scheme for Various External Measures.

Measure Range Pos./Neg. Normalization
R (0,1] + I [32]
M [0,1) − II [ 32]
H1 (−1,1] + I [80]
W1 [0,1] + I [3]
W2 [0,1] + I [3]
FM [0,1] + I [3]
J′ [0,1] − II [ 80]
H2 [0,1] + I [32,80]
MS′ [0,∞) − II [ 80]
F [F−,1] + III [ 80]
MH (0,1] + III
GK [0,1− (1/n)×maxj |C′

j |] − IV
VD [0,2n−maxi |Ci |−maxj |C′

j |] − IV [ 80]
ε [0,1−1/max{k, l}] − IV [ 80]
E (0, logk] − IV
MI 0,min{H(C ),H(C ′)} + I [75], III
VI [2/n,min{logn,2logmax{k, l}}] − II [ 75], IV [ 80]

Figure 5: Summary on External Measures.

Note: LetJ′ = (1−J)/(1+J) andMS′ = MS2 sinceJ andMSare not linear functions of∑i, j n2
i, j , which implies that it is very

complex to calculate the expectation for them. But it is easyto see thatJ′ andMS′ are equivalent toJ andMS, respectively [80].

Definition 6(n-Invariance [80,50]). Let
C ,C ′,C ′′,C ′′′ ∈ P(S) and denote byM1 and M2 the
confusion matrices ofC and C ′, C ′′ and C ′′′,
respectively. An external measure index satisfies
n-invariance if for any λ ∈ R

+,
index(C ,C ′) = index(C ′′,C ′′′) wheneverM1 = λM2.

Intuitively, an external measureindex should not
directly depend onn, but depends only on the relative
valuesni, j/n. However, some measures cannot fulfill this
axiom, such asRnorm, FMnorm andH2norm.

Definition 7(Additivity w.r.t. Refinement [ 50]). An
external measure index satisfiesadditivity w.r.t.
refinement if for any clustering C ∈ P(S),
index(0̂,C )+ index(C , 1̂) = index(0̂, 1̂).

Definition 8(Additivity w.r.t. Production [ 50]). An
external measure index satisfiesadditivity w.r.t.
production if for any two clusteringsC ,C ′ ∈ P(S),
index(C ,C ′) = index(C , C ×C ′)+ index(C ′,C ×C ′).

Intuitively, the preceding two axioms describe the
geometric properties of an external measure, i.e., that it is
aligned with the lattice of clustering [50].

Definition 9(Convex Additivity [ 50]). Let C ,C ′ ∈ P(S)
such thatC ′ be a refinement ofC . Denote byC ′

i the
partitioning induced byC ′ on Ci(i = 1,2, · · · ,k). An
external measure index satisfiesconvex additivityif

index(C ,C ′) =
k

∑
i=1

|Ci |
n

index(1̂|Ci |,C
′
i ), (52)

where1̂|Ci | is the one-clustering of the data set Ci .

Definition 10(Non-decreasing [50]). Denote byC U
k the

”uniform” clustering, i.e., the clustering with k equal
clusters. An external measure index satisfies
non-decreasing if f (k) = index(1̂,C U

k ) is a
non-decreasing function of k wheneverCU

k exists.

The preceding two axioms set the scale of an external
measure index [50]. Particularly,convex additivityrequires
that index should show additivity along the lattice of
clustering. Some un-normalized measures meet this
axiom, such as the F-measure, van Dongen criterion, the
variation of information and the classification error
metric. However, none of the normalized measures above
satisfies this axiom [80].

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 4, 1493-1512 (2016) /www.naturalspublishing.com/Journals.asp 1505

Furthermore, Meilǎ [50] shown any external measure
satisfying Axiom 5 and Axiom 7-Axiom 10 is identical to
the variation of information up to a multiplicative constant,
which is closely matched to the lattice of clusterings. From
this point, Meilǎ [50] obtained the following impossibility
result:

There is no index symmetric, n-invariant, with
index(1̂, CU

k ) non-decreasing, that satisfies
simultaneously the following three properties: (a) index is
aligned to the lattice of clusterings; (b) index is convexly
additive; (c) index is bounded.

5. Clustering Stability based Methods

Clustering stability based methods are a family of widely
usedmodel selectiontechniques. Their unifying theme is
that an appropriate model should result in a clustering
which is robust with respect to various kinds of
perturbations. In other words, the clustering algorithm
should be stable with respect to input randomization. In
past few years, these methods are often utilized to choose
a suitable number of clusters along with stability
measures. The rational [9] behind is that when the
number of clusters is too large, the algorithm has to
”randomly” split some true cluster, and the choice of the
cluster it splits might change with the randomness of the
sample, in which case instability occurs. On the other
hand, when the number of clusters is too small, we have
to ”randomly” merge several true clusters, the choice of
which might similarly change with each particular
random sample, resulting in instability again.

Generally speaking, clustering stability based
methods can be divided into two categories. One is based
on resampling, the basic idea of which clusters
non-disjoint sub-sample ofS in order to measure the
similarity of the clustering solutions obtained for the
intersection of both samples. Levine $ Domany’s
resampling approach [48] and the model explorer
algorithm [10] fall into this category. The other is based
on prediction, which is pioneered in an early work by
Breckenridge [15]. The basic idea is to measure the
agreement of clustering solutions generated by a
clustering algorithm and by a classifier trained using a
second (clustered) sub-sample ofS. Though a specific
implementable procedure for choosing the number of
clusters did not proposed by Breckenridge, his study
suggests the usefulness of such kind of approaches. The
prediction strength method [72], clest [20], and Lange et
al.’s method [45,44] build on the Breckenridge’s ideas but
generalize his work.

But Lange et al. [45] pointed out that the overlapping
sub-samples in the first kind of methods may lead to an
undesirable, artificially induced stability. Rakhlin &
Caponnetto [57] gave a precise characterization of
clustering stability with respect to both complete and
partial changes of the data. Specially, for clustering
algorithms that minimizes an objective function, such as

the squared error inK-means clustering, in the case of a
unique global minimizer, the clustering solution is stable
with respect of complete changes of the data, while for
the case of multiple minimizers, the change ofΩ(

√
n)

samples defines the transition between stability and
instability.

5.1. Levine & Domany’s Resampling Approach

At first, Levine & Domany’s resampling approach [48]
randomly constructsr sub-samplesS1,S2, · · · ,Sr of size
⌈ f n⌉ ( f ∈ [0,1]) from S. And then for S and all
sub-samplesS1,S2, · · · ,Sr of S, clustering solutions are
calculated. Finally, a stability measureLD is defined to
assess the average similarity of the solutions obtained on
theS1,S2, · · · ,Sr with the one obtained onS.

In order to define the measureLD, the clustering
solutions need to be represented as thecluster
connectivity matrix, M , whose(i, j)-th entry is denoted
M(i, j). Specifically, the matrixM for S is a binary square
matrix of sizen×n, whereM(i, j) = 1 if i 6= j and thei-th
and j-th objects are in the same cluster, and zero
otherwise. Similarly,M1,M2, · · · ,M r of size⌈ f n⌉×⌈ f n⌉
can also be defined for sub-samplesS1,S2, · · · ,Sr . For
each number of clustersk ≥ 1, Levine & Domany [48]
defineLD as:

LD(k) =
1
k

r

∑
i=1

∑a∈Si ∑b∈Ni,a
δ (M(a,b),Mi(a,b))

∑a′∈Si
|Ni,a′ |

, (53)

where Ni,a (a ∈ Si) defines a neighborhood between
objects in sub-sampleSi, and δ (x,y) = 1 if x = y, and
zero otherwise. The neighborhood definition, such as
κ-mutual nearest neighbor neighborhood definition
in [47], is left as a free parameter, which should be
supplied externally by user.

It is easy to see thatLD(k) measures the extent to
which the clustering calculated on the sub-samples is in
agreement with the clustering on the full data set.
Therefore,LD(k) = 1 for perfect agreement. Levine &
Domany [48] suggest that the value ofk, which
maximizesLD(k), should be regarded as specifying the
number of clusters. But when several maxima can occur,
it is not clear how to choose a single number of
clusters [45].

5.2. Model Explorer Algorithm

Firstly, the model explorer algorithm [10] randomly
constructs two sub-samples of size⌈ f n⌉ ( f ∈ (0.5,1))
from S. Then, the similarity between the solutions for
these sub-samples is calculated at the intersection of the
sub-samples. The similarity measure can be set as some
external measure, such as the Fowlkes-Mallows index
above, which is a free parameter. This procedure is
repeatedr times.
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To estimate the number of clusters, the experimental
section of [10] suggests choosing the value where there is a
transition from a similarity distribution that is concentrated
near 1 to wider distribution. This can be quantified by a
”jump” in

P(sk ≥ η)≈ 1
r

r

∑
i=1

δ (s(i,k) > η), (54)

wheresk is a random variable that denotes the similarity
between clusterings intok clusters,δ (·) is a Dirac delta
function, s(i,k) denotes the empirically measured
similarity between clusterings for the two sub-samples
into k clusters in thei-th loop, andη is a pre-set constant.

Since looking for a ”jump” in the cumulative
distribution is qualitative in nature, it is not a well-defined
criterion for determining the number of clusters. It is
possibly very difficult to choose an appropriate value in
some situation [45].

5.3. Prediction Strength Method

The main idea of prediction strength [72] method is to:
(a) split randomly the whole data setS into two
non-empty disjoint subsets: a training setStr and a testing
setSte. In real-world applications,r-fold cross-validation
is utilized. That is,S is randomly divided intor subsets of
nearly equal size. The firstr −1 subsets representStr , and
the last one isSte. (b) the clustering solutions are
calculated forStr andSte, respectively; (c) A nearest class
centroid classifier is built usingStr and the clustering
solution onStr ; (d) The resulting classifier is employed to
predict the clusters of objects inSte. Specially, for each
pair of objects inSte that are assigned to the same test
cluster, to determine whether they are also assigned to the
same cluster based on the classifier. This procedure is
repeated multiple times.

In order to assess the similarity of clustering solutions
by the classifier and the clustering algorithm onSte, often
known as thepredicted labelsand theclustered labels
respectively, Tibshirani et al. [72] defined a similarity
index, named as prediction strength. This index
essentially measures the intersection of the two clusters in
both solutions that match worst. The largest value ofk is
regarded as specifying the number of clusters, such that
the average similarity score is above a pre-set threshold.

However, this procedure has two severe disadvantages
pointed out by Lange et al. [45]: (1) it is reasonably
applicable to squared-error clustering algorithm only due
to the use of the nearest class centroid classifier; (2) The
prediction strength measure can trivially drop to zero for
the larger number of clusters. In particular, the latter point
severely limits its applicability in practice.

5.4. Clest

The first step in the Clest procedure [20] is similar to
(a)-(d) in the prediction strength method. The differences
are that the sizes ofStr and Ste, the classifier and the
similarity measure between two clusterings are all free
parameters. Given a fixedk, suppose that the first step is
repeated B times, thus B similarity scores
sk,1,sk,2, · · · ,sk,B can be obtained. Let
tk = median(sk,1,sk,2, · · · ,sk,B) denote the observed
similarity statistic for the clustering ofS into k clusters.
And then B0 data sets are drawn from a suitable null
reference distribution. Similar toS, one can obtain a
similarity score for each data set, denoted
s0
k,b,b= 1,2, · · · ,B0, respectively. Lett0

k be the average of

theseB0 similarity scores, namelyt0
k = (1/B0)∑b tk,b.

In order to find an appropriate number of clusters inS,
let dk denote the difference between the observed
similarity statistic and its estimated expected value under
the null hypothesis of one-clustering, namelydk = tk− t0

k .
And let pk denote the p-value for tk, that is,
pk = (1/B0){b|tk,b ≥ tk}. Define the setK− as

K− = {2≤ k≤ M|pk ≤ pmax,dk ≥ dmin}, (55)

whereM is some pre-defined upper bound for the number
of clusters,pmax anddmin are pre-set thresholds. IfK− is
non-empty, the value ofk in K− , which maximizesdk, is
regarded as specifying the number of clusters inS.
Otherwise, the number of clusters inS is one. In fact, the
setK− is determined fully bypmax anddmin, which can be
chosen badly so thatK− is always empty, for
example [45].

One can easily see that there are a large number of
free parameters in the Clest procedure, which have to be
set by the user. But little guidance in [20] is given on how
to reasonably select the values for these parameters in
real-world applications. Lange et al. [45] pointed out that
this lack of parameter specification poses a severe
practical problem since the obtained statistics are of little
value for poor parameter selection. For example, very
unbalanced splitting schemes can lead to unreliable
results, since the group structure might no longer be
visible for a clustering algorithm if there are too few
objects in one of the two subsets [45]. Another example is
that an inappropriate classifier may result in decreasing
largely the similarity scores. Therefore, Lange et al. [45]
consider that the Clest is only a conceptual framework,
not a fully specified algorithm.

5.5. Lange et al.’s Method

The first step in Lange et al.’s method [45,44] is still
similar to (a)-(d) in the prediction strength method. But
there are three differences between these two methods as
follows:
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(a)S is split into two disjoint subsets,Str and Ste, of
approximately equal size.

(b)Intuitively, a good classifier should mimic the
clustering algorithm. Based on this point, further
guidance is given on how to reasonably choose the
classifier in practice. Specially, for clustering
algorithms that minimizes an objective function, the
classifier, which uses the least-cost increase criterion,
can mimic their grouping strategies. The same strategy
is applicable for agglomerative algorithms. For
K-means clustering, the nearest centroid classifier
becomes the classifier of choice up to (negligible)
O(1/n) corrections. For single linkage, this strategy
leads to the nearest-neighbor classifier. Of course,
there exist some algorithms that cannot be easily
understood as mimimizers of a cost function, e.g.,
CLICK [66]. For these cases, theK-nearest-neighbor
classifier can be safety chosen, since it is
asymptotically Bayes’ optimal [19], at least for metric
data.

(c)In order to quantitatively compare the two solutions,
the predicted labels and the clustered labels, Lange et
al. [44,45] proposed a novel dissimilarity index on the
basis of their normalized Hamming distance. Without
loss of generality, we can assume that the objects inSte
are indexed by 1,2, · · · , |Ste|. Since either solution can
be formally represented by a vector of labels, let the
predicted labels and the clustered labels be,
respectively

Yp = (yp
1,y

p
2, · · · ,y

p
|Ste|)

t ,Yc = (yc
1,y

c
2, · · · ,yc

|Ste|)
t ,

(56)

where yp
i ,y

c
i ∈ {1,2, · · · ,k} and yp

i /yc
i = v if oi is

predicted/clustered to clusterv. For each number of
clusters k ≥ 2, Lange et al. [44,45] define the
dissimilarity index:

LRBBk(Y
p,Yc) = min

π∈Π(k)

1
|Ste|

|Ste|
∑
i=1

δ (π(yp
i ) 6= yc

i ),

(57)

where Π(k) is the set of all permutations of the
elements in{1,2, · · · ,k} and δ (·) is a Dirac delta
function. Though the number of all permutations isk!,
the minimization can be performed in time
O(|Ste|+ k3) by using the Hungarian method [42] for
minimum weighted bipartite matching, which is
guaranteed to find the globally optimalπ ∈ Π(k),
where O(|Ste|) is required for setting up a weight
matrix andO(k3) for the matching itself.

In order to measure the stability of a clustering
algorithmAk, Lange et al. [44,45] define a stability index
as the average similarity between solutions, namely

S(Ak) = EStr ,Ste(LRBBk(Y
p,Yc)), (58)

where the expectation is taken with regard to pairs of
disjoint subsets,Str andSte, of approximately equal size.

To estimate the expectation, generater pairs of Str and
Ste, and apply the above procedure to each. Thus, an
estimate Ŝ(Ak) can obtain by averagingr values of
LRBBk(·, ·).

However, the range of possible stability values
S(Ak) ∈ [0,1−1/k] depends on the number of clustersk,
which implies that stability indices are not directly
comparable for different values ofk. To enable
comparability, Lange et al. [44,45] normalize the
empirical misclassification rate of the clustering
algorithm S(Ak) with the asymptotic misclassification
rate of random labelingS(Rk), where the random
labeling algorithmRk assigns an object to clusterv with
probability 1/k, namely

S̄(Ak) = S(Ak)/S(Rk). (59)

Note that the stability measure is not defined fork =
1. Similar toŜ(Ak), an estimatêS(Rk) for S(Rk) can be
obtained by sampling s randomk-labelings and calculating
the empirical average of the dissimilarities. Thus one can
get an estimatê̄S((A)k) for S̄(Ak) by normalizingÂ(Ak)
with Ŝ(Rk). Lange et al. [45] proposed to choose the value

of k, which minimizesˆ̄S(Ak), as specifying the number of
clusters.

5.6. Theoretical Understanding

Clustering stability based methods have been shown to be
rather effective in practice, and gain more and more
influence in applications. However, their theoretical
foundations are not yet well understood so far. While it is
reasonable to require that a clustering algorithm should
demonstrate stability in general, it is not obvious whether
the one, which is the most stable, also must have the best
performance. Over the past few years, related theoretical
study has been initiated in a framework, where the data
are assumed to be drawn independently from some
underlying distribution.

However, a fundamental hurdle is the following
observations, made and rigorously analyzed in [9,7] and
also pointed out in [40]. Under mild conditions, stability
is asymptotically fully determined by the behavior of the
objective function which the clustering algorithm
attempts to optimize. In particular, the existence of a
unique global/local optimum for some model choice
implies stability as sample size tends to infinity and
instability otherwise. Furthermore, this kind of instability
is usually not related to the correct number of clusters, but
it might depend on completely unrelated criteria, such as
symmetries in the data. Therefore, for large enough
samples one might get a stable solution regardless of the
chosen model. As a result, it is quite possible that there
exists some hard-to-compute sample size, beyond which
clustering stability estimators ’break down’ and become
unreliable in detecting the most stable model.
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A possible solution to this difficulty is proposed
in [63,64], where the scaling constant in the definition of
stability is chosen as 1/

√
n rather than 1/n. The authors

show that the important factor in the way clustering
stability based methods work may not be the asymptotic
stability of the model, but rather how fast exactly does it
converge to this stability. With this more refined analysis,
stability criteria might actually be able to discern the
stability of different models, no matter how large is the
sample, despite the universal convergence to absolute
stability.

However, the work in [63,64] only concentrates on
specific toy distribution or specific idealized clustering
frameworks, which still do not give us general sufficient
conditions for the reliability of clustering stability
estimators in the large sample regime. Such a set of
conditions is presented in [65] with making no such
assumptions. The main condition is the existence of a
central limit theoremfor the clustering framework, in an
appropriately defined sense. Additionally, non-trivial
asymptotic behavior of these estimators is explicitly
characterized for any framework satisfying these
conditions. A similar characterization was given in [64]
for theK-means framework.

Ben-David & von Luxburg [8] relate the stability of
clustering algorithms (on finite sample sizes) to properties
of the optimal data clustering itself. Specifically, the
quantitative value of stability can be upper bounded by
the mass in a small tube around the optimal clustering
boundary, which has already been implicitly utilized
in [63] only in a very simple one-dimensional setting.
Unfortunately, the reverse statement is not true in general.
That is, there can usually be clusterings whose decision
boundary lies in a high density area, but we have high
stability.

In fact, as stated in [8], even if one find satisfactory
reasons which explain why a certain clustering tends to be
more stable than another one, such statements are not
very useful for drawing conclusions about stability
measures of any givenfinitesample size. The reason [8] is
that as opposed to the standard statistical learning theory
(SLT) settings, it is impossible to give global convergence
guarantees for stability. Thus, while one can use stability
criteria in practice, it is impossible to give
distribution-free performance guarantees on any of its
results. No matter how large the sample size is, we can
always find distributions where the stability evaluated on
that particular sample size is misleading, in the sense that
it is far from the ”true stability” [8].

6. Current and Future Research Directions

In a nutshell, the internal measures compare clusterings
based on the goodness of fit between each clustering and
the data set, and often make assumptions about the
distribution of cluster. Hence, they can only make
comparisons between clusterings generated using the

same model/metric. The external measures assess
agreement between a clustering solution generated by a
clustering algorithm and a pre-defined reference
clustering. But since a pre-defined reference clustering is
typically unavailable in real-world unsupervised tasks,
they do not directly applicable in practice. Though new
internal/external measures still emerge continuously, we
think that a ”good” measure should meet a set of axioms
in [1]/[50] as possible as one can. That is, a set of axioms
in [1]/[50] should be helpful in detecting and defining
”good” measures.

While the popularity of clustering stability based
methods has grown in the past few years, they have an
inherent drawback: high computational cost of generating
and assessing multiple clusterings of the data set, which
prohibit them from being applied to large,
high-dimensional data sets, such as text corpora. In our
opinion, one of future research directions is to tackle their
computational issues. As a first step, Greene &
Cunningham [28] present an efficient prediction based
cluster validation for kernel clustering algorithm by
means of a prototype reduction strategy.

In addition, although the central limit approach in [65]
proved to be a convenient framework, it remains an open
question how far it is from beingnecessaryfor stability
estimators not to ’break down’ in the large sample regime.
As we known, the reasons, why a certain clustering tends
to be more stable than another one, are not very useful for
drawing conclusions about stability measures of any
given finite sample size [8]. Nevertheless, better
understanding the meaning of the asymptotic value of
clustering instability in [65] may help to understand the
behavior of clustering stability on finite samples.
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[28] Derek Greene and Pádraig Cunningham. Efficient
prediction-based validation for document clustering. In
Proceedings of the 17th European Conference on Machine
Learning, pages 663–670, 2006.

[29] J. Hartigan.Clustering Algorithms. Wiley, New York, 1975.
[30] J. A. Hartigan. Asymptotic distributions for clustering

criteria. The Annals of Statistics, 6(1):117–131, 1978.
[31] J. A. Hartigan. Statistical theory in clusteirng.Journal of

Classification, 2(1):63–76, 1985.
[32] Lawrence Hubert and Phipps Arabie. Comparing partitions.

Journal of Classification, 2(1):193–218, 1985.
[33] L. J. Hurbert. Nominal scale response agreement as a

generalized correlation.British Journal of Mathematical
and Statistical Psychology, 30:98–103, 1977.

[34] A. K. Jain, M. Murty, and R. J. Flynn. Data clustering: A
review. ACM Computing Surveys, 31(3):265–323, 1999.

[35] Anikl K. Jain and Richard C. Dubes. Algorithms for
Clustering Data. Prentice-Hall, Englewood Cliffs, New
Jersey, 1988.

[36] Nicholas Jardine and Robin Sibson. Mathematical
Taxonomy. John Wiley & Sons, New York, 1971.

[37] Szymon Jaroszewicz, Dan A. Simovici, Winston P. Kuo, and
Lucila Ohno-Machado. The goodman-kruskal coefficient
and its applications in genetic diagnosis of cancer.IEEE
Transactions on Biomedical Engineering, 51(7):1095–1102,
2004.

[38] L. Kaufman and P. Rousseeuw.Finding Groups in Data: An
Introduction to Cluster Analysis. Wiley, New York, 1990.

[39] Jon Kleinberg. An impossibility theorem for clustering. In
S. Becker, S. Thrun, and K. Obermayer, editors,Advances in
Neural Information Processing Systems 15, pages 446–453.
MIT Press, Cambridge, MA, 2003.

[40] Abba M. Krieger and Paul E. Green. A cautionary note
on using internal cross validation to select the number of
clusters.Psychometrika, 64(3):341–353, 1999.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1510 S. Xu et al.: Reviews on Determining the Number of Clusters

[41] W. J. Krzanowski and Y. T. Lai. A criterion for determining
the number of groups in a data set using sum of squares
clustering.Biometrics, 44(1):23–34, 1988.

[42] H. W. Kuhn. The hungarian method for the assignment
problem. Naval Research Logistics Quarterly, 2(1-2):83–
97, 1955.

[43] Henry Oliver Lancaster. The Chi-Squared Distribution.
John Wiley, New York, 1969.

[44] Tilman Lange, Mikio L. Braun, Volker Roth, and
Joachim M. Buhmann. Stability-based model selection. In
S. Becker, S. Thrun, and K. Obermayer, editors,Advances in
Neural Information Processing Systems 15, pages 617–624.
MIT Press, Cambridge, MA, 2003.

[45] Tilman Lange, Volker Roth, Mikio L. Braun, and
Joachim M. Buhmann. Stability-based validation of
clustering solutions. Neural Computation, 16(6):1299–
1323, 2004.

[46] Bjornar Larsen and Chinatsu Aone. Fast and effective
text mining using linear-time document clustering. In
Proceedings of the 5th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 16–22, San Diego, California, United States, 1999.

[47] Erel Levine. Un-supervised estimation of cluster validity
- methods and applications. Master’s thesis, Weizmann
Institute of Science, 1999.

[48] Erel Levine and Eytan Domany. Resampling method
for unsupervised estimation of cluster validity.Neural
Computation, 13(11):2573–2593, 2001.

[49] Marina Meilǎ. Comparing clusterings by the variation
of information. In Proceedings of the 16th Annual
Conference on Computational Learning Theory, pages 173–
187, Washionton, DC, USA, 2003.
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