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Abstract: The passivity-based PD force control of a constrained one-link flexible arm is investigated using a linear distributed
parameter model. In order to overcome the inherent limitations caused by the non-minimum phase nature of the noncollocation of
the joint torque input and the tip contact force output, a newinput induced by the measurement of root bending moment and avirtual
contact force output generated by a parallel compensator are defined. The transfer function from the new input to the virtual contact
force output is passive. A passivity-based PD controller isthen designed to accomplish the regulation of the contact force. With the
infinite product representations of transcendental functions, exact solutions of the infinite-dimensional system areobtained successfully.
This closed loop system has stability robustness to parameter uncertainties and is free spillover problems. Numericalsimulations are
provided to verify the effectiveness of the proposed approach.
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1 Introduction

In recent years, force control of constrained flexible
manipulators has received increasingly attention [1,2,3,4,
5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,
23]. Application of this research field include space
robots used for satellite capturing and large space
structure construction, and light weight industrial robots
used for assembly, deburring and grinding tasks. The
controller design for such force control problems is,
however, quite difficult due to the distributed parameter
nature of flexible arms and the noncollocation of torque
actuation and contact force sensing.

Based on finite-dimensional approximate models,
Chiou and Shahinpoor [1,2] studied a single-link and a
two-link constrained flexible manipulators, and pointed
out that the link flexibility is the main source of dynamic
instability of the force controlled systems. Later, Li [3]
indicated that an inherent limitation on the achievable
bandwidth occurs from the presence of infinitely
non-minimum phase zeros. Matsuno et al. [4,5] derived
the distributed parameter models and thus proposed
hybrid position-force controllers using quasi-static
equations. However, the proposed controllers may not
guarantee a global stability under possible large initial

tracking errors at fast tip speed [5]. Some methods based
on a lumped parameter model for a single-link flexible
robot were thus developed [6,7,8,9,10] to simplify the
dynamics of a flexible arm with the tip forces. On the
other hand, it was suitable only for one or two degree of
freedom flexible robot [6,7,8,9,10]. Accordingly, a
variety of nonlinear hybrid force-position controllers
were proposed using nonlinear finite-dimensional
dynamic models [11,12,13] for some two and three
dimensional constrained flexible robots. However, these
proposed methods may not guarantee the stability of the
original distributed parameter systems because of
spillover problems. Matsuno and Kasai [14] then derived
the distributed parameter model for a constrained one-link
flexible arm with a concentrated tip mass, a
finite-dimensional model for force feedback and
compliance control. More recently, Bazaei and
Moallem [15] also used distributed parameter model for a
constrained flexible beam actuated at the hub. The
maximum control bandwidth was obtained by applying
the output redefinition. In order to compensate the
spillover instability caused by residue modes which are
not included in the controller design, an optimal
controller with low-pass property and a robustH∞
controller were proposed in [14,15]. The constrained
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one-link arm with a symmetric rigid tip body and a
nonsymmetric rigid tip body were studied by [16,17].
Bazaei and Moallem [18] improved force control
bandwidth of the constrained one-link arm through
outputs redefinition. The distributed parameter models
were derived in [16,17,18], but finite-dimensional models
were still used for controller designs.

As we know that the flexible arm is inherently
infinite-dimensional system, the controller design using
distributed parameter model becomes more complicated.
In order to avoid the spillover from finite-dimensional
approximation, the distributed parameter model in [19,
20] was applied to resolve the force control problem for a
constrained one-link flexible arm. Unfortunately, the
system stability was found only in a sufficient
condition [19,20]. Similarly, the stability of the switching
collision was also involved into a sufficient condition
[21]. Additionally, the exact solutions for the closed-loop
system can not be obtained [21]. Recently, the
constrained single-link flexible arm studied by [22] with
the linear distributed parameter model was used as a
starting point. Liu and Lin [23] further extend their work
to the constrained one-link flexible arm with internal
material damping. However, the passive transfer function
was not considered in this study by [23].

To overcome the limitations of above papers, this
paper is to show that an exact solution to the above
contact force regulation problem can be achieved using a
distributed parameter model of the constrained one-link
flexible arm. To remove the nonminimum phase obstacle
relating the joint torque input and the tip contact force
output, a new input induced by the measurement of root
bending moment and a virtual contact force output
generated by a parallel compensation are defined. It will
be shown that the transfer function from the new input to
the virtual contact force output is passive. Then, a
passivity-based PD control is shown to be able to improve
the performance of the infinite dimensional closed loop
system. To preserve the exact poles and zeros of the
system, the infinite product representations of transfer
functions are employed throughout the paper. Numerical
simulations are presented to demonstrate the excellent
efficacy of the proposed approach.

2 Mathematical model

The constrained one-link flexible arm depicted in figure1
is a uniform, homogeneous, Euler-Bernoulli beam of
lengthℓ, mass per unit lengthρ , and flexural rigidityEI.
The hub is modelled by a single-mass moment of inertia
Ih, where the driven torqueτ(t) is applied. The
end-effector has a concentrated massmp, where the
contact force exerted by the smooth rigid constraint
surface is λ (t). The arm is assumed to move in a
horizontal plane so that the gravity can be ignored. Let
the X-axis be a fixed frame andx-axis be a floating frame,
both coincident with the neutral axis of the beam. The

hub angular displacementθ (t) is defined as the
counterclockwise rotation ofx-axis with respect to the
X-axis. Letv(x, t) be the small transverse deflection of the
neutral axis of the beam with respect to thex-axis. Due to
the assumption of small transverse deflection, the axial
displacementu(x, t) caused by bending foreshortening
[24] is negligible. Sincevℓ(t) = v(ℓ, t) is assumed small,
θ (t) must also be small. The equations of motion and the
corresponding boundary conditions are well-established
(e.g. [22,23]).
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Fig. 1: Schematic of a constrained flexible arm.

Ihθ̈ (t)+
∫ ℓ

0
ρx
[

xθ̈ (t)− v̈(x, t)
]

dx = τ(t)−λ (t)ℓ (1)

ρ
[

−xθ̈ (t)+ v̈(x, t)
]

+EIvxxxx(x, t) = 0 (2)

v(0, t) = 0, v(ℓ, t) = ℓθ (t) (3)

vx(0, t) = 0 (4)

vxx(ℓ, t) = 0 (5)

EIvxxx(ℓ, t) =−λ (t) (6)

Substituting Eq. (2) and Eq. (6) into Eq. (1), performing
integration by parts and making use of Eq. (5), we obtain
an alternative form for Eq. (1) as

Ihθ̈(t) = τ(t)−EIvxx(0, t) (7)

Note that the exact nonlinear constraint equation is
compatible only with the geometric exact nonlinear
elastic deflections [25]. In order to use the small
deflection assumption consistently, the exact nonlinear
constraint equation must be linearized. In an inconsistent
formulation [14], Eq. (7) was thus not satisfied. The root
bending momentEIvxx(0, t) can be measured by a strain
gage sensor [18,20]. Consequently, a new joint input
variableu(t) can be expressed as

u(t) = τ(t)−EIvxx(0, t) (8)

Then using Eq. (7) reduces to

Ihθ̈ (t) = u(t) (9)
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Now introduce the new variablew(x, t) such that

w(x, t) = xθ (t)− v(x, t) (10)

Then the dynamic equations of the constrained arm
(i.e. Eq. (2)–Eq. (7)) become

ρẅ(x, t)+EIwxxxx(x, t) = 0 (11)

w(0, t) = 0, w(ℓ, t) = 0 (12)

wx(0, t) = θ (t) (13)

wxx(ℓ, t) = 0 (14)

EIwxxx(ℓ, t) = λ (t) (15)

Ihθ̈(t) = τ(t)+EIwxx(0, t) (16)

Due to the small deflection assumption, the maximum
values of λ (t) and θ (t) must be restricted. This is
discussed in the next Section.

3 Validity of small deflection assumption

The objective of this work is to construct a controller
which accomplishes the convergence of the contact force
from zero to a desired valueλd without any overshoot.
Clearly, the maximum deflection occurs atx = ℓ when the
steady state is reached. The steady state solution is
obtained by solving the time-independent version of Eq.
(2)–Eq. (7):

v′′′′(x) = 0 (17)

v(0) = v′(0) = v′′(ℓ) = 0,v(ℓ) = ℓθd (18)

EIv′′′(ℓ) =−λd ,EIv′′(0) = τd (19)

We obtain

v(ℓ)
ℓ

= θd =
λdℓ

2

3EI
=

τdℓ

3EI
(20)

Since the small deflection assumption is valid ifv(ℓ)
ℓ ≤

0.1, we must setλd ≤ 0.3EI
ℓ2 andθd ≤ 0.1 rad.

4 Non-minimum phase transfer function
from the input torque to the output contact
force

The transfer function can be derived by taking the
Laplace transform of Eq. (11)–Eq. (16) with zero initial

conditions. Lets be the Laplace transform variable, and
define the dimensionless parametersβ , ε, and ˆs

β 4 =−ρℓ4

EI
s2 =−ŝ2, ε =

Ih

ρℓ3 (21)

The solution of Eq. (11) can be written in the Laplace
transform domain

w(x, ŝ) =C1 cosh
β
ℓ

x+C2cos
β
ℓ

x+C3sinh
β
ℓ

x+C4sin
β
ℓ

x

(22)
where Ci(β ), i = 1,2,3,4 are unknown parameters.
Substitution of Eq. (22) into Eq. (9), Eq. (12)–Eq. (16)
and solving forC2, C3, C4, θ , λ , τ andu yield

C2 =−C1 (23)

C3 =−coshβ
sinhβ

C1, C4 =
cosβ
sinβ

C1 (24)

θ (ŝ) =C1
β
ℓ
· cosβ sinhβ − coshβ sinβ

sinβ sinhβ
(25)

λ (ŝ) =−C1EI
β 3

ℓ3 · sinβ + sinhβ
sinβ sinhβ

(26)

τ(ŝ) =C1EI
β 2

ℓ2 ·
[

2+ εβ 3 · cosβ sinhβ − coshβ sinβ
sinβ sinhβ

]

(27)

u(ŝ) =−C1EI
β 5

ℓ2 ε · cosβ sinhβ − coshβ sinβ
sinβ sinhβ

(28)

After algebraic manipulations, one obtains

λ (ŝ)
τ(ŝ)

= Gλ τ(ŝ)

=
β
ℓ
· sinhβ + sinβ
2sinhβ sinβ − εβ 3(coshβ sinβ − sinhβ cosβ )

(29)

By applying the infinite product expansions of
transcendental functions (see A1 to A3 of the Appendix),
Eq. (29) can be rewritten as

Gλ τ(ŝ) =
1
ℓ
·

∞
∏

n=1

(

1− ŝ2

ω2
zn

)

∞
∏

n=1

(

1+
ŝ2

n4π4

)

+
ε ŝ2

3

∞
∏

n=1

(

1+
ŝ2

ω2
β n

)

(30)
where± jn2π2 and± jωβ n are the familiar pinned-pinned
and clamped-pinned bending vibration modes,
respectively. The poles ofGλ τ(ŝ) are the roots of the
equation

ε
3
·

ŝ2
∞
∏

n=1

(

1+
ŝ2

ω2
β n

)

∞
∏

n=1

(

1+ ŝ2

n4π4

)
=−1 (31)
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Note that withωβ 0 = 0, the interlacing propertyωβ ,n−1 <

n2π2 < ωβ n holds forn = 1,2· · · (see A2 and A3 of the
Appendix). Using the root locus method, it can be easily
shown that the poles ofGλ τ(ŝ) moves along the imaginary
ŝ-axis from± jn2π2 to ± jωβ n as ε increases from 0 to
∞. Let the roots of Eq. (31) (for a fixed value ofε) be
ŝ = ± jωθn, n = 1,2· · · , whereωθn < ωθ ,n+1. Then Eq.
(30) becomes

Gλ τ(ŝ) =
1
ℓ
·

N
∏

n=1

(

1− ŝ2

ω2
zn

)

N+1
∏

n=1

(

1+
ŝ2

ω2
θn

) , N → ∞ (32)

The numerical values ofωθn(ε) can be computed
usingωθn = β 2

n , whereβn(ε) are the positive real roots of
the denominator of Eq. (29), namely

2sinhβ sinβ −εβ 3(coshβ sinβ −sinhβ cosβ ) = 0 (33)

The values obtained by selectedωθn are listed in Table1.
It is well established [3,26] that the existence of

non-minimum phase zeros imposes fundamental
limitations in the achievable performance of the
closed-loop system. To alleviate the non-minimum phase
problem, the real zeros ofGλ τ(ŝ) can be replaced by the
zeros on the imaginary ˆs-axis using the method of
redefinition of output [27]. With the new output, the
transfer function is marginal minimum phase but not
necessarily passive. Fortunately, the poles ofGλ τ(ŝ) can
be made to move along the imaginary ˆs-axis by using an
appropriate feedback. Combining the feedback and the
output redefinition, it is possible to find a new transfer
function which satisfies the so-called the interlacing
property. A transfer function with a simple pole at the
origin is said to satisfy the interlacing property if all its
poles and zeros lie on the imaginary ˆs-axis, are distinct
and alternate each other. Such transfer functions are
known as passive transfer functions [28].

5 Achieving passivity by Parallel
Compensation

It is well known that for non-minimum phase systems,
perfect asymptotic tracking of output trajectories with
internal stability cannot be achieved. To alleviate the
non-minimum phase problem, the right half-plane zeros
can be replaced by the left half-plane zeros by the method
of redefinition of output. Define a new virtual contact
force f (t,k) such that

G f u(ŝ,k) =
f (ŝ,k)
u(ŝ)

=
1

ℓεβ 2 ·
k(sinβ + sinhβ )+ (1− k)β (1+ coshβ cosβ )

cosβ sinhβ − coshβ sinβ
(34)

wherek is a real constant andk ≤ 0.758 that was shown
in [27]. One can write

k(sinβ + sinhβ )+ (1− k)β (1+ coshβ cosβ )

= 2β
∞

∏
n=1

(

1+
ŝ2

ω2
αn

)

(35)

The numerical values can be computed usingωαn = β 2
n ,

whereβn(k), n = 1,2, · · · is the real positive roots of the
numerator of Eq. (34). Selectedωαn values are listed in
Table1. Thus, one has a minimum phase stable transfer
function

G f u(ŝ,k) =
3
ℓε

·

∞
∏

n=1

(

1+ ŝ2

ω2
αn

)

ŝ2
∞
∏

n=1

(

1+
ŝ2

ω2
β n

) (36)

Note that the above redefinition of output is equivalent
to the parallel compensation [29] as shown in figure2. It
can be shown that the parallel compensatorT (ŝ,k) has the
form

T (ŝ,k) =
(1− k)
ℓεβ 2 · β (1+ coshβ cosβ )− (sinβ + sinhβ )

cosβ sinhβ − coshβ sinβ

=
11(1− k)

40ℓε
·

∞
∏

n=1

(

1+ ŝ2

ω2
δ n

)

∞
∏

n=1

(

1+
ŝ2

ω2
β n

) (37)

whereωδn = β 2
n andβn(k), n= 1,2· · · are the real positive

roots of the equation

β (1+ coshβ cosβ )− (sinβ + sinhβ ) = 0 (38)

Selected values ofωδn are computed and listed in Table1.

+
+

+
G suλ ( $)

),ˆ( ksT

G s kf u ( $, )),( ktf

λd t( ) u t( )
εl)ˆ( skk dp +

λ( ) ( , )t f t= 1

Fig. 2: Passive PD control of parallel compensated system.

Using Eq. (25)–Eq. (28) and application of infinite
product representation of transcendental functions given
in the Appendix, it is easy to verify that

Gλ u(ŝ) =
λ (ŝ)
u(ŝ)

=
1

ℓεβ 2 ·
sinhβ + sinβ

cosβ sinhβ − coshβ sinβ

=
3
ℓε

·

∞
∏

n=1

(

1− ŝ2

ω2
zn

)

ŝ2
∞
∏

n=1

(

1+ ŝ2

ω2
βn

) (39)
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Table 1: Values of roots of associated transcendental equations

n ωαn(k = 0.7) ωβn ωδ n ωθn(ε = 3.387×10−2)

0
0
0

1
2.8472

4.9002 2.6862
3.9272

2
4.0822

7.7252 4.4102
7.0692

3
8.1452

11.0862 7.1562
10.2102

4
10.7772

14.0662 10.2382
13.3522

5
14.3012

17.3362 13.3642
16.4932

6
17.1422

20.3712 16.5002
19.6352

... (n = odd)
... (n = even)

... (n = odd)
... (n = even)

...
[

(n− 1
2)π + 7

3(n− 1
2 )π

]2 [

(n+ 1
2)π + 1

(n+ 1
2 )π

]2
[

(n− 3
4)π + 29.5

(n− 3
4 )

3π3

]2

[

(n− 1
2)π − 7

3(n− 1
2 )π

]2

(n+ 1
4)

2π2
[

(n+ 1
2)π − 1

(n+ 1
2 )π

]2

Gθu(ŝ) =
θ (ŝ)
u(ŝ)

=
ℓ

εEI
· 1

ŝ2 (40)

Gτu(ŝ) =
τ(ŝ)
u(ŝ)

=
1

εβ 3 ·
2sinhβ sinβ − εβ 3(coshβ sinβ − sinhβ cosβ )

cosβ sinhβ − coshβ sinβ

=
3

ε ŝ2 ·

∞
∏

n=1

(

1+
ŝ2

ω2
θn

)

∞
∏

n=1

(

1+
ŝ2

ω2
β n

) (41)

6 Proof of passivity of ŝG f u(ŝ)

Let ŝG f u(ŝ) be express as

ŝG f u(ŝ) =
3
ℓε

·

N
∏

n=1

(

1+
ŝ2

ω2
αn

)

ŝ
N
∏

n=1

(

1+
ŝ2

ω2
β n

) =
A0

ŝ
+

N

∑
i=1

Aiŝ

ŝ2+ω2
β n

(42)
where by assumptionN → ∞, 0 < ωα1 < ωα2 <
· · · < ωαN < · · · , and 0< ωβ 1 < ωβ 2 < · · · < ωβ N < · · · .
It is easy to show thatA0 =

3
ℓε and

Ai =− A0

ω2
α i

N

∏
n=1

(ωβ n

ωαn

)2

N
∏

n=1

(

ω2
αn −ω2

β i

)

N
∏

n=1
n 6=i

(

ω2
β n −ω2

β i

)

(43)

for i = 1,2, · · · ,N. Note that if A0 > 0 and Ai > 0 for
i = 1,2, · · ·(N → ∞), then ˆsG f u(ŝ) is a passive transfer
function since it is the sum of passive transfer functions
(see Eq. (42)). We now proceed to prove the assertion by
induction that if Ai > 0, i = 1,2, · · ·(N → ∞), then the
interlacing property holds for ˆsG f u(ŝ). Using the second
and third columns of Table1 and referring to Eq. (42), it
can be easily shown that (i) forN = 1, A1 > 0 implies
ωα1 < ωβ 1, and (ii) for N = 2 andωα1 < ωβ 1, A1 > 0
implies ωβ 1 < ωα2 and A2 > 0 implies ωα2 < ωβ 2.
Assume that for each positive integerN,Ai > 0,
i = 1,2, · · · ,N imply 0 < ωα1 < ωβ 1 < ωα2 <
ωβ 2 < · · · < ωαN < ωβ N . Then for the positive integer
N + 1, it can be shown using Eq. (43) that Ai > 0,
i = 1,2, · · · ,N imply ωβ N < ωα ,N+1 and AN+1 > 0
implies ωα ,N+1 < ωβ ,N+1. This proves the above
assertion for all positive integersN. One concludes that
ŝG f u(ŝ) satisfies the interlacing property. Therefore,
ŝG f u(ŝ) is a passive transfer function. It may be remarked
at this point that ifk 6= 0.7, then the zeros ofG f u(ŝ) must
be computed numerically. It was found that ˆsG f u(ŝ) is
passive fork < 0.730 (the restriction thatk 6= 0.730 is due
to the cancellation of first pole± jωβ 1 and the second
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zero ± jωα2 at the k = 0.730, the details are rather
involved and thus omitted). It is known [28,30] that the
passivity property of ˆsG f u(ŝ) permits the design of a large
family of stabilizing controllers. In what follows, only a
simple feedforward PD controller will be considered for
the regulation of the contact forceλ (t).

7 Passivity-based PD controller

For the control structure as shown in figure2, the objective
is to makeλ (t) to track asymptotically a desired contact
force trajectoryλd(t) using a PD control law

u(ŝ,k) =−(kp + kd ŝ)ℓε [ f (ŝ,k)−λd(ŝ)] (44)

whereλd(ŝ) is the Laplace transform of the desired contact
force trajectory,kp and kd are positive design constants,
andk < 0.730. One obtains

f (ŝ,k) =
(kp + kd ŝ)ℓεG f u(ŝ,k)

1+(kp+ kd ŝ)ℓεG f u(ŝ,k)
λd(ŝ) (45)

Combining Eq. (44)–Eq. (45) gives

u(ŝ,k) =
(kp + kd ŝ)ℓε

1+(kp+ kd ŝ)ℓεG f u(ŝ,k)
λd(ŝ) (46)

The poles of the closed-loop system are given by the
roots of the characteristic equation

1+(kp+ kd ŝ)ℓεG f u(ŝ,k) = 0 (47)

With G f u(ŝ,k) given by Eq. (36), Eq. (47) becomes

3(kp + kd ŝ) ·

∞
∏

n=1

(

1+
ŝ2

ω2
αn

)

ŝ2
∞
∏

n=1

(

1+
ŝ2

ω2
β n

) =−1 (48)

Clearly, the effect of P-control alone is merely to move
all the closed-loop poles along the imaginary ˆs-axis from
ŝ =± jωβ ,n−1 (setωβ 0 = 0) to ŝ =± jωαn, n = 1,2, · · · as
kp varies from 0 to∞ (see figure3a). With kp = k∗p, Eq.
(48) can be rewritten as

kd

k∗p
·

ŝ
N
∏

n=1

(

1+
ŝ2

ω2
αn

)

N+1
∏

n=1

(

1+
ŝ2

ω2
δn

) =−1,N → ∞ (49)

It can be verified (see figure3b) using a simple root
locus plot that the D-control suffices to stabilize the
closed-loop system for all 0< k∗p < ∞ and 0< kd < ∞.

Let the roots of Eq. (48) be written as

ŝn =

√

ρℓ4

EI
sn =−ζnΩn± jΩn

√

1− ζ 2
n ,n= 1,2, · · · (50)

j0

≈

j sIm( $)

Re( $)s

k
p

*

≈

≈

≈ ≈

k p
*

k
p

*

j sIm( $)

jωα1

jωδ1

jωα1

jωδ 2

jωα 2

j
n

ω
δ

jωβ1

jωα 2

j
n

ωβ , −1

kd = 0

kd = ∞

~ ~

≈≈

j
n

ωα

j
n

ωα
kd = ∞

kd = 0

kd = 0

kd = ∞

(a) (b)

Fig. 3: Effects of P-control and D-control : (a)kd = 0,0≤ kp <
∞; (b) kp = k∗p,0≤ kd < ∞.

whereΩn(Ωn < Ωn+1) andζn are the natural frequency
and damping ratio of then-th closed-loop pole. Then one
may write Eq. (48) as

3(kp + kd ŝ)
N

∏
n=1

(

1+
ŝ2

ω2
αn

)

+ ŝ2
N

∏
n=1

(

1+
ŝ2

ω2
β n

)

= 3kp

N+1

∏
n=1

(

1+2ζn
ŝ

Ωn
+

ŝ2

Ω2
n

)

,N → ∞

(51)

Using Eq. (46) for u(ŝ,k) and G f u(ŝ,k), Gλ u(ŝ),
Gvxxu(ŝ), Gθu(ŝ), Gτu(ŝ) given by Eq. (36), Eq. (39)–Eq.
(41), the closed-loop responses of some relevant variables
can be computed as follows.

f (ŝ,k) = G f u(ŝ,k)u(ŝ,k)

=

(

1+
kd

kp
ŝ

)

·

N
∏

n=1

(

1+
ŝ2

ω2
αn

)

N+1
∏

n=1

(

1+2ζn
ŝ

Ωn
+

ŝ2

Ω2
n

)λd(ŝ), (52)

N → ∞
λ (ŝ) = Gλ u(ŝ)u(ŝ,k)
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=

(

1+
kd

kp
ŝ

)

·

N
∏

n=1

(

1− ŝ2

ω2
zn

)

N+1
∏

n=1

(

1+2ζn
ŝ

Ωn
+

ŝ2

Ω2
n

)λd(ŝ), (53)

N → ∞
θ (ŝ) = Gθu(ŝ)u(ŝ,k)

=

(

1+
kd

kp
ŝ

)

·
ℓ2

N
∏

n=1

(

1+
ŝ2

ω2
β n

)

3EI
N+1
∏

n=1

(

1+2ζn
ŝ

Ωn
+

ŝ2

Ω2
n

)λd(ŝ),

N → ∞ (54)

τ(ŝ) = Gτu(ŝ)u(ŝ,k)

=

(

1+
kd

kp
ŝ

)

·
ℓ

N
∏

n=1

(

1+
ŝ2

ω2
θn

)

N+1
∏

n=1

(

1+2ζn
ŝ

Ωn
+

ŝ2

Ω2
n

)λd(ŝ), (55)

N → ∞

Note that the above results are exact closed-loop solutions
of the infinite-dimensional force control system. To
perform the inverse Laplace transform, ˆs can be replaced

by
√

ρℓ4

EI s. The closed-loop time responses can be
computed within an arbitrary degree of accuracy by
taking N as large as required. In order to find the exact
values (to the extent of numerical accuracy) of the
closed-loop poles (i.e. the roots of Eq. (47)), G f u(ŝ,k)
given by Eq. (34) must be used. Using either of
β =±√

jŝ and± j
√

jŝ, Eq. (47) becomes

(kp + kd ŝ)[k(sin
√

jŝ+ sinh
√

jŝ)+ (1− k)
√

jŝ(1+ cosh
√

jŝcos
√

jŝ)]+ jŝ(cos
√

jŝsinh
√

jŝ− cosh
√

jŝsin
√

jŝ)

= 0 (56)

This equation can be solved numerically to yieldΩn
andζn, n = 1,2· · · . The control structure of figure2 can
be converted to the basic feedback loop as shown in figure
4.

)ˆ(sG τλ
+ +

−

)(tdλ
)(tτ

I s
h
∆θ

),ˆ()ˆ(1

)ˆ()ˆ(
),ˆ(

ksTskk

sGskk
ksC

dp

udp

ε

ε τ

l

l

++

+
=

)(tλ
+

Fig. 4: Overall closed-loop system in basic feedback loop.

Using Eq. (37) and Eq. (41), it is not difficult to show
that the transfer function of the compensator is

C(ŝ) =

(kp+kd ŝ)ℓ[2β−2sinhβ sinβ+εβ K(β )]

β K(β )+(kp+kd ŝ)(1−k)[(1+coshβ cosβ )−β−1(sinhβ+sinβ )]

=

(

1+
kd

kp
ŝ

)

·
ℓ

M
∏

n=1

(

1+
ŝ2

ω2
θn

)

(1− k)
N
∏

n=1

(

1+2ζcn
ŝ

ωcn
+

ŝ2

ω2
cn

) ,

M,N → ∞

(57)

whereK(β ) = sinhβ cosβ − coshβ sinβ , ŝ = −ζcnωcn±
jωcn

√

1− ζ 2
cn, n = 1,2· · · , are the poles ofC(ŝ)

determined by the roots of denominator of Eq. (57) using
either ofβ =±√

jŝ and± j
√

jŝ. Since the compensator is
infinite dimensional, its implementation is not practically
feasible. However, due to the finite bandwidth of the
physical sensor and actuator, a finite dimensional
compensatorCred(ŝ) can be obtained by truncating the
high frequency terms of the infinite product part ofC(ŝ)
for some properly chosen positive integersN andM. Let
N andM be selected such thatCred(ŝ) has the same poles,
zeros, and gain asC(ŝ) within the frequency band of
interest containing the crossover region ofC(ŝ)Gλ τ(ŝ).
Then the reduced order compensatorCred(ŝ) is able to
maintain desirable closed loop stability and performance.
To ensure that the closed loop system is robustly stable
with respect to the measurement noise, one may keep
fewer zeros than poles ofCred(ŝ). This added high
frequency roll-off ofCred(ŝ)Gλ τ(ŝ) further diminishes the
effects of the high frequency modes ofGλ τ(ŝ). Finally,
sinceCred(ŝ) andGλ τ(ŝ) are proper,Cred(ŝ)Gλ τ(ŝ) has no
pole-zero cancellation in Re(ŝ) ≥ 0, and
1+Cred(ŝ)Gλ τ(ŝ) = 0 has no zeros inRe(ŝ) ≥ 0, the
closed loop system is internally stable [31].

8 Simulation

The effectiveness of the proposed control approach is
evaluated here through numerical simulation using the
parameters of an experimental apparatus described
in [14]. These parameters are:ρ = 0.405 kg/m,
E = 2.06× 1011 N/m2, ℓ = 0.9 m, I = 1.41× 10−11 m4,
Ih = 0.01 kg-m2 (ε = 3.387×10−2). The values ofωαn,
ωβ n, ωθn and ωδn can be found in the Appendix and
Table 1. The virtual contact force parameter and
controller gain that resulted in good performance were
selected ask = 0.7,kp = 3.054, andkd = 1.847. The
desired contact force trajectory was selected as

λd(t) = 1−6e−5t +5e−6t (58)

which results in lim
t→∞

λ (t) = lim
t→∞

f (t,0.7) = 1 N, lim
t→∞

τ(t)

= 0.9 N-m, and lim
t→∞

θ (t) = 9.296×10−2 rad. The first six

pairs of closed-loop poles computed from Eq. (56) are
ŝ =−16.381,−16.381,−16.381,−10302.250,−1.983±

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1616 L.-Y. Liu: Stability analysis for a constrained single-link flexible...

j52.906,−14.594± j216.364,−8.762± j382.309, and
−11.146± j675.169. The simulation results which are
hardly discernible forN = M ≥ 4 are shown in figure5.
For example,|λN+1(t)− λN(t)|/|λN(t)| ≤ 1.375× 10−5,
|τN+1(t)− τN(t)|/τN(t) ≤ 7.453× 10−4, and |θN+1(t)
−θN(t)|/|θN(t)| ≤ 2.631×10−5.
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Fig. 5: Contact force regulation (a)λ (t) – – –, f (t,0.7) ——,
λd(t) – ·· –; (b) θ (t); (c) τ(t).

Let w(x, t) := xθ (t) − v(x, t), and wd(x) := xθd−
vd(x). Assume that the flexible link remains in the steady
state (i.e.∆w(x) := w(x,0)−wd(x) = 0), but there is an
initial joint angular displacement (i.e.∆θ := θ (0)−
θd 6= 0, and ∆θ̇ := lim

t→0
θ̇ (t) = 0). Since the Laplace

transform of Eq. (14) yield Ih[s2∆θ (s)− s∆θ (0)−
∆θ̇ (0)] = u(s) the initial joint angular displacement
perturbed from the steady state solution can be regarded
as a disturbance entering the plant as shown in figure4.
The responses for the disturbance∆θ := θ (0)−
9.296×10−2 = −0.1 rad perturbed from the steady state

solution, can be computed using figure2 are shown in
figure6. Note that the small deflection assumption is not
violated sincevmax(ℓ, t)/ℓ = θmax(t) = 9.296% (less than
10%).
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Fig. 6: Disturbance rejection: (a)λ (t); (b) θ (t); (c) τ(t).

9 Conclusions and future work

In this paper, exact solutions of the noncollocated
infinite-dimensional force control system has been
obtained. With the joint torque as the input and the
contact force as the output, the noncollocated system is
confirmed as a non-minimum phase. Based on a new
input from root bending moment and output redefinition
via parallel compensation, a passive transfer function is
erected for the noncollocated system. Particularly,
necessary and sufficient conditions in the passivity
properties are revealed for the first time in this field.
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Besides, it is found that a passive PD controller suffices to
stabilize the infinite-dimensional closed loop system.
Unlike most traditional approaches based on truncated
models, which will generally suffer from control and
observation spillover problems. Simulations have verified
that the proposed scheme can track the contact force
promptly and accurately. One future research area is to
relax the small deflection assumption so that a much
larger contact force can be controlled.

Appendix

The infinite product expansions for transcendental
functions used in this paper are summarized as
follows [22,27]. In accordance with the context of this
paper, ˆs2 =−β 4 is used whenever it is appropriate.

A1. sinβ + sinhβ = 2β
∞

∏
n=1

(

1− ŝ2

ω2
zn

)

, ωzn = 2a2
n

tanhan + tanan = 0, (an > 0, real)

an =

(

n− 1
4

)

π asn → ∞

ωz1 = 2(2.365)2,ωz2 = 2(5.498)2,ωz3 = 2(8.639)2,

ωz4=2(11.781)2,ωz5=2(14.923)2,ωz6=2(18.064)2

A2. sinβ sinhβ = β 2
∞

∏
n=1

(

1+
ŝ2

n4π4

)

A3. coshβ sinβ − cosβ sinhβ =
2
3

β 3
∞

∏
n=1

(

1+
ŝ2

ω2
β n

)

,

ωβ n = c2
n, tanhcn − tancn = 0,(cn > 0, real)

cn =

(

n+
1
4

)

π asn → ∞

ωβ 1 = 3.9272,ωβ 2 = 7.0692,ωβ 3 = 10.2102,

ωβ 4 = 13.3522,ωβ 5 = 16.4932,ωβ 6 = 19.6352

A4. 1+ coshβ cosβ = 2
∞

∏
n=1

(

1+
ŝ2

ω2
pn

)

, ωpn = b2
n

coshbn cosbn +1= 0(bn > 0, real)

bn = (n− 1
2
)π asn → ∞

ωp1 = 1.8752,ωp2 = 4.6942,ωp3 = 7.8552,

ωp4 = 10.9962,ωp5 = 14.1372,ωp6 = 17.2792

Note that the asymptotic expressions are found very
accurate (to three decimal places) sincen ≥ 5.
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