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Abstract: The passivity-based PD force control of a constrained oneflexible arm is investigated using a linear distributed
parameter model. In order to overcome the inherent linoiteticaused by the non-minimum phase nature of the nonctiiacaf
the joint torque input and the tip contact force output, a imgwut induced by the measurement of root bending moment asirtiz|
contact force output generated by a parallel compensatodefined. The transfer function from the new input to theuaircontact
force output is passive. A passivity-based PD controllehén designed to accomplish the regulation of the contacefdVith the
infinite product representations of transcendental fonstiexact solutions of the infinite-dimensional systenoatained successfully.
This closed loop system has stability robustness to pammetertainties and is free spillover problems. Numesgalulations are
provided to verify the effectiveness of the proposed apgroa

Keywords: Contact force, output redefinition, passive, infinite-disienal

1 Introduction tracking errors at fast tip speefl]| Some methods based
on a lumped parameter model for a single-link flexible
robot were thus developed,[7,8,9,10] to simplify the
dynamics of a flexible arm with the tip forces. On the
other hand, it was suitable only for one or two degree of
freedom flexible robot §,7,8,9,10]. Accordingly, a
variety of nonlinear hybrid force-position controllers

In recent years, force control of constrained flexible
manipulators has received increasingly attentib2,[3,4,
5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,

23]. Application of this research field include space

robots used for ;atellite papturing and Iarge SPACK ere proposed using nonlinear finite-dimensional
structure construction, and light weight industrial rabot dynamic models 111213 for some two and three

used for asse_mbly, deburring and grinding tasks. Thedimensional constrained flexible robots. However, these
controller design for such force control problems is,

however, quite difficult due to the distributed parameterpmposed methods may not guarantee the stability of the

nature of flexible arms and the noncollocation of tor ueoriginal distributed parameter systems because of
. . q spillover problems. Matsuno and Kasa#] then derived
actuation and contact force sensing.

. . : . the distributed parameter model for a constrained one-link
Based on finite-dimensional approximate models,fayible arm with a concentrated tip mass, a

Chiou and Shahinpoorl[2] studied a single-link and @ inite_gimensional model for force feedback and
two-link constrained flexible manipulators, and pointed compliance control. More recently, Bazaei and

out that the link flexibility is the main source of dynamic ;q3ljem [15] also used distributed parameter model for a
instability of the force controlled systems. Later, B[  congtrained flexible beam actuated at the hub. The

indicated that an inherent limitation on the aChievablemaximum control bandwidth was obtained by applying
bandwidth occurs from the presence of infinitely yhe quput redefinition. In order to compensate the

nhon—g!lmfgumdphase ZErOos. Ma&sulno etdal'il derived  <pijiover instability caused by residue modes which are
Leb'dlsm ute ?arameter m(l)l els and thus proposeds; inciuded in the controller design, an optimal
ybrid position-force controllers using quasi-static controller with low-pass property and a robubk,

equations. However, the proposed controllers may nog,nigiier were proposed inlf 15 The constrained
guarantee a global stability under possible large initial

* Corresponding author e-malliu@cc.ctu.edu.tw

(@© 2016 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/amis/100441

1610 NS 2 L.-Y. Liu: Stability analysis for a constrained singleifiexible...

one-link arm with a symmetric rigid tip body and a hub angular displacemenf(t) is defined as the
nonsymmetric rigid tip body were studied byg17]. counterclockwise rotation ok-axis with respect to the
Bazaei and Moallem 18] improved force control X-axis. Letv(x,t) be the small transverse deflection of the
bandwidth of the constrained one-link arm through neutral axis of the beam with respect to thaxis. Due to
outputs redefinition. The distributed parameter modelsthe assumption of small transverse deflection, the axial
were derived in16,17,18], but finite-dimensional models displacementu(x,t) caused by bending foreshortening
were still used for controller designs. [24] is negligible. Sincev,(t) = v(¢,t) is assumed small,
As we know that the flexible arm is inherently 6(t) must also be small. The equations of motion and the
infinite-dimensional system, the controller design usingcorresponding boundary conditions are well-established
distributed parameter model becomes more complicatede.g. R2,23)).
In order to avoid the spillover from finite-dimensional

approximation, the distributed parameter model 19, [ X
20] was applied to resolve the force control problem for a /
constrained one-link flexible arm. Unfortunately, the

system stability was found only in a sufficient
condition [19,20]. Similarly, the stability of the switching
collision was also involved into a sufficient condition
[21]. Additionally, the exact solutions for the closed-loop Environment
system can not be obtained2]]. Recently, the
constrained single-link flexible arm studied B2] with K
the linear distributed parameter model was used as a )T(’) lm”
starting point. Liu and Lin23] further extend their work A(t)
to the constrained one-link flexible arm with internal
material damping. However, the passive transfer function Fig. 1: Schematic of a constrained flexible arm.
was not considered in this study B34. .

To overcome the limitations of abpve papers, this |hé(t)+/ px [xé(t)—\'i(x,t)] dx= ()= A(t) (1)
paper is to show that an exact solution to the above 0
contact force regulation problem can be achieved using a

distributed parameter model of the constrained one-link P [—X8(t) +V(x,1)] + Elvioe(X, 1) =0 (2)
flexible arm. To remove the nonminimum phase obstacle
relating the joint torque input and the tip contact force v(0,t) =0, Vv({,t)=1/0(t) (3)
output, a new input induced by the measurement of root
bending moment and a virtual contact force output Vy(0,t) =0 (4

generated by a parallel compensation are defined. It will
be shown that the transfer function from the new input to
the virtual contact force output is passive. Then, a
passivity-based PD control is shown to be able to improve
the performance of the infinite dimensional closed loop Elviou(£,t) = —A(t) (6)
system. To preserve the exact poles and zeros of thgubstituting Eq. %) and Eq. ) into Eq. (L), performing
system, the infinite product representations of transfeintegration by parts and making use of E§), (ve obtain
functions are employed throughout the paper. Numericahn alternative form for Eq1j as
simulations are presented to demonstrate the excellent ..

In8(t) = T(t) — Elv(0,1) (7)

efficacy of the proposed approach.
Note that the exact nonlinear constraint equation is
compatible only with the geometric exact nonlinear
2 Mathematical model elastic deflections 25). In order to use the small
deflection assumption consistently, the exact nonlinear
The constrained one-link flexible arm depicted in figlire constraint equation must be linearized. In an inconsistent
is a uniform, homogeneous, Euler-Bernoulli beam of formulation [L4], Eq. (7) was thus not satisfied. The root
length/, mass per unit lengtp, and flexural rigidityEl.  bending momenElvy(0,t) can be measured by a strain
The hub is modelled by a single—mass moment of inertiagage sensor1|_8, 20]_ Consequently, a new joint input
Ih, where the driven torquer(t) is applied. The variableu(t) can be expressed as
end-effector has a concentrated mass, where the
contact force exerted by the smooth rigid constraint u(t) = 7(t) — Elv(0.) (8)
surface isA(t). The arm is assumed to move in a  Then using Eq.7) reduces to
horizontal plane so that the gravity can be ignored. Let B0 — u(t 9
the X-axis be a fixed frame andaxis be a floating frame, hB(t) = u(t) ©)
both coincident with the neutral axis of the beam. The

Vix(£:t) =0 ®)
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Now introduce the new variablg(x,t) such that conditions. Lets be the Laplace transform variable, and
define the dimensionless paramet@rs, ands
w(x,t) = x0(t) — v(x,t) (20) /4 |
a_ Pl @ o 'h
Then the dynamic equations of the constrained arm B = El $=-¢ &= e (21)
(i.e. Eq. @-Eq. () become The solution of Eqg.11) can be written in the Laplace
PW(X, 1) + El oo (X, ) = 0 (11)  transform domain
w(x,$) = Clcosh%erCzcosngngsinhEerQ;sinEx
w(0,t) =0, w(/{t)=0 (12) (22)
where Ci(B8), i = 1,2,3,4 are unknown parameters.
_ Substitution of Eq. Z2) into Eq. ©), Eq. 12-Eq. (L6)
Wi(0,) = 8(t) (13) and solving folC,, Cs, Cs, 6, A, T andu yield
Wc(£,1) =0 (14) C2=-C (23)
coshB CosB
Elwex(€,1) = A(t 15 ==
an(£:0) = A (V) (15) Cs=—GrrpC G =gngC @Y
Ih(t) = T(t) + Elw(0,t) (16) 5 —c, P . CoSBsinhp — coshBsings
” 8(8) = é sinBsinhf (25)

Due to the small deflection assumption, the maximum

values of A(t) and 6(t) must be restricted. This is N B2 sinp +sinhp
discussed in the next Section. A(§) =-CEl 7 sinBsinhB (26)
2 - o .
N ' . r(é)zclEIB—z- 2+EB3_cosBsm'hB 'costhmB
3 Validity of small deflection assumption € sinBsinhp

(27)
The objective of this work is to construct a controller 5 inh .

which accomplishes the convergence of the contact force u@® = —GEI= B COSB sm' B —.COSI’ﬁ sinf3 (28)
from zero to a desired valugy without any overshoot. z2* sinBsinhf3

Clearly, the maximum deflection occurset ¢ whenthe  After algebraic manipulations, one obtains

steady state is reached. The steady state solution is

obtained by solving the time-independent version of Eq. AS) _ =Gy (9

(2)-Eq. (7): (%)
V"(x) =0 17 B sinhp + sinp
~ ¢ 2sinhBsing — gB3(coshB sinB — sinhB cosB)
v(0) =V (0) = V'(£) = 0,v(¢) = (64 (18) (29)
By applying the infinite product expansions of
EIV" () = —Aq,EIV'(0) = 14 (19)  transcendental functions (see Al to A3 of the Appendix),
) Eq. 29 can be rewritten as
We obtain
(0) Aal? ‘ Fl (1 S >
W) _ g, — Ad” _ T L1 — W
T = (20) Gre(§ =7+ A -
(1) h (1S
Since the small deflection assumption is valiéi%ﬁ < nl;ll nm 3 nDl wén
0.1, we must sedg < 22! and6; < 0.1 rad. (30)

where= jn?m? and+ jwg, are the familiar pinned-pinned
and clamped-pinned bending vibration modes,

4 Non-minimum phase transfer function respeptively. The poles 0B, () are the roots of the
from the input torque to the output contact equation o
force 2 <1+_>
£ S 1 31
The transfer function can be derived by taking the 3 Io_ol (1+_) (31)
Laplace transform of Eq.1()—Eq. (L6) with zero initial AN il
(@© 2016 NSP
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Note that withwgo = 0, the interlacing propertyog n_1 < wherek is a real constant ankl< 0.758 that was shown
N’ < wg, holds forn=1,2.- (see A2 and A3 of the in [27]. One can write

Appendix). Using the root locus method, it can be easily . .
shown that the poles @, ; (5) moves along the imaginary k(sinp +sinhf) + (1 k)B(1+ cosiB cosp)

Saxis from +jn?m? to +jwg, as ¢ increases from 0 to _ ol 1 S (35)
o, Let the roots of Eq.31) (for a fixed value ofe) be =2p |_| + w2
. n=1 an
§=+jwpn, N=1,2---, wherewpn < wpnr1. Then Eq.
(30) becomes The numerical values can be computed using = 82,
N @ wherefy(k), n=1,2,--- is the real positive roots of the
M (1_ _) numerator of Eq.34). Selectedw,, values are listed in
Gy e(9) = } n=1 w3, N —s oo (32) Table 1. Thus, one has a minimum phase stable transfer
AT 7 N+l 2\’ function
M <1+ —2> ©
n=1\ W M (1+ wzi)
The numerical values ofug,(£) can be computed Gfu(éak):;' nd — (36)
usingwgn = B2, whereBn(¢) are the positive real roots of € & |°-°| 14 i
the denominator of Eq2Q), namely n=1 a)én
2sinhBsing — 833(coshﬁ sinf3 —sinhcosB) =0 (33) Note that the above redefinition of output is equivalent
) . ) to the parallel compensatio@9 as shown in figure. It
The values obtained by selecteg, are listed in Tabld.. can be shown that the parallel compensat( k) has the

It is well established 3,26] that the existence of form
non-minimum phase zeros imposes fundamental ] )
limitations in the achievable performance of the 1) — (1-k) B(1+coshBcosB)— (sinB +sinhB)
closed-loop system. To alleviate the non-minimum phase (e3? cosB sinh — coshB sinf3

problem, the real zeros @) ,($) can be replaced by the o @

zeros on the imaginary-axis using the method of 11(1— k) I:I <1+ 7)

redefinition of output 27). With the new output, the = L=l on (37)
transfer function is marginal minimum phase but not 40ce d 1+§

necessarily passive. Fortunately, the pole$gf($) can het “%n

be made to move along the imaginaraXis by using an
appropriate feedback. Combining the feedback and thyherew;, = 2 andf,(k), n=1,2--- are the real positive
output redefinition, it is possible to find a new transfer roots of the equation

function which satisfies the so-called the interlacing

property. A transfer function with a simple pole at the B(1+coshBcosB) — (sinB +sinhfB) =0 (38)

origin is said to satisfy the interlacing property if all its , i

poles and zeros lie on the imaginasyaxis, are distinct Selected values abs,, are computed and listed in Talle

and alternate each other. Such transfer functions are

known as passive transfer functior2s. A(0)+ un ——  law=ran
d s [~ /| . >
. (k, +ky8)te | G, (%) |
.
5 Achieving passivity by Parallel | v |
Compensation L ]
f(t,k) G, (3,k)

It is well known that for non-minimum phase systems,
perfect asymptotic tracking of output trajectories with
internal stability cannot be achieved. To alleviate the
non-minimum phase problem, the right half-plane zeros Using Eq. 5-Eq. 28) and application of infinite
can be replaced by the left half-plane zeros by the methoddroduct representation of transcendental functions given
of redefinition of output. Define a new virtual contact in the Appendix, it is easy to verify that

force f (t,k) such that

Fig. 2: Passive PD control of parallel compensated system.

oo MO 1 sinhg + sinp
Gru(ek) = f(5,k) 2u(S) = u(§)  reB2 cosBsinhB — coshBsinf
T U @8
1 K(sinB +sinhB) + (1—-k)B(14 coshB cosp) _ 3. nl;ll (1 ‘*’ﬂzﬂ) (39)
T ep? cosB sinhB — coshBsinf le o |°_°| <1+i>
(34) n=1 w[zin
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Table 1: Values of roots of associated transcendental equations

n wan(k=0.7) Wpn Wsn wgn(& = 3.387x 1072)

: :

1 2847 3.927 4.900 2.686

2 4.082 2 069 7.72% 4.41C

3 8145 10218 11.086 7.156

4 10777 13,952 14.066 10.238

5 14.30% 16.493 17.336 13.364

6 17.142 10.632 20.37% 16.506
(n=odd) (n=even) (n=odd) (n=even)

.~ 0O(8
cul®= g = 751 @ 59
Gru(§) ;8

1 2sinhB sinB — £33(coshB sinB — sinhB cosB)

ep3 cosB sinhB — cosh3sinf

N <1+§>
:iw (41)

6 Proof of passivity 0f$Gty($)

Let $Gy($) be express as

N @
3 nl;ll <1+ wg{n)

AT
M <1+ —)
n=1 Bn
(42)

where by assumptiolN — o, 0 < wy1 < W2 <
<N < e, and 0< gy < gy < < gy <
Itis easy to show thato = 2 and

Gru(9) = el

_ R
5

X

= — 43
A wzln 1<w0m H (wZ ( )
LN
n#i
fori=1,2,--- N. Note that ifAg > 0 andA; > 0 for
i=12---(N— o), thensGs,(S) is a passive transfer

function since it is the sum of passive transfer functions
(see Eq.42). We now proceed to prove the assertion by
induction that if A > 0,i = 1,2,---(N — o), then the
interlacing property holds fosGy,($). Using the second
and third columns of Tablé and referring to Eq.42), it
can be easily shown that (i) fod = 1, A; > 0 implies
W1 < gy, and (i) forN = 2 and wy1 < wgy, A1 >0
implies wgy < wg2 and Ay > 0 implies wy2 < wWgo.
Assume that for each positive integeN,A; > O,

i =212 ,N imply 0 < wp1 < w1 < Wy <

Wy < -+ < waN < wpn- Then for the positive integer
N+ 1, it can be shown using Eq43 that A > O,
i=12-- N imply gy < want1 and Aypg > 0

implies wyn+1 < wgny1- This proves the above
assertion for all positive integefd. One concludes that
8Gty(8) satisfies the interlacing property. Therefore,
8G+u(9) is a passive transfer function. It may be remarked
at this point that ik £ 0.7, then the zeros db¢,(S) must

be computed numerically. It was found the®y(8) is
passive fok < 0.730 (the restriction thd¢# 0.730 is due

to the cancellation of first pole:jwg; and the second

(@© 2016 NSP
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zero +jwy2 at the k = 0.730, the details are rather i 7 Im($) i J Im(5)
involved and thus omitted). It is knowr2$,30] that the
passivity property 08G¢(S) permits the design of a large 4 &

family of stabilizing controllers. In what follows, only a . i
simple feedforward PD controller will be considered for R k fﬂmw

the regulation of the contact fordgt).

7 Passivity-based PD controller

For the control structure as shown in fig&e¢he objective *
is to makeA (t) to track asymptotically a desired contact Lo k=00 |
force trajectoryAy(t) using a PD control law ?2 ------------------- —>0j 0,
» b Q/y;\ J@s,
u(§, k) = —(kp+kaS)le[f(5,k) — Aa(S)] (44) k,=0 i
JOpy :
whereAq($) is the Laplace transform of the desired contact ’ ;
force trajectorykp andky are positive design constants, i
andk < 0.730. One obtains i
(ko + ka§)(£Gru(§ K) $42 2% 0
~ p S)LE fu S, ~ A=~ YT o H al
= )\ 4 * o,
( ' ) 1+ (kp+ kdé)éEGfu(g, k) d(S) ( 5) k,; o k 2 T J @y
0 :
Combining Eq. 44-Eq. @5 gives g oen»% Re(3)
. (kp -+ kg$)Le A & -;,
u(§, k) = ~ ——Aq($ 46 ! '
Sk =17 (Kop+ kg8)(eGry(3,K) a8 (46) © o

The poles of the closed-loop system are given by the

roots of the characteristic equation Fig. 3: Effects of P-control and D-control : (&) = 0,0 < kp <

oo; (b) kp = K5, 0 < kg < oo,

1+ (kp+ka$)leGru(§ k) =0 47)
With Gru($ k) given by Eq. 86), Eq. 47) becomes where Q,(Qn < Qn11) andZ, are the natural frequency
" @ and damping ratio of theth closed-loop pole. Then one
M <1+ _2) may write Eq. 48) as
3(kp+ kg$) - = “’“ég -1 (48)
£ 1 = N & &
Sznﬂ1<1+ 2 ) 3(kp+kd§)|‘| (1+—)+sz|'| 1+ —

Bn Win wﬁn (51)
Clearly, the effect of P-control alone is merely to move N+1 &
all the closed-loop poles along the imaginargx‘ls from =3kp [ <1+ 2l _Qz> N — o0
§=+jwpn 1 (setwpo=0)t0S=+jwon, n= 1,2, n=1
kp varies from 0O tow (see figure3a). With kp = kp, Eq.
(48) can be rewritten as Using Eq. 66) for u@&k) and Gru(§k), Gyu(9),

ST (1+ —2> (42), the closed-loop responses of some relevant variables
ki i\ @i/ — _1N-— o (49)  can be computed as follows.
5 ON+L & ’
N{i+t o . e
n=1 Wi, f(§ k) = Gsy(§ K)u(§ k)
It can be verified (see figurgb) using a simple root H (1+ i)
locus plot that the D-control suffices to stabilize the 14 Es n=1 Win 29, (52)
closed-loop system for all @ kj, < 0 and 0< kg < oo. Kp N+1 & ’
Let the roots of Eq.48) be written as n|;|1 1+ ZZH_ + foy:

N — o0

. pt : . o
S= ﬁsn:—Zn-QniJ-Qn\/1—anan:1727"' (50) A(®) = Gyu(du(§ k)

(@© 2016 NSP
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N &
()
—(14108) g M. 69 C9=
P M <1 ZZnQ—+ _QZ) (Kp-+ky9)([2B2sinhB sinB+£BK(B)]
N o =1 nooon BK(B)+ (kp + kg9 (1—K)[(1+coshB cosB) B~ L(sinh+sing)]
M &
N & =1+ ﬁé . =1 “on
el W2 (1-K 1—|—2ch—+—2
=(1+ Eg . Bn Aa(9) n=1 Wen g,
p N+1 s & ’ M,N — co
3ElI 1+2{”Q_+@> ’
n=1 n n whereK(B) = sinhBcosB — coshBsinB,$ = —{enwen+
N — o G4 jany/1-22, n= 1,2---, are the poles ofC($
7(8) = Gru(Su(§ k) determined by the roots of denominator of E§j7)(using
N & either of 8 = +,/j8and+j./]3. Since the compensator is
M <1+ —2> infinite dimensional, its implementation is not practigall
— EA . n=1 Won & feasible. However, due to the finite bandwidth of the
1+—=S A4(8), (55)
kp N+1 1427 § & physical sensor and actuator, a finite dimensional
n[ll + "Qn +Q_§ compensatoCre($) can be obtained by truncating the
N s oo high frequency terms of the infinite product part@()

for some properly chosen positive integétandM. Let

Note that the above results are exact closed-loop solutiond @ndM be selected such th@ieq($) has the same poles,
of the infinite-dimensional force control system. To 2€r0S, and gain a€(s) within the frequency band of

perform the inverse Laplace transforacan be replaced
by pt

interest containing the crossover region @fS)G) ;($).
Then the reduced order compensaByy($) is able to

\/‘Ers The closed-loop time responses can bemaintain desirable closed loop stability and performance.

computed within an arbitrary degree of accuracy byTo ensure that the closed loop system is robustly stable
taking N as large as required. In order to find the exactwith respect to the measurement noise, one may keep
values (to the extent of numerical accuracy) of thefewer zeros than poles o€.($). This added high

closed-loop poles (i.e. the roots of EdL7)), Giu(5K)
given by Eq. 84 must be used. Using either of

B = +/j3and+j./J3 Eq. 47) becomes

(Kp -+ ka8) [k(siny/j5+ sinhy/j$) + (1 — k)/j8(1+cosh
V/i8cos\/[9)]+j8(cosy/jSsinhy/jS— coshy/jSsiny/j9)
=0 (56)

This equation can be solved numerically to yigk
and{n, n=1,2---. The control structure of figur2 can

be converted to the basic feedback loop as shown in figur

4,

A (1) + CGA) = (k, + k,$)leG,,(S)

, 1+ (k,, +ky§)LeT(5,k)

Fig. 4: Overall closed-loop system in basic feedback loop.

Using Eq. 87) and Eq. 41), it is not difficult to show
that the transfer function of the compensator is

frequency roll-off 0fC,eq(S) G, ¢ (8) further diminishes the
effects of the high frequency modes G, ($). Finally,
sinceCreq(S) andG, ;(8) are properCeq(5)G, 1 (S) has no
pole-zero  cancellation in Re(§) > 0, and
1+ Cieq(8)Gy¢(5) = 0 has no zeros iRe(§) > 0, the
closed loop system is internally stabgd].

8 Simulation

The effectiveness of the proposed control approach is
Bvaluated here through numerical simulation using the
parameters of an experimental apparatus described
in [14]. These parameters arep = 0.405 Kkg/m,
E=206x10" N/m?, £ =09 m,| =141x 1011 m?,

I, = 0.01 kg-n? (£ = 3.387x 102). The values ofvgn,

Wgn, wen and ws, can be found in the Appendix and
Table 1. The virtual contact force parameter and
controller gain that resulted in good performance were
selected ak = 0.7,k, = 3.054, andky = 1.847. The
desired contact force trajectory was selected as

Ag(t) =1—6e %+ 5¢& (58)

which results intjm)\(t) = tIim f(t,0.7) =1 N, tIi%m T(t)
0 —500 0
= 0.9 N-m, and lim(t) = 9.296x 102 rad. The first six

pairs of closed-loop poles computed from E§6)( are
§=-16.381,—-16.381,-16.381,—10302.250;-1.983+

(@© 2016 NSP
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j52.906,—14.594+ j216.364,—8.762+ j382309, and solution, can be computed using figueare shown in
—11146+ j675169 The simulation results which are figure6. Note that the small deflection assumption is not
hardly discernible foN = M > 4 are shown in figuré. violated since/max(¢,t) /¢ = Omax(t) = 9.296% (less than
For example|An1(t) — An(t)[/[An()] < 1.375x 1075, 10%).
|Tnea(t) — Tn(t)|/Tn(t) < 7.453x 1074, and |6y 1(t)
—On(t)]/|6n(t)] <2.631x 107°.

1.002
Z0.998
5 3
g 11 5 0994
=} 1 r.:
3 7= S 099
2. 08 7 =
s Z S 0.986
= & 06 ©
E 55: oa 0.982 ; S .
- Time, s
=] 027 4
£z J @)
8 9 1 2 3
a 0.1
Ti
me, S - 0.08
(a) £ 006
< 0.04
0.1 %Q 0.02
o]
g 0.02 s 0
5 2 -0.02
o] —-
El 0.06 -0.04
S oo -0.06.5 1 2 3
< 0.02 Time, s
0 (b)
0 1 2 3 16
Time, s g
(b) Z 14
1 s
& g 12
z 0.8 8
2 06 % 1
= ]
g 0.4 Q 0.8
S o 0 1 2 3
g Time, s
© 9
0 1 2 3 (©
Time, s . . .
© Fig. 6: Disturbance rejection: (&)(t); (b) 6(t); (c) T(t).
Fig. 5: Contact force regulation (&) (t) — — —, f(t,0.7) —,

Ad(t) == (b) B(1); (c) T(t).

Let w(xt) := xB(t) — v(xt), and wy(x) := X63—
V4(X). Assume that the flexible link remains in the steady , .
state (i.eAw(x) = w(x,0) — wq(x) — 0), but there is an In this paper, exact solutions of the noncollocated
initial jbint ang.ular djisplacedment (i’eAe — 9(0)— infinite-dimensional force control system has been

R _ : obtained. With the joint torque as the input and the
% 7 0, and 46 := t'l%e(t) = 0). Since the Laplace contact force as the output, the noncollocated system is
transform of Eq. 14) yield 1,[s’A0(s)— sAB(0)— confirmed as a non-minimum phase. Based on a new
AB(0)] = u(s) the initial joint angular displacement input from root bending moment and output redefinition
perturbed from the steady state solution can be regardedia parallel compensation, a passive transfer function is
as a disturbance entering the plant as shown in figure erected for the noncollocated system. Particularly,
The responses for the disturbanc&é6 := 6(0)— necessary and sufficient conditions in the passivity
9.296x 1072 = —0.1 rad perturbed from the steady state properties are revealed for the first time in this field.

9 Conclusions and future work

(@© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 4, 1609-1618 (2016)www.naturalspublishing.com/Journals.asp

N SS ¥

1617

Besides, it is found that a passive PD controller suffices to [3] D. Li, Tip-contact Force control of one-link flexible

stabilize the infinite-dimensional closed loop system.
Unlike most traditional approaches based on truncated
models, which will generally suffer from control and

limitation,
Conference,

manipulator: an inherent performance
Proceedings of 1990 American Control
San Diego, CA., (1990), 697-701.

observation spillover problems. Simulations have verified [4] F. Matsuno, Y. Sakawa and T. Asano, Quasi-static hybrid

that the proposed scheme can track the contact force
promptly and accurately. One future research area is to
relax the small deflection assumption so that a much

larger contact force can be controlled.

Appendix

The
functions used

infinite product expansions for transcendental
in this paper are summarized as
follows [22,27]. In accordance with the context of this

papers’ = —%is used whenever it is appropriate.

Al.

A2.

AS.

A4.

Note that the asymptotic expressions are found very

® &
sinB +sinh = 23 (1——),(»2”:2@21
n\-a
tanha, +tana, = 0,
an = (n— %) Tasn — o

Wy = 2(2.365)%, wyp = 2(5.498)%, wsz = 2(8.639)%,
Wy=2(11.781)%, w5=2(14.923)?, w—=2(18.064)>
© 5

. . o 2
sinBsinhB =B |:|1 (1+ W)

n

(anh > O,real)

2 42 &
coshB3sinB — cosBsinhB = =3 1+ — |,
Bsing — cosBsinnB = 2 ﬂ( +w§n>
wpn = C4, tanhc, — tancy = 0, (¢ > 0, real)
1
Ch= <n+ Z) Tasn — o
wp1 = 3.927, wpy = 7.06%, wpg = 10.210,
Wpq = 133527, s = 16.49F, wpe = 19.635
ad &
1+ coshBcosB =2 1+ — |, wpon =02
r!:l1< Wn o= n
coshbp cosb, + 1 = O(by > 0, real)
1
bn = (n—E)nasn—wo

wp1 = 1.87F, wpp = 4.694, wy3 = 7.855,
Wpa = 10.996, wps = 14.137, e = 17.27F

accurate (to three decimal places) since 5.
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