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Abstract: The relation between the presence of supersymmetry and the value of the magnetic moment of the electron will be examined.
A method is given for the evaluation of the magnetic moment toarbitrary large orders in a series expansion.
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1 Introduction

The magnetic moment of the electron predicted by the
coupling of the spin to the magnetic field in the
non-relativistic limit of the Dirac equation ise

2m . Given
the relationµ = g e

2m , the introduction of supersymmetry
is sufficient to produce the classical value ofg = 2. The
precise measurement of the magnetic moment of the
electron gives a value which is predicted by quantum
electrodynamics to twelve decimal places [1].

Since the exact value ofg differs from 2, the relation
between supersymmetry and the magnetic moment can be
clarified. Although the classical supersymmetric
point-particle model does not have this value ofg, it
remains to be determined if supersymmetry can be
preserved in the field theory after radiative corrections.

A review of the calculation of the magnetic moment
in supersymmetric theories in §3 indicates that
perturbative corrections would vanish as a result of spin
sum rules. This conclusion then forms the basis of the
order estimates of the series expansion of the vertex
amplitude with an electromagnetic coupling that exists
only in the phase of broken supersymmetry.

The terms in a superstring perturbation series will be
sufficient to establish in §4 the higher-order terms in the
expansion of the squared absolute value of the summed
amplitude. The coefficients that compensate for the
division by a factorial are determined by a combinatorial
series derived from each of the components of the
compactification divisor at genusg. The alternation of the
signs will yield cancellations between the terms and
reduce the amplitude from an exponential function of the

genus to an expression of the form(−1)gkg
κg

e.m
g! . Given

the multiplicative factorqg = 1+ 1
g−1 for g ≥ 2 resulting

from quantum surfaces in the coefficients of the
supermoduli space integrals, and(−1) for fermion loops,
evaluation ofkg would yield an estimate of the terms in
the seriesA0 + c0 ∑g=1(−1)gkgqg

αg

g! for the magnetic
moment, whereκe.m. is set equal to α after the
renormalization group flow of the coupling and the
multiplicative constantc0 can be calculated from the
experimental value.

2 The Superysmmetric Point-Particle Action

Consider the Lagrangian

L =
1
2

mẋ2+
i
2

fa ḟa −−eAaẋa − µSaBa (1)

where fa is a Grassmann variable andSa = − i
2εabc fb fc

[2]. The equations of motion are

mẍa − eȦa =−µS j∂iB j ḟa + µεabc faBb = 0 (2)

The precession of the spin operator follows from

Ṡa =− i
2

εabc( ḟb fc + fb ḟc) =−iεabc(−µεbde fd Be) fc =−iµ fa fcBc = µεabcBbSc.

The value of µ will be fixed by invariance under

supersymmetry. Under the supersymmetry
transformations

xa → xa − iε
fa√
m

fa → fa + ε
√

mẋb, (3)
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−µSaBa →−µSaBa + iµ
√

mεεabcBa ẋa fc − eAa ẋa →−eAa ẋa + i
e√
m

εAa ḟa,

(4)

and, since

iµ
√

mεεabcBaẋb fc =−iµ
√

mε(∂bAc − ∂cAb)ẋb fc,

∫

dtiµ
√

mε(∂bAc −∂cAb)ẋb fc (5)

=−
∫

dt iµ
√

mε [∂b(Acxb ḟc)−2Ac ḟc −∂c(Abxb ḟc)+Abδbc ḟc].

Integration of the divergence terms will vanish at spatial
infinity, leaving

∫

d3xdt iµ
√

m(−Ac ḟc) =−
∫

d3xdt iµ
√

mAc ḟc, (6)

which will cancel the variation from−eAaẋa if µ = e
m or

g = 2.

3 Supersymmetry Breaking and the
Magnetic Moment

The point-particle limit of the Lorentz model [3] is known
to coincide with the non-relativistic limit of the Dirac
equation. The self-energy infinities are evident in the
equations of motion of the point-particle theory [4] with
the action
I =− 1

2

∫

dτ ẋ2+
∫

d4x
(

Aµ jµ − 1
16π FµνF µν) and

jµ(x) = q
∫

δ 4(x− x(τ))ẋµ(τ)dτ,

eẍµ + ėẋµ = qFµν ẋν ∂ µFµν = 4π jµ (7)

whereea
µ is the world-line density. The reaction of the

radiation to the accelerated motion of the charge causes a
divergence in the solution for the field. These infinities
can be partially removed when ˙x2 = 0 and entirely
removed if the particle has a mass through the inclusion
of counterterms in the effective action [?]. The effect of
the renormalization of the massive equations of motion is
the occurrence of new terms that may be added to Eq.(2),
which includes the coupling of the spin to the magnetic
field.

The generalization of the Dirac theory to
renormalizable theory of quantum electrodynamics
allows the systematic removal of all divergences from the
perturbative calculation of the magnetic moment of the
electron. The radiative corrections alter the value ofg
from 2 to a slightly larger value.

The self-energy infinities are eliminated in
supersymmetric quantum electrodynamics, which has an
invariance generated by a superalgebra with an abelian
bosonic sector. The radiative corrections of the magnetic

moment again can evaluated. Any change fromg = 2
would render the classical point-particle model to be not
invariant under supersymmetry transformations. The
removal of infinities and supersymmetry breaking may be
considered precisely within the supersymmetric field
theory. There are renormalization theorems, for example,
which prevent supersymmetry breaking in sQED. The
renormalization theorems tend to imply that couplings or
relations between parameters in the Lagrangian are
unaffected by radiative corrections. The contributions of
the photon and the paired spin-1

2 field cancel in the
evaluation of the perturbative expansion in
supersymmetric quantum electrodynamics[?]. Therefore,
it remains to be determined whether a soft breaking of
supersymmetry can accommodate a change in the value
of g by a factor of 1±O(10−3). The summability of the
perturbation series once supersymmetry is broken is
affected by a class of bubble diagrams [7]. A study of the
electron magnetic dipole moment in a minimal
supersymmetic standard model with other vector bosons
has yielded conditions on the parameters [8].

Sum rules for magnetic moments of charged particles
in supermultiplets receive corrections if
supersymmetry-breaking terms are included [?]. While
the anomalous magnetic moments of the charged particles
have the same signs in the standard model and the
minimal supersymmetric extension, based on the most
general form of theWWγ vertex, the coefficient of the
term qαgβ µ − qβ gαµ have opposite signs for the two
theories, and the condition of the same sign requires a
light upper bound for the mass of the Higgs boson [10]. It
has been suggested that calculations of the muon
magnetic dipole moment, where theoretical and
experimental values forgµ−2

2 differ by (4.3±1.6)×10−9

only, could confirm supersymmetry, and the
supersymmetric contributions are found to beO(10−9)
[11] Much of the difference may be traced to hadronic
polarization effects [?]. The expansion ofgµ−2

2 consists of
terms resulting from broken supersymmetry of
O(2 × 10−10) at two loops in the leading logarithm
approximation [13], and the viability of the model would
be determined by a sum over the higher-loop terms. If it is
included within a superstring calculation, the convergence
can be ensured.

4 Magnetic Moment in Superstring Theory

Finite ultraviolet and infrared cut-offs for quantum
electrodynamics yields a convergent perturbation
expansion, even though the number of diagrams increases
at a factorial rate [14] [?]. This diagrammatic expansion
may be derived from a superstring perturbation
expansion, since an exponential bound is derived yielding
a convergent series for sufficiently low values of the
coupling [16].

The electric magnetic moment has been given by the
coefficient of e

2m h̄sês in the coupling to the magnetic field
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at zero orbital angular momentum in the renormalized
Lagrangian of quantum electrodynamics, wheres is the
intrinsic spin quantum number and ˆes is the unit vector in
direction of the spin vector. The coefficients of the
diagrams in this expansion decrease with the ordern of
perturbation series asαn where α is the fine structure
constant. The problem of the factorial divergence of the
number of diagrams atnth order can be resolved within
superstring perturbation theory. Initial calculations
indicate that correction to the magnetic moment at one
loop vanishes when supersymmetry is preserved [?].

The magnetic moment can be calculated through a
perturbation series derived from string theory since there
may be contributions from higher loops. With a
perturbation series of the form

A0+ c0

∞

∑
g=1

(−1)g π2

4
kgκg

e.m.

g!
,

whereA0 is the leading-order vertex amplitude, the factor
of (−1)g arises from the superstring measure,κe.m is the
gauge coupling at electromagnetic scales, set equal toα,
kg represents a compensating factor that is from a
combinatorial series related to the components of the
compactification divisor [18] at each genus

eg/
√

2πg

[

1

1+ 1
g

− 1
2

1
2 (

g
2+1)

∑
k=1

(−1)k−1 ·2
(2π)2k

ζ (2k)

(

1− 1
g

)

...

(

1− 2k−2
g

)

+

1
2 (

g
2−1)

∑
k=1

(−1)
g
2−k ·2(2π)g−2k+2

ζ
(g−2k+2)

(

1− 1
g

)

...

(

1− 2g−3
g

)

g−g+4k−3

]

and the relative weighting for the terms is−k1α : 1
2! k2α2 :

− 1
3! k3α3 : 1

4! k4α4 : .. .
Quantum deformations of surfaces in the string path

integral have been found to contribute a factor
qg = 1+ 1

g−1 for g ≥ 2 [19]. Since the amplitudes then
differ from the superstring perturbation expansion, the
vanishing of radiative contributions by supersymmetry is
no longer valid. There is a factor of−1 for each fermion
loop. Settingq1 = 1, the perturbative series is

A0+ c0

∞

∑
g=1

π2

4
kgqgκg

e.m.

g!
(8)

after cancellation of the factors of(−1)g. The coefficient
c0 can be selected such that

A0+ c0∑3
g=1(−1)g π2

4
kgqgαg

g!

A0
= 1.0011596521 (9)

when κe.m. is set equal to the fine structure constantα.
The observed amplitudes in Lorentzian space with a
G2/SU(3) compactification differ from the Euclidean
amplitudes inR10 by a factor that receives contributions
from the space-time instantons resulting from windings
around the compact space and the transformation of the

integration ranges for the coordinates the light-cone
worldsheet [20] and the Riemann surfaces and equal to

√
2



 ∑
{ni}∈π9(S

6)

e−ni〈IC〉ni





−1

=
√

2(0.7880624660869638)≃ 1.1144886275.

(10)

This factor will be cancelled in the ratio in Eq.(9). The
series for the electron magnetic moment then can be
evaluated to an arbitrary large order.

5 Perspective

Classical supersymmetry is sufficient to derive a
gyromagnetic ratio of 2. It also may be found through the
spin coupling term in the Dirac equation. When
supersymmetry is present, spin sum rules tend to cause
the higher-order terms in the perturbative series for the
magnetic moment to vanish. Therefore, the computation
of the electron and muon magnetic moments through a
perturbation expansion will be valid only when
supersymmetry is broken. It follows that order estimates
of each term in the scattering matrix would contribute to
the magnetic moment.

The superstring perturbation series provides order
estimates for each term in a nonvanishing amplitude.
There is a factor of(−1)

g
2 the holomorphic part of the

superstring measure that yields alternating signs in the
series expansion of the amplitude. When the
supersymmetry is present, the value of the effective string
coupling is close to the unified gauge coupling of the
minimal supersymmetric standard model. The
conventional value of the electromagnetic coupling, the
fine structure constant, is different from the unified gauge
coupling, and therefore, it results from the
renormalization group flow after supersymmetry
breaking. With the value ofα in place of the effective
string coupling, a phenomenologically valid estimate of
the magnetic moment can be given to arbitrary precision.
It therefore can be calculated with a finer resolution than
the current theoretical estimates of quantum
electrodynamics.
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