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Abstract: We present a new simple quantum algorithm for factoring composite integers assuming that we can successfully perform the

non-unitary operation of projecting certain quantum state by some quantum dynamics in a reasonably less time. Let M be a “known”

composite integer with two nearly equal “unknown” prime factors P,Q. Thus, M = PQ, 0 < M < 2n − 1. We prepare register, say

A = A1 ⊗A2, where A1 and A2 are sub-registers containing equally weighted superposition of states |x〉 and |y〉 respectively such that

0 ≤ x,y ≤ 2n −1. Register A thus contains equally weighted superposition of the tensor product states (|x〉|y〉). We also prepare register

B to keep the images of elements in register A produced under f , f : A → B, defined as f (|x〉|y〉) = |xy〉, where xy is the product

of x and y. The unitary transformation, U f , corresponding to f is defined as U f : (|x〉|y〉)A(|0〉)B → (|x〉|y〉)A(|xy〉)B which can also

take superposition of states as input. Thus, we get a “sum” state through operating U f , namely, |Ψ1〉= 1
2n ∑

2n−1
x=0 ∑

2n−1
y=0 (|x〉|y〉)A(|xy〉)B

and thus register A gets entangled with register B through U f . We then operate V = I ⊗U, on |Ψ1〉 where I is Identity operator

operating on register A and U = ∑
2n−1
z=0 |z〉〈z|, operating on register B, leading to V |Ψ1〉 = |Ψ2〉. We further operate a non-unitary

operator W = I ⊗ |M〉〈M| on |Ψ2〉 producing |Ψ3〉 = W |Ψ2〉 where |M〉〈M| operating on register B is projector in the direction of a

“known” computational basis state |M〉. After the action of unitary operator V if we can perform the “successful” action of the non-

unitary operator W by some quantum dynamics in reasonably less time then we will arrive at the following required quantum state:

|Φ〉= 1
2 (|1〉|M〉+ |P〉|Q〉+ |Q〉|P〉)+ |M〉|1〉)A(|M〉)B. The desired prime factors will then be revealed through partial measurement of

any of the sub-registers A1,A2.

Keywords: Factorization problem, Quantum Projection Operator, Inner Product

1 Introduction

We present a new simple and quantum algorithm for
factoring composite integers having two prime factors
which are comparable in size. The case of factoring a
composite integer with just two prime factors is actually
the most difficult case for the factoring problem. Shor’s
quantum algorithm for factoring a composite integer [1]
has shown that quantum computers can find the two
prime factors of an n-bit integer using only
O(n2log(n)loglog(n)) operations for which the classical

computers require exp(Θ(n1/3log2/3(n)) operations [2].
Thus, Shor’s quantum algorithm offers exponential
speedup over its classical counterpart for the problem of
factoring composite integers. This paper proposes a new
alternative factoring algorithm which solves the problem
by making use of projection operator and few partial

measurements. This new algorithm demonstrates how
superposition and entanglement, absent in classical
systems and are present only in quantum systems, can be
used to improve efficiency. Superposition is that feature
possessed only by quantum systems which allows a
quantum computer to act simultaneously upon an input
state made up of an exponential number of different
classical inputs present in the superposition of basis
states, |k〉,0 ≤ k ≤ 2n − 1. Entanglement is the most
quintessentially quantum effect present only in quantum
systems that allows strong correlations to exist between
different subsets of qubits such that measurements made
on one subset of qubits can affect the likelihood of the
outcomes of measurements made on other subsets of
qubits, even though they were not “touched” in any direct
way [3]. One can prepare two entangled quantum
registers, E and F say, such that register E contains a set
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of indices running from 0 to 2n − 1 and register F

contains a set of values of a function whose behavior
depends upon the value of the index in register E . So the
joint state (ignoring the normalization factor) can be

something like ∑2n−1
i=0 |i〉E | f (i)〉F . By measuring the value

of the function (in register F), “c” say, we can project out
the set of indices (in register E) consistent with the
observed function value, giving rise to a superposition of
the form ∑(i′: f (i′)=c) |i′〉|c〉, and this is a neat trick because
in one shot we get all the index values (in register E) that
give the same value for the function, equal to “c”(in
register F). The proposed algorithm for factoring problem
requires to make use of a non-unitary operation which is
necessarily probabilistic. The success and efficiency of
the proposed algorithm depends upon the “successful”
application of the above mentioned non-unitary operator,
I ⊗ |M〉〈M by some quantum dynamics in a reasonably
less time.

2 Preparing quantum registers

Let M = PQ, where M is known and P,Q are nearly equal
“unknown” prime factors to be determined. We choose n

such that 0 < M < N, and where N = 2n.
A quantum register is the “storing place” for the

quantum states and their superposition. A function
mapping a quantum register to another quantum register
can be so defined that it maps a quantum state in one
register, say the “domain register”, on to a quantum state
in the other register, say the “range register”. The operator
representing this function in effect correctly maps the
quantum state presented to it in the “domain register” on
to the appropriate quantum state in the “range register”.

We now begin with preparing two quantum
sub-registers A1,A2 both to contain quantum states
representing N = 2n integers {0,1, · · · ,N − 1} i.e.
quantum states {|0〉, |1〉, · · · , |N − 1〉}. In classical terms
these sub-registers will be just two bags of indices, x and
y, such that 0 ≤ x,y ≤ N − 1. In quantum mechanical
language: the quantum analog of these bags of indices, x

and y, are two quantum sub-registers containing equally
weighted superposition of basis states, |x〉, and |y〉,
respectively, i.e. sub-registers A1 and A2 will be identical

and will contain the superposition 1√
N

∑
(N−1)
x=0 |x〉 and

1√
N

∑
(N−1)
y=0 |y〉, respectively.

We now prepare the quantum register A = A1 ⊗ A2.
Clearly, register A will contain the equally weighted
superposition of the tensor product states, |x〉|y〉, i.e. the

superposition 1
N ∑

(N−1)
x,y=0 |x〉|y〉. This register A will form

the “domain register” for function, f , that we will define
soon.

We prepare the quantum register, B say, to store the
images (image states) under the action of the function
f : A → B. Thus, register B represents range register for

our function, f , f : {0,1}n ×{0,1}n → {0,1}2n
such that

f (|x〉|y〉) = |xy〉. We note here that since N = 2n we can
express the basis states |x〉, |y〉 in sub-registers A1,A2

respectively in terms of computational basis states using
n = log2 N qubits and also from the definition of the
function it is clear to see that we can express the image
states in register B, which contains images of elements in
register A = A1 ⊗A2 under f , in terms of computational
basis states using 2n = 2log2 N qubits. Further, it is easy
to see that we can express the basis states |x〉, and |y〉,
belonging to registers A1 and A2 respectively, in terms of
the corresponding computational basis states containing n

qubits by replacing each integer x and y, 0 ≤ x,y ≤ N − 1,
by its corresponding binary representation containing n

bits and juxtaposing them to find binary representation for
tensor product state |x〉|y〉. Also, we can express the
image states, |xy〉, 0 ≤ x,y ≤ N − 1, in the image register
B in terms of the corresponding computational basis states
containing 2n qubits by replacing products xy by their
corresponding binary representation containing 2n bits,
e.g. let the binary representations of x and y be i1i2 · · · in
and j1 j2 · · · jn respectively then the corresponding tensor
product state will be |x〉|y〉 = |i1i2 · · · in〉| j1 j2 · · · jn〉.
Similarly, let the binary representations of xy be
k1k2 · · ·k2n then the image state of |x〉|y〉 under f will be
|xy〉 = |k1k2 · · ·k2n〉. It is clear to check that the above
mentioned equally weighted superposition states

1√
N

∑
(N−1)
x=0 |x〉 and 1√

N
∑
(N−1)
y=0 |y〉, in sub-registers A1 and

A2 respectively can then be looked upon as prepared by
applying a separate 1-qubit Hadamard gate H on each of
n qubits prepared initially in the state |0〉. Thus the
superposition in sub-registers A1 and A2 can be prepared
as H⊗n|0〉⊗n. It is a well known fact that when one
performs measurement on any superposition one gets
some single index nondeterministically in accordance
with one more special feature possessed by quantum
systems other than the special features superposition and
entanglement mentioned above, namely, the
non-determinism. Non-determinism means our inability
to predict with certainty what answer we will get when
we read a quantum memory register that exists in a
superposition state. However, we can calculate the
probabilities with which we expect to see the various
possible outcomes. The function f defined above gives
rise to the following unitary transformation,
U f : (|x〉n|y〉n)A(|0〉2n)B → (|x〉n|y〉n)A(|xy〉2n)B. Since U f

can take superposition as input so we get after operating
the unitary operator U f the following “sum’ state
1
N ∑2n−1

x=0 ∑2n−1
y=0 (|x〉n|y〉n)A(|xy〉2n)B and thus register A is

entangled with register B through U f .

With these preliminaries we now proceed to discuss
the steps of a new quantum algorithm to find two prime
factors of a large composite integer using few partial
measurements. We assume that we can efficiently perform
the ”successful“ action of a non-unitary operator
W = I ⊗ |M〉〈M| with unit probability by some quantum
dynamics where M is the given ”known“ composite
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integer having two ”unknown“ prime factors P,Q to be
determined.

3 Algorithm

The steps of the algorithm are as follows:

(i) We prepare a quantum sub-register A1 by starting
with n qubits all initialized to the state |0〉 and then we
apply Hadamard gate H on each of these n qubits all
initialized to |0〉. Thus sub-register A1 contains equally
weighted superposition of all computational basis states
of length n, i.e. A1 contains H⊗n(|0〉)⊗n.

(ii) We prepare one more quantum sub-register A2

exactly identical to the above prepared sub-register A1.
(iii) We prepare quantum register A = A1 ⊗ A2. Let

x = i1i2 · · · in and y = j1 j2 · · · jn in binary notation. The
elements in register A1 are |x〉 = |i1i2 · · · in〉 and the
elements in register A2 are |y〉= | j1 j2 · · · jn〉, respectively.
The elements in register A are tensor product states
|x〉|y〉 = |i1i2 · · · in〉| j1 j2 · · · jn〉, obtained by juxtaposition
of the above binary sequences for x and y.

(iv) We prepare image register, B, to keep images the
images of elements in register A produced under the action
of the unitary transformation U f . Thus:

U f : (|x〉n|y〉n)A(|0〉2n)B → (|x〉n|y〉n)A(|xy〉2n)B

Since U f can also operate on superposition therefore we
have

1

N

(N−1)

∑
x,y=0

(|x〉n|y〉n)A(|0〉2n)B → 1

N

(N−1)

∑
x,y=0

(|x〉n|y〉n)A( f (|x〉|y〉)2n)B

→ 1

N

(N−1)

∑
x,y=0

(|x〉n|y〉n)A(|xy〉2n)B.

Note that the state |0〉2n is made up of 2n−qubits and
also both the registers A and B contain states with
2n−qubits. Note that the elements in register B are made
as follows: We find the usual product of elements x and y,
namely, xy, we then find the binary representation for xy,
namely, xy = k1k1 · · ·k2n and prepare state
|xy〉2n = |k1k1 · · ·k2n〉.

(v) We thus get the “sum” state

|Ψ1〉=
1

N

(N−1)

∑
x,y=0

(|x〉n|y〉n)A(|xy〉2n)B.

Now we operate on this “sum” state, |Ψ1〉, the unitary
operator V = I ⊗U, where I is identity operator that

operates on elements in register A and U = ∑2n−1
z=0 |z〉〈z|

that operates on elements in register B. As an effect the
“sum” state, |Ψ1〉, will now change (after normalization)

to:

|Ψ2〉=C0 ∑
x,y,xy=0

(|x〉|y〉)A(|0〉)B

+C1 ∑
x,y,xy=1

(|x〉|y〉)A(|1〉)B + · · ·

+C2n−1 ∑
x,y,xy=2n−1

(|x〉|y〉)A(|2n − 1〉)B

such that ∑2n−1
i=0 |Ci|2 = 1.

(vi) We further operate on the above changed “sum”
state, |Ψ2〉, a non-unitary operator W = I ⊗|M〉〈M| where
I is identity operator that operates on elements in register
A and the projection operator |M〉〈M| operates on register
B. This operation changes the above state, |Ψ2〉, to

|Ψ3〉=C0 ∑
x,y,xy=0

(|x〉|y〉)A(〈M|0〉|M〉)B

+C1 ∑
x,y,xy=1

(|x〉|y〉)A(〈M|1〉|M〉)B + · · ·

+ · · ·
+CM(|1〉|M〉+ |P〉|Q〉+ |Q〉|P〉)+ |M〉|1〉)A(〈M|M〉|M〉)B

+ · · ·
+C2n−1 ∑

x,y,xy=2n−1

(|x〉|y〉)A(〈M|2n −1〉|M〉)B

such that ∑2n−1
i=0 |Ci|2 = 1. As this operation being

non-unitary, it has some probability of failing. Assuming
success in this non-unitary operation by some quantum
dynamics we see that (using 〈i| j〉 = δi j, where δi j = 0, if
i 6= j, and δi j = 1, if i = j,) the state, |Ψ3〉, changes (after
normalization) into the state |Φ〉, where

|Φ〉= 1

2
(|1〉|M〉+ |P〉|Q〉+ |Q〉|P〉)+ |M〉|1〉)A(|M〉)B

(vii) The desired prime factors will then be revealed
through partial measurement of any of the sub-registers
A1,A2.

(vii) This changed state in register A now contains the
desired prime factorization which is easily reveled after
further partial measurement done on any one of the sub-
registers A1,A2.

Remark: The efficiency of this algorithm depends
upon the assumed “ successful non-unitary operation” of
projecting a superposition state onto a “known” state,
|M〉, by some quantum dynamics in a reasonably less
time. The result of projecting an N = 2n-dimensional state
|Ψ〉 onto a 1-dimensional basis state |M〉 leads us to the
1-dimensional basis state |M〉 scaled by the inner product
〈M|Ψ 〉 i.e. we get the state 〈M|Ψ 〉|M〉. Note that the inner
product of two N-dimensional vectors can be obtained in
log(N) time [4].

4 An example

Suppose we are given a composite integer
M = 6 < 23 = 8 as a product of two primes and our aim is
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to find those prime factors of M = 6. We choose n = 3
and further prepare the so called domain register to
contain the superposition of tensor product states |x〉|y〉,
0 ≤ x,y ≤ 23 − 1, and the corresponding image register B

will then contain the superposition of states |xy〉, where xy

stands for product of x and y.
As per the algorithm developed above we now carry

out the following steps:
(1) We prepare quantum register A = A1 ⊗ A2 to

contain 1
24 ∑

(23−1)
x,y=0 |x〉|y〉, where sub-registers A1 and A2

contain superposition 1√
23 ∑

(23−1)
x=0 |x〉 and 1√

23 ∑
(23−1)
y=0 |y〉,

respectively. Thus, the state in register A will be
1
23 (|0〉|0〉+ · · ·+ |1〉|7〉+ · · ·+ |2〉|3〉+ · · ·+ |3〉|2〉+

· · ·+ |7〉|1〉+ · · ·+ |7〉|7〉).
(2) We prepare image register, B, to keep images the

images of elements in register A produced under the
action of the unitary transformation U f . Thus:
U f : (|x〉|y〉)A(|0〉)B → (|x〉|y〉)A(|xy〉)B. Since U f can also
operate on the superposition therefore we get the “sum”
state:

1

23

(23−1)

∑
x,y=0

(|x〉|y〉)A(|0〉)B → 1

23

(23−1)

∑
x,y=0

(|x〉|y〉)A(|xy〉)B.

Thus, we will get the following entangled state, partly
belonging to register A and partly to register B, as

|ψ1〉=
1

23
[(|0〉|0〉+ |0〉|1〉+ |0〉|2〉+ · · ·+ |0〉|7〉+

|1〉|0〉+ |2〉|0〉+ |3〉|0〉+ · · ·+ |7〉|0〉)A(|0〉)B+

(|1〉|1〉)A(|1〉)B +(|1〉|2〉+ |2〉|1〉)A(|2〉)B+

(|1〉|3〉+ |3〉|1〉)A(|3〉)B + · · ·+
(|1〉|6〉+ |2〉|3〉+ |3〉|2〉+ |6〉|1〉)A(|6〉)B + · · ·+
(|1〉|7〉+ |7〉|1〉)A(|7〉)B + · · ·+
(|2〉|4〉+ |4〉|2〉)A(|8〉)B +(|3〉|3〉)A(|9〉)B+

(|2〉|5〉+ |5〉|2〉)A(|10〉)B+

(|2〉|6〉+ |3〉|4〉+ |4〉|3〉+ |6〉|2〉)A(|12〉)B+

(|2〉|7〉+ |7〉|2〉)A(|14〉)B + · · ·+
(|6〉|7〉+ |7〉|6〉)A(|42〉)B +(|7〉|7〉)A(|49〉)B].

(3) We now apply a unitary operator V = I ⊗U on
|Ψ1〉 where where I is identity operator which operates on
elements in register A and the unitary operator
U = ∑7

z=0 |z〉〈z| which operates on elements in register B

produces the following new state, |Ψ2〉:

|ψ2〉=
1

23
[(|0〉|0〉+ |0〉|1〉+ |0〉|2〉+ · · ·+ |0〉|7〉+

|1〉|0〉+ |2〉|0〉+ |3〉|0〉+ · · ·+ |7〉|0〉)A(|0〉)B+

(|1〉|1〉+ |1〉|1〉)A(|1〉)B +(|1〉|2〉+ |2〉|1〉)A(|2〉)B+

(|1〉|3〉+ |3〉|1〉)A(|3〉)B + · · ·+
(|1〉|6〉+ |2〉|3〉+ |3〉|2〉+ |6〉|1〉)A(|6〉)B + · · ·+
(|1〉|7〉+ |7〉|1〉)A(|7〉)B].

(4) We further apply the non-unitary operator
W = I ⊗ |6〉〈6| where I is identity operator that operates
on elements in register A and the projection operator
|6〉〈6| operates on elements in register B. This will change
state |Ψ2〉 to the state |Ψ3〉, where

|ψ3〉=
1

23
[(|0〉|0〉+ |0〉|1〉+ |0〉|2〉+ · · ·+ |0〉|7〉+

|1〉|0〉+ |2〉|0〉+ |3〉|0〉+ · · ·+ |7〉|0〉)A(〈6|0〉|6〉)B+

(|1〉|1〉)A(〈6|1〉|6〉)B +(|1〉|2〉+ |2〉|1〉)A(〈6|2〉|6〉)B+

(|1〉|3〉+ |3〉|1〉)A(〈6|3〉|6〉)B + · · ·+
(|1〉|6〉+ |2〉|3〉+ |3〉|2〉+ |6〉|1〉)A(〈6|6〉|6〉)B + · · ·+
(|1〉|7〉+ |7〉|1〉)A(〈6|7〉|6〉)B].

As this operation being non-unitary, it has some
probability of failing. Assuming success in this
non-unitary operation by some quantum dynamics in
reasonably less time (using 〈i| j〉 = δi j, where δi j = 0, if
i 6= j, and δi j = 1, if i = j,) the state, |Ψ3〉, changes (after
normalization) into the state |Φ〉, where

|Φ〉= 1

2
(|1〉|6〉+ |2〉|3〉+ |3〉|2〉)+ |6〉|1〉)A(|6〉)B

This changed state in register A now contains the
desired prime factors and they are easily reveled after the
partial measurement done on any one of the sub-registers
A1,A2.
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