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1 Introduction

The use of polynomials in other areas of mathematics is
very impressive: they are important to continued
fractions, operator theory, analytic functions,
interpolation, approximation theory, numerical analysis,
electrostatics, statistical quantum mechanics, special
functions, number theory, combinatorics, stochastic
processes, sorting and data compression, and etc.

Interesting results in the field of obtaining explicit
formulas for polynomials can be found in some recent
works by Srivastava [1, 2], Cenkci [3], Boyadzhiev [4]
and Kruchinin [5].

In this paper we use the method of obtaining
expressions for polynomials based on the composition of
generating functions, which was presented by the authors
at the 10th International Conference of Numerical
Analysis and Applied Mathematics [6].

The generating functions have important roles in
many branches of mathematics and mathematical physics.
Numerous investigations related to the generating
functions for many polynomials can be found in many
books and articles (see, for example, [7–15]

The main purpose of this paper is to obtain explicit
formulas for the Generalised Hermite polynomials, the
Generalised Humbert polynomials, the Lerch
polynomials, and the Mahler polynomials.

2 Preliminary

In this section, we introduce some basic definitions,
operations and notation we need.

In the paper [16] authors introduced the notion of the
composita of a given ordinary generating functionF(t) =
∑n>0 g(n)tn.

Suppose F(t) = ∑n>0 f (n)tn is the generating
function, in which there is no free termf (0) = 0. From
this generating function we can write the following
condition

[F(t)]k = ∑
n>0

F(n,k)tn. (1)

The expressionF(n,k) is thecomposita and it is denoted
by F∆ (n,k).

For more information one can see some related works
[5,17,18].

Next we show some operations, and rules with
compositae.

1.SupposeF(t) = ∑n>0 f (n)tn, B(t) = ∑n>0 b(n)tn are
generating functions, andF∆ (n,k) is the composita of
F(t). Then for the composition of generating functions
A(t) = B(F(t)) the following condition holds

a(n) =
n

∑
k=1

F∆ (n,k)b(k), a(0) = b(0), (2)

whereA(t) = ∑n≥0 a(n)tn.
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2.SupposeF(t) = ∑n>0 f (n)tn, G(t) = ∑n>0 g(n)tn are
generating functions, andF∆ (n,k) , G∆ (n,k) are their
compositae, respectively. Then for the generating
functionA(t) = F(t)+G(t) the composita is equal to

A∆ (n,k) = F∆ (n,k)+G∆ (n,k)+

+
k−1

∑
j=1

(

k
j

) n−k+ j

∑
i= j

F∆ (i, j)G∆ (n− i,k− j). (3)

3.SupposeF(t) = ∑n>0 f (n)tn, G(t) = ∑n>0 g(n)tn are
generating functions, andF∆ (n,k) , G∆ (n,k) are their
compositae, respectively. Then for the composition of
generating functionsA(t) = G(F(t)) the composita is
equal to

A∆ (n,k) =
n

∑
m=k

F∆ (n,m)G∆ (m,k). (4)

3 Generalized Hermite polynomials

In this section we consider the generalization of the
Hermite polynomials and obtain some interesting
identities for these polynomials.

The Generalised Hermite polynomials are
polynomials that arise in many different fields, for
instance in quantum mechanics, optical systems, kinetic
theory of gases, theories of fluctuations [19–21].

There exist vast investigations concerned with
Hermite polynomials, for example, Dattoli [22], Subuhi
Khan et al. [23, 24] study summation formulae;
Brafman [25], Lahiri [26], Gould and Hopper [27],
Dattoli [28] study the generalization of Hermite
polynomials.

Using the notion of the composita and the generating
functions for the Generalized Hermite polynomials, we get
explicit representations.

The Gould-Hopper generalized Hermite polynomials
are defined by the following generating function

∑
n≥0

gm
n (x,h)

tn

n!
= exp(xt +htm), (5)

wherem is a positive integer.
First, we obtain the composita of the generating

function
F(x,m,h, t) = (xt +htm)

as the coefficients with respect totn in Fk(x,m,h, t), where
m ≥ 1 is integer and the other parameters are unrestricted.

Applying the binomial theorem, we have

Fk(x,m,h, t) = tk(x+htm−1)k = tk
k

∑
j=0

(

k
j

)

xk− j h jt j (m−1).

Substitutingn = j (m−1)+ k, we obtain the composita of
F(x,m,h, t)

F∆ (n,k,x,m,h) =

{

( k
n−k
m−1

)

xk− n−k
m−1 h

n−k
m−1 , i f n−k

m−1 ∈ N,

0, otherwise,
(6)

wheren ≥ k.
Below we present few first terms of the composita in a

triangular form for the casem = 3

x
0 x2

h 0 x3

0 2hx 0 x4

0 0 3hx2 0 x5

For casem = 1, the composita is

F∆ (n,k,x,1,h) =

(

k
j

)

δn,kxk− jh j

whereδn,k is the Kronecker delta,

δn,k =

{

1, if n = k;
0, if n 6= k.

(7)

Therefore, according to (2), the expression for the
Gould-Hopper generalized Hermite polynomials is

gm
n (x,h) = n!

n

∑
k=1

1
k!

F∆ (n,k,x,m,h)

or making few operations, we get the Gould-Hopper
explicit representation (cf. [27])

gm
n (x,h) = n!

[ n
m ]

∑
r=0

xn−mrhr

r!(n−mr)!
. (8)

Gould and Hopper also indicated another
generalization of the Hermite polynomials by the
generating function

∑
n≥0

Hr
n(x,a, p)

tn

n!
=
(

1−
t
x

)a
exp(p (xr − (x− t)r)) . (9)

Let us consider the generating function as a product of
two generating functions

(

1−
t
x

)a

and
exp(p (xr − (x− t)r)) .

First we obtain the composita ofp (xr − (x− t)r). The
coefficients of(x− t)r are equal to

(−1)n
(

r
n

)

xr−n.
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Then the composita of the required function is

pk
k

∑
j=0

(

k
j

)

(−1)n+ j
(

j r
n

)

xkr−n.

Using (2), we get the expression for coefficients of the
generating function

exp(p (xr − (x− t)r))

n

∑
k=0

pk
(

∑k
j=0

(k
j

)

(−1)n+ j ( j r
n

)

)

xk r−n

k!
.

Coefficients of the generating function
(

1−
t
x

)a

are specified by the following expression
(

a
n

)

(−1)n x−n.

Therefore, multiplying both expressions, we obtain the
following formula for the generalized Hermite
polynomials

Hr
n(x,a, p) = n!

n

∑
i=0

(

a
n− i

) i

∑
k=0

pk
k

∑
j=0

(−1)n+ j ( jr
i

)

(k− j)! j!
xkr−n

(10)
or according to Gould and Hopper [27], the explicit
formula for this case is

Hr
n(x,a, p)= (−1)nn!

n

∑
k=0

pk xr k−n

k!

k

∑
j=0

(−1) j
(

k
j

)(

a+ r j
n

)

.

(11)
Now we consider the generalization to the

multivariable case, which is introduced by Dattoli et. al
in [28] and using the notion of the composita, we obtain
the explicit representation. The multivariable generalized
Hermite polynomials are defined by the following
generating function

exp(2xt − t2+2ytm − t2m) =
(m)

∑
n≥0

Hn(x,y)
tn

n!
, (12)

or by the ordinary Hermite polynomials

(m)Hn(x,y) = n!
[n/m]

∑
n=0

Hn−mr(x)Hr(y)
(n−mr)!r!

. (13)

We start with calculation the composita of

G(y,m, t) = 2ytm − t2m.

Applying the binomial theorem, we have

Gk(y,m, t)= tmk(2y−tm)k = tmk
k

∑
j=0

(

k
j

)

(2y)k− j(−1) jt jm.

Substitutingn = (k + j)m, we obtain the composita of
G(y,m, t)

G∆ (n,k,y,m)=

{

( k
n−km

m

)

(−1)
n−km

m (2y)2k− n
m , i f n−mk

m ∈ N,

0, otherwise.
(14)

According to (6), the composita ofF(x, t) = 2xt − t2 is

F∆ (n,k,2x,2,−1) =

(

k
n− k

)

(2x)2k−n(−1)n−k.

Using (3) and (2), we obtain the expression for the
multivariable generalized Hermite polynomials

(m)Hn(x,y)t
n =

n

∑
k=1

n!
k!

(

F∆ (n,k,2x,2,−1)G∆ (n,k,y,m)+

+
k−1

∑
j=1

(

k
j

) n−k+ j

∑
i= j

F∆ (i, j,2x,2,−1)G∆ (n− i,k− j,y,m)

)

(15)

wheren > 0.

4 Generalized Humbert polynomials

In this section we apply the notion of composita to get
explicit formulas for the generalized Humbert
polynomials. In 1965, Gould [29] defined the generalized
Humbert polynomial Pn(m,x,y, p,C) by means of
generating function

(C−mxt + ytm)p = ∑
n≥0

Pn(m,x,y, p,C)tn, (16)

where m ≥ 1 is integer and the other parameters are
unrestricted.

Changing the parameters in (16) by appropriate way,
one can obtain the generating functions for the following
polynomials: the Gegenbauer polynomials, the Legendre
polynomials, the Humbert polynomials, and many others.

Represent the generating function in the following
form

(C−mxt + ytm)p =Cp
(

1−
1
C
(mxt − ytm)

)p

.

According to (6), the composita of1C (mxt − ytm) is

F∆ (n,k,x,m,h,C) =
1

Ck

(

k
n−k
m−1

)

(mx)k− n−k
m−1 (−y)

n−k
m−1 ,

where n−k
m−1 ∈ N andn ≥ k.

Coefficients of the generating function

(1− x)p
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are specified by the following expression
(

p
n

)

(−1)n .

Therefore, according to (2) and substitutingj = n−k
m−1,

we obtain

Pn(m,x,y, p,C) =
[ n

m ]

∑
j=0

(

p
n− (m−1) j

)

(−mx)n−m jy j

Cn−(m−1) j−p
×

×

(

n− (m−1) j
j

)

or making few operations, we get the Gould explicit
representation (cf. [29])

Pn(m,x,y, p,C) =
[ n

m ]

∑
k=0

(

p
k

)(

p− k
n−mk

)

×

×Cp−n+(m−1)kyk(−mx)n−mk. (17)

Next we obtain the explicit formula another way. We
represent the generating function (16) as the following
composition of generating functions

(1−mxt + ytm)p =Cp exp

(

p ln

(

1+
1
C

h(x,m,y, t)

))

,

whereh(x,m, t) =−mxt + ytm.
From (6), the composita of1C h(x,m,y, t) is equal to

{

1
Ck

( k
n−k
m−1

)

(−mx)k− n−k
m−1 y

n−k
m−1 , i f n−k

m−1 ∈ N,

0, otherwise.

According to Comtet [18], the following expression
holds true:

∑
n≥k

s(n,k)
tn

n!
=

1
k!

lnk(1+ t),

wheres(n,k) are the Stirling numbers of the first kind.
Then the composita of ln(1+ t) is

k!
n!

s(n,k). (18)

Using (4) and substitutingi = n− j
m−1, we obtain the

composita ofp ln
(

1+ 1
C h(x,m, ,yt)

)

(p)k
[ n−k

m−1 ]

∑
i=0

yi(−mx)n−imk!

Cn−i(m−1)(n− i(m−1))!

(

n− i(m−1)
i

)

×

× s(n− i(m−1),k).

Therefore, according (2), the coefficients with respect
to t for the generating function

Cp exp
(

p ln
(

1+ 1
C h(x,m,y, t)

))

are determined by the
expression

Pn(m,x,y, p,C) =
n

∑
k=0

(p)k
[ n−k

m−1 ]

∑
i=0

yi(−mx)n−im

Cn−i(m−1)−p(n− i(m−1))!
×

×

(

n− i(m−1)
i

)

s(n− i(m−1),k).

5 Lerch polynomials

The Lerch polynomials are defined by the following
generating function (see, for details, [7,30])

(1− x ln(1+ t))−λ = ∑
n>0

Φn(x,λ )tn.

From (18) the composita ofx ln(1+ t) is equal to

k!
n!

s(n,k)xk.

We know that for the generating function
(

1
1−x

)λ
the

coefficients are determined by the expression
(

n+λ −1
n

)

.

Therefore, according to (2), we obtain

Φn(x,λ ) =
n

∑
k=0

(

k+λ −1
k

)

k!
n!

s(n,k)xk. (19)

6 Mahler polynomials

The Mahler polynomials are defined by the following
generating function (see [8])

ex(1+t−et ) = ∑
n>0

sn(x)
tn

n!
.

According to Comtet [18], the following expression
holds true:

∑
n≥k

S(n,k)
tn

n!
=

1
k!
(et −1)k.

whereS(n,k) are the Stirling numbers of the second kind.
Then the composita ofet −1 is

k!
n!

S(n,k). (20)

According to [16], the composita ofG(t) = t is

G∆ (n,k) = δn,k,
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whereδn,k – the Kronecker delta.
Using (3), the composita of the sum of the generating

functionsG(t) = t andF(t) =−(et −1) is equal to

δn,k +
k−1

∑
j=1

(

k
j

) n−k+ j

∑
i= j

j!
i!
(−1) jS(i, j)δn−i,k− j +

k!
n!

S(n,k).

Since

δn−i,k− j =

{

1, if n− i = k− j,
0, otherwise,

we get

k

∑
j=0

(

k
j

)

j!(−1) j

(n− k+ j)!
S(n− k+ j, j).

Therefore, using (2), we obtain

sn(x) =
n

∑
k=0

xk

(

k

∑
j=0

(−1) j
(

n
k− j

)

S(n− k+ j, j)

)

.

For instance, the coefficients of the Mahler polynomials
are considered as a triangle of coefficients of degreesx in
the sequenceA137375 [31].
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