Appl. Math. Inf. Sci.9, No. 2L, 535-542 (2015) %N =¥} 535

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/092L28

Probabilistic Analysis on JPV Algorithm and Improving
It using GCD Function

Hosung Jo* and Hesjin Park?*

1 Department of Electronics and Computer Engineering, Hagyiniversity, 222 Wangsimni-ro, Seongdong-gu, Seoul 138- Korea
2 Department of Computer Science and Engineering, Hanyamgelsity, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-Kotea

Received: 8 Jun. 2014, Revised: 6 Aug. 2014, Accepted: 8 204
Published online: 1 Apr. 2015

Abstract: JPV algorithm, proposed by Joye et al. was predicted to herfdsan the combined prime generation algorithm but it runs
slower in practice. This discrepancy is because only thebeurof Fermat test calls was compared in estimating its tataling time.
We present a probabilistic analysis on the total runningetehJPV algorithm. This analysis is very accurate and cpmeds to the
experiment with only 1-2% error. Furthermore, we proposéngroved JPV algorithm that uses GCD function. It is fastemnt JPV
algorithm and similar to the combined algorithm with the saspace requirement.

Keywords: Prime generation, Primality test, Public-key cryptosgst&CD function

1 Introduction Practically, two or more primality tests are combined
to speed up prime generation. A combination of trial
division and Miller-Rabin test is widely used. Trial

Generating large primes is important to enhance thedivision divides am-bit random number to all primes at

security strength of public-key cryptosysteind] such as most \/r. Miller-Rabin test checks whether one of

RSA [3], EIGamal B, and DSS §] because if a prime following condition is satisfied whenr — 1 = 2iq

used in cryptosystem is bigger, cryptosystem is more q ~ j <k

. / :) If j =0,a9 modr = 1 ora? modr = n— 1.
secure. However, generating large primes takes long timey; 4, rer [L1] proposed a probabilistic analysis of an

so we need to generate large primes efficiently. Primey, nected running time for the combined algorithm. He
generation] consists of random number generation and /54 showed how to compute the optimal value @iy

primality test. Since the primality test is much-more o eafier) which makes the combined algorithm fastest.
time-consuming than the random number generation,

reducing the running time of primality test is more Joye et al. 18] introduced JPV algorithm which
important in developing an efficient prime generation removes trial division from the combined algorithm. JPV
algorithm. algorithm has 2 characteristics: The first one is that it

Primality tests are divided into two categories; generates an odd random number which is relatively
deterministic primality tests and probabilistic primglit prime to every prime less than some bodndhe second
tests. Deterministic primality tests such as trial one is that it generates a new random number from the
division [7], Pocklington’s test §], elliptic curve previous one by simple computation, instead of
analogue 9], Jacobi sum test 10, Maurer's generating a random number again. JPV algorithm
algorithm [L1] and Shawe-Taylor’s algorithmiLP] certify claimed that it is faster than the combined algorithm by
that a random number is a prime with probability 1. 30 to 40%. However, Joye et al. did not compare the total
Probabilistic primality tests such as Fermat Te®8][running time of each algorithm but the number of Fermat
Miller-Rabin test [14], Solovay-Strassen test19, test calls because there was no probabilistic analysis on
Frobenius-Grantham primality testl§] and Lehmann the running time of JPV algorithm. Thus, developing the
primality test [L7] certify that a random number is a probabilistic analysis for the running time of JPV
prime with high probability that is very close to 1. algorithm is required for more accurate comparison.

* Corresponding author e-mafijpark@hanyang.ac.kr

(@© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/092L28

536 NS 2 H. Jo, H. Park: Probabilistic Analysis on JPV Algorithm...

Table 1: Denotations about the running time If the bit-length ofr is n, Ny = % ~ 0.347n. Let Ty
Running | Time for and Ty be the running times of one division and one
| Time | 1execute Mill-Rabin test, respectively. Lek be the number of
Random Number Generation Trnp Trnd small primes used in the trial division arl be theith
Trial Division Tro Ttd odd prime number so that < py... < px. Then, Trap,
Miller-Rabin Test TvR Tor Trp andTyr are as follows.
TrnD = 1+ Trng (2)
In this paper, we first propose a probabilistic analysis Ko j 1
on the expected running time of JPV algorithm and TTD:Ttd(1+Z rl(l——)) 3)
compare the expected running time of JPV algorithm with j=1i= Pi

that of the combined algorithm. According to our " L

analysis, JPV algorithm is slower than the combined Tue =T 1_ = 4
algorithm in generating a 512-bit prime and the MR mr(iu(pi)))
experimental results correspond to this analysis. In ,

addition, we propose an improved JPV algorithm and it 1 hereforeT (n,k) is as follows.

shows similar performance with the combined algorithm nln2 Ko 1
when the same size of memory space is used. T(n,K) = —— (Trng + Tia(1 + Z rl(l —=))
This paper is organized as follows. Section I 2 j=1i= bi
introduces the combined algorithm and JPV algorithm. In k 1
Section Ill, we probabilistically analyze the expected + Tm'(l_l(l__))
running time of JPV algorithm. We also compare the i= bi

combined algorithm and JPV algorithm. In addition, we g optimal number of primes that makes the run time
introduce an improved JPV algorithm. We conclude in t5ctest is as follows.

Section IV.

Jopt = Ti (5)
2 Previous Work
2.1 The Combined Algorithm 2.2 JPV algorithm

The combined algorithm consisting of random numberJoye et al. proposed JPV algorithm that does not use the
generation, trial division and probabilistic primalitystas ~ frial division. JPV algorithm consists of 5 steps;

as follows. precomputation, invertible number generation, candidate
generation, primality test, and invertible number
TD-MR combination (n,k) regeneration.
1.Random Number Generation 1.Precomputation
-Generate an-bit odd random numbar. Compute integer values, 1, p, andA (17). The range
2.Trial division onr with k small primes of a n-bit random number is??+1<q<2"-1.
-Dividesr by k small primes. We defineWmax as 2'— 1 andWin as 271+ 1. n is
-If r is divided by any prime, go to Step 1. the product ok different small primes andl andp
3.Miller-Rabin test orr are multiples ofn and also satisfy inequalities
-Perform Miller-Rabin test on. I < Winax — Wrin andp > Wiyin. The function is the
-If r passes, retumnas a prime. Carmichael function 19 that is computed in the
-Otherwise, go to Step 1. following way. If [T = p1p2...§k, A() is the least
Maurer [L1] introduced a probabilistic analysis of the common multiple of eacfA (p;*). When pi is odd,
expected running time of the combined test. Netbe the A(pY) = pi%1(p — 1). Whenp; is even andj > 3,
number of generated random numbers until a prime is A(23) =23-2, Whenp; is even andy > 3,A(2) =1
found. Let Trnp, Trp, and Tyr be the average running andA (4) = 2.
times of random number generation, trial division, and
Miller-Rabin test, respectively. 2.Invertible number generation
Then, whem-bit prime is generated witk primes, the Generate an integer that is relatively prime ta7.
total run time, T (n, k), is as follows. First, generate a random numiaesmaller than7 and
exam whethec is relatively prime tof71. If c and 1
T(n,k) =Nt - (Trnp + Trp + TMR) 1) are relatively prime, reture. Otherwise, add 1 t@
(© 2015 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2L, 535-542 (2015)Wwww.naturalspublishing.com/Journals.asp NS P 537

Table 2: Precomputed values for the 512-bit prime generation time in Section 3.3. Note that we will use Miller-Rabin test

Precomputed values as the probabilistic primality test instead of Fermat test.
n b16b d1e0 84af 628f e508 9e6d abdl1 6b5b

80f6 0681 d6a0 92fc ble8 6d82 876e d7(19
2100 Obcf dd06 3fb9 081d fd07 a021 af23

735 d52e 63bd 1cb5 9c93 chb3 98af d 3.1 Probabilistic Analysis of JPV Algorithm
I 1,729-n
0 4,120 The total running time of JPV algorithm can be estimated
A(IT) | 1dc6 c203 d4cc 7800 33f9 c5d8 d97a a246 by the sum of the running times of 2-5 steps because step
8a54 e370 0 1 is precomputed. LeE denote the running time of step

andN; the number of iterations of stepWe first consider
the number of iterations of each step. Since step 2 is
performed only one time\,=1. The iteration number of
step 3 and 4 are same, thNg= N4. Step 5 is performed
and exam again. This step is repeated until finding when Miller-Rabin test is failed, sbls = Ny — 1. Then
which is relatively prime tof1. In this algorithm, if Tjpy is represented as follows.

MM mod 1 =1, cis relatively prime ta7.

. . Tipv = To+ (T3 +Ta)Na+ Ts(Ng — 1) (6)
3.Candidate generation

Generate a candidatefor Fermat test. The candidate We consider the running time of each stép.is the
r is the sum of andp. If both ¢ andp are odd, addy sum of the running time to test thats relatively prime to

tor to maker even. 1 and the running time to regenerateLet T;ng denote
the running time to generate T am the running time of
4 Primality test computing (c*() mod 1), Tag the running time of
Perform Fermat test on If r is a prime, returm and adding 2 integers, ans s, the number of (") mod I7)
terminate. Otherwise, go to step 5. computations. Then, the total running time of step 2 is as
follows.

5. nvertible number regeneration
Generate a new invertible number = 2c mod /7. T2 = Trnd + (Tiam+ Tadd)Niam — Tadd (7
After generating, return to step 3 and replacesc

to generate. Tz is the time to generate ambit odd candidate

from c. In step 3, ifr is odd, one addition is necessary.

JPV algorithm was compared with combined Otherwise, two addition are necessary. Since the
algorithm about the number of Fermat test call§]] probability thatr is odd is 1/2, 1.5 addition is executed on
According to the comparison result, JPV algorithm is 30 average.
to 40% faster than combined algorithm when 10 small
primes are used. In addition, as the size of a generated T3 =15 Tagd (8)
prime is getting larger, the gap between JPV algorithm
and the combined algorithm is wider.

However, this comparison is not appropriate in two
ways. One is that combined algorithm uses only 10 small =T ©)
primes. Usually, as the number of small primes used in 4=t
trial division increases, the number of Miller-Rabin calls Ts is the time to regenerate an invertible numiser
decreases. Therefore, using only 10 primes for trialwhenr is not a prime. In step §c < 2c mod /1) can be
division is not relevant. The other is that comparing only computed by 1.5 addition on average as follows. First,
the number of Fermat test calls is not a good metric for(c+ c) is computed and if > 7, it computeg2c — /7).
the real running time. Because as the number of primes irBecause the probability thattds bigger thanfT is 1/2
the trial division increases, the running time of the trial and normally the running time of an addition and a
division is increasing and thus the total running time subtraction are similar, 1.5 addition is required on averag

T4 is the running time of Miller-Rabin test on the
candidates those are not dividedlbymall primes,

would be increased. in step 5.
Ts = 1.5 Taqq (20)
3 Contribution Now, we knowT,, Ts, Ty, andTs, thenTjp is like as
follows.

We first probabilistically analyze JPV algorithm in Section
3.1. Then we compare the running time of JPV algorithm
with that of the combined algorithm in Section 3.2. Finally, Tipy = Trng + (Niam+ 3Ng — 2.5) Tagd + Niam Tiam + Na Tryr
we introduce our improved JPV algorithm and its running (11)

(@© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

538

H. Jo, H. Park: Probabilistic Analysis on JPV Algorithm...

In the equation X1), Tind, Tiam, Tadd, and Ty are

different by the experimental machine and environment.

Therefore, those can be measured by experiméiys,.
andN4 can be computed by probabilistic analy g, is
the number of computations o€ mod 1) until we
find c relatively prime tol1. Sincec and 1 are relatively
prime andl1 = p1pz... Pk, the probability that and 1
are relatively prime igk (1 %). Since the expected

number of evaluatingel (" mod 1) is the inverse of the
probability of it, Niam is as follows.

(12)

N4 is the number of generated candidatbus it is the
inverse of the probability ofr being a prime. The

Table 3: Measured values

Measured timégns)
Tadd 430
Trnd 15,544
Trr 4,734,181
Tiam 1,500,133

Table 4: Comparison of the expected and measured time of JPV
algorithm

Expectedns)
166,239,125

Measured ns)
168,336,171

Error (%)
1.2

Tipv

3.2 Comparing theoretical resultsto

probability ofr being a prime can be obtained using the experimental results

conditional probability as follows. LeA be the event that
r and/7 are relatively prime an@& the event that passes
Miller-Rabin test. Then, the probability thats a prime is

the conditional probability P(B|A). Since
P(B|A) = P(BNn A)/P(A) and P(BN A) = P(B),
P(B|A) = P(B)/P(A) where T = pipz...px and

P(A) = M, (1—&). BecauseP(B) is an inverse of
average numbers of trials until

P(B) = gag7- ThereforeP(BJA) = j and

034mn, (1- £
Nz is an inverse ofP(BJA). So N is represented as
follows.

Ng = 0.347 [(1—) (13)
1 Pi

<i<k |

Finally, we can get Theorem 1 by gathering all the

information of equationX1).

Theorem 1 The running time of JPV algorithm for
generating am-bit prime is as follows.

Ty () = Ting + [(=) T
1<i<k M
1
+(1.04In] (1—- =)
1£|§k Pi

+ 1] (Ll) —2.5)) Tadd

1<i<k Pi—

1
(1-—)T,
1<i<k bi "

+ 0.347

where py, p2, ..., Pk are factors off1, Tng is the time
required to generate a random numb@ggq is the time
required for an addition;jzm is the running time of
(™ mod), and Ty is the running time of
Miller-Rabin test.

finding a prime,

In order to find out how accurate our probabilistic
analysis is, we compute the expected running time and
compare the result with the measured running time when
a 512-bit prime is generated on a Pentium 4 3.0Ghz with
1GB main memory. The programming environment for
implementation is JAVA JDK 5.0 in OpenSSP(Q and
GNUCrypto R1].

In order to compute the expected running time of JPV
algorithm by Theorem IT;1q, Tiam, T, @ndTagq Should
be measured. When a 512-bit prime is generated, we used
the values}, 1, p, andA (I7) as shown in Tabl@, which
are provided by Joye et al. 1§]. Table 3 shows the
measured value$,qq, Trnd, Tnr, and Tiam. We performed
each operation 1 million times for 512-bit random
numbers and measured the total running time. Finally we
compute the average of the total running time.

Then, we compute the expected running time and
compare the expected running time and measured running
time of JPV algorithm. We generated 512-bit prime for
1,000,000 times. Tabld shows the comparison results
that the expected running time and the measured running
time of the JPV algorithm are very similar, which implies
that our probabilistic analysis is quite accurate.

3.3 JPV algorithmvs. Combined algorithm

In this subsection, we compare the running time of JPV
algorithm with that of the combined algorithm. First, we
compare JPV algorithm with the optimized combined
algorithm that usesgoy. Then, we compare JPV
algorithm with the combined algorithm when the
combined algorithm uses the memory size as same as JPV
algorithm requires (This will be called a space-limited
combined algorithm hereafter).

The expected running time of the optimized combined
algorithm is computed by the probabilistic analysis
proposed by Maurer. In order to compute the expected

(@© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2L, 535-542 (2015)Wwww.naturalspublishing.com/Journals.asp

Table5: Comparison result of algorithms

this computation includes a modular exponentiation that
takes a long time. Instead of this, we can use GCD function

E t M S bit o - . S
T 12%(3;3%@22)5 12255:;20:?1 pla 227') [7] to test if c is relatively prime tol7. GCD function is a
TJ;\,/ - 145 151995 | 144968 267 | 5856 function to compute the greatest common divisor of two
optimiz ’ 3 1))
Tepace_limited | 158,798,392| 158,450,260 1.687 integers. If the greatest common divisor of two integers is

equal to 1, two integers are relatively prime.

We propose a probabilistic analysis for the expected
running time of JPV algorithm with GCD operation
whereTgeq(a, b) is the running time of the GCD operation
running time, we measurfkxp and Ty, and comput@op. on a and b. Hereafter, let JPV algorithm with GCD
SinceTy = 4,734,181 (ns) andTy = 1,894 (ns), gopt IS operation be the improved JPV for convenience. Because
approximately 2,499. The number of primes less thanthe improved JPV algorithm is the same as JPV algorithm
2,499 is 366 from 3 to 2,477. LeBy(g) denote the except for GCD function, the expected running time of
probability that the combined algorithm that uses primesthe improved JPV algorithm can be computed by
less thatg performs Miller-Rabin test. LeNy(g) denote substituting the running time of GCD functioflg for
the number of divisions performed in trial division that Tjam. We first introduce two famous gcd algorithms:
uses primes less thgt Then,Py (2,499 = 0.14318 and Euclid’s gcd algorithm,EGCD(a,b) and Binary gcd
Ng(2,499) = 65.18. With these values, we compute the algorithm,BGCD(a,b).
expected running time of the optimized combined

algorithm as follows. EGCD(a,b)

- — 1.Ifbis O, returma
Topimized (312, 2499 = 145,121,993(ns) 2.0therwise, returE GCD(b,a modb)
The expected running time of JPV algorithm is slower
than that of the optimized combined algorithm and the
measured running times of both algorithms show similar
gap. Even though the optimized combined algorithm is
faster than JPV algorithm, the optimized combined
algorithm requires 4 times more space than JPV . ; ~
algorithm requires. Therefore, we compare JPV algorithm 3.Ifais even andis odd,ged(a,b) = ng(?a b
and the combined algorithm that uses the same space as?-If both aand b are eveged(a, b) = 2gcd(3, 3)
JPV algorithm requires. The space to saygl,p, and 5.Ifa<b, swap(a,b)
A () required by the JPV algorithm is 1,687 bit. 6.returnBGCD(a, b)

In order to compare the two algorithms when both
algorithms use the same space, we restrict the combined |, practice, two algorithms are combined to use and
algorithm such that it uses as many small primes for they,¢ s called hybrid ged algorithi GCD(a, b). Euclid’s
tsrtlg:edollvilr?gn 1%%??\:‘\/3% S;%rgi::aﬁ'gﬁ;te)gi"réfma ;f['(;ng?'; ged algorithm is used until two integers have similar bit-
can be stored in 1,687 bits. When the combined algorithrr!engths and then binary ged algorithm is used as follows.
uses 105 small prime®y (g) = 0.175619 andNgi,(g) =
24.74. With these, the expected running time of the
combined algorithm using the same space is as follows.

BGCD(a,b)

1.If a> b, and both are oddjcd(a,b) = gcd
2.If ais odd andb is evencd(a,b) = gcd(a,g

(a;b) ,b)

HGCD(a,b)

1.Ifb=0, returna.

2.If the difference of bit length of& and b) > 2,
HGCD(b,a modb).

3.If the difference of bit length ofa and b) < 2,
BGCD(a,b).

Tspace—lim'ted (5127 105) =158 798,392 (I’]S)

Table 5 shows that JPV algorithm still runs slower than
the combined algorithm even though the combined
algorithm uses less primes than the optimized combined
algorithm. However, the gap between the running time of
JPV algorithm and the combined algorithm is not wide.

The running time ofHGCD(a,b) is a sum of the
running times for EGCD(a,b) in step 2 and for
BGCD(a,b) in step 3. Lefle andTg be the running times
for EGCD(a,b) andBGCD(a,b), respectively. Then, the

3.4 Performance Improvement on JPV running time of ged is as follows.

algorithm Tyt = Te+To
In HGCD(a,b), EGCD(a,b) performs 2 divisions on
average, so the running time@ (1 + logq)logb), which
is the running time for dividinga by b whereq is the

We introduce a new method to improve the performance
on JPV algorithm. JPV algorithm perforrd(") mod 7)
computation to test i€ is relatively prime to1. However,

(@© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

540 %N S\

H. Jo, H. Park: Probabilistic Analysis on JPV Algorithm...

Table 6: Comparison of gcd algorithms’ running time

Time (ns)
a=1,024| Euclid'sgcd | Binary gcd | Hybrid gcd 1,800 EPETT—pe—
(bit) (ns) (ns) (ns) 1e00 EuclidGCD 1024
32 3,641 110,064 2,189 L o —— T
128 26,249 117,397 13,459 1,200
512 166,020 147,588 70,199 1,000 -
2048 538,364 501,249 220,119 800
4096 617,104 | 1,572,442 265,022 600
400
a=2,048| Euclid’s gcd | Binary gcd | Hybrid gcd 200 a
(bit) (ns) (ns) (ns) I i e } Bit
32 5,414 371,443 3,886 32 64 128 256 512 1,024 2,048 4,096 leneth
128 31,414 381,834 18,297 Time (1s)
512 189,717 424,830 82,290 2,000 T p——
2048 1,664,242 670,746 672,259 1,800 g ——
4096 1,822,092| 1,847,548 757,367 132‘; ES—— /
1,200 ,”
1,000 ,"
800 ,’l
quotient |a/b]. The running time ofBGCD(a,b) is 600 /’/
proportional to the bit length of the bigger afandb, i.e., 400 mmmmmmmmm———m o n S 4
O(log?a). 200 — ‘
As we already mentioned, there are three kinds of gcd O e ‘ leﬁgth
32 64 128 256 512 1,024 2,048 4,096

algorithms: Euclid’ gcd algorithm, binary gcd algorithm,
and hybrid gcd algorithm. Therefore, we compare the
running times of three gcd algorithms in order to choose
the fastest gcd operation for the later comparison between
trial division and gcd operation. We measure the running
times of three gcd operation&GCD(a,b), BGCD(a,b),
and HGCD(a,b). The bit-lengths of parametea are
1,024 and 2,048 bits. The bit-lengths of paramé&tere
32, 128, 512, 1024, 2048 and 4096 bits. We randomly
generated botla andb at each time and averaged total Whenr < Iy
running time of 1000000 tests. The comparison shows '
that hybrid gcd algorithm is always fastest in every case
in Table6.

_In this situation, we compute the gcd oaind Tk by gincer < 1y, the time complexity 0EGCD(MMi,r) is like
using hybrid gcd algorithm wherBy is the product ok this.
small primes angh; < p2 < ... < px. While the bit-length
of r is fixed ton, the size offly is varying ask increases.
We divide the analysis 0fycq into two cases when> [Ty
and wherr < Iy.
Whenr > Iy, Tyeq iS:

Tgcd = TE(I‘, I‘Ik) + TB(r mod Iy, I‘Ik) (14)

Since the run time foEGCD(a,b) is O((1+ logq)logb),
Te(r, M) is asymptotically as follows.
r
O((1-+ log(7-))log M)
k

= O(log My + loglklogr — (log/My)?)
Therefore, the running time ofTg(r, 1) can be
represented as a quadratic function ofigas follows.

_ [u(log)2+ v(log M) +w (r > 11
(15) Tgcd(k) = { 3’((Iogl'lkk)) _|_¥(k) " Er < I'IB

Fig. 1: Comparison of the running time of gcd algorithms

of logrly.

Ta(r mod My, M) = X (logMy)2 +y (log M) +Z,X >0
(16)
Tged Is:

Tgcd(k) = TE(”ka I‘) —|—TB(I‘, I_Ik modr) (17)

0((1+|og($))logr)
= O(logr + logrlogfly — (logr)?)

Because log is a constantEGCD([y,r) is a linear
function of logly.

Te = s(log M) +t (18)

Sincer > M modr, Tg(r, M modr) = O(r?), which is a
constant. Overall, we get the following lemma.

Theorem 2 The running time ofHGCD(r,[y) is as
follows.

Te(r, M) = x(log My)? + y(log M) +z,x < 0

The running timélg(r mod My,) is O(log? M) because
r mod Iy < ly. Therefore, it is also a quadratic function wherelTy is p1p2...px andp; is a prime.

(@© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2L, 535-542 (2015)Wwww.naturalspublishing.com/Journals.asp NS = 541

Table 7: comparison offg andTg Time (s) Space (bir)
256 (bit) 512 (bit) 1,024 (bit) = 7000
Te(ns) | 961-1,462| 1,146 - 4,284| 1,581 - 10,804 190 1 inning Time 5856 00
Tg(ns) 36,773 102,568 314,373 180 —
170 |- 5000
160 — —
~—158———+-158 - 4000
150 o
145 [145 | 3000
To compute the expected running time, we 130 1687 1687 I
implemented the gcd combined test and measured the] ™ ™ i
running time for generating 1,024-bit primes 1,000,000 ,,, || 1000
times. 166 ‘ . ‘ 5
Whenr > [y, Tgeq(K) is computed by Theorem 2. spv Improved Space-limited Optimized
Table 7 shows that the running time ofg(r, k) and Iy Komibived, Combined

Ts(r mod I, M) whenr is 256, 512 or 1,024 bits.
However, Te(r, i) is very small enough to neglect

and Tg(IM,r) is very similar to a linear function. Thus,

whenr > Iy, Tg(r mod I, i) approximates to a linear

function of logfy. Finally, we can expect the run time of

HGCD(a,b) by computing coefficientgu,v) and (U, V). Acknowledgement

We compute the regression using 4 sample points for eack‘lthis work was supported by the National Research

case. The regression analysis shows a similar result Witl’l’-‘oundation of Korea (NRF) grant funded by the Korea
experimental results. government (MEST) (No. 2012-0006999) and by Seoul
Creative Human Development Program (HM120006).

Fig. 2. Comparison of the running time of each algorithm

2013(logk_; pi) — 3,993 (r > IMy)

Tgea(k) = { 1711091, p) - 96.861(r <))

Because the improved JPV algorithm is the same asRe‘ferenCes

JPV algorithm except for GCD function, the expected [1]W. Diffe and M. E. Hellman, New directions in

running time of the. '”.‘pro"ed JPV.aIgorlthm can be cryptography, IEEE transactions on Information The2Ry
computed by substituting the running time of GCD 644-643 (1976),

function, Teyc for Tiam in Tpy (51272)- [2] Public-Key Cryptography Standards, PKCS #1 RSA
Tng IS much faster than T|am because Cryptography Standard.

Tged = 101,198 (ns) and Tjam = 1,500,133 (ns). The [3] R. L.Rivest, A. Shamir, and L. Adleman, A method for
expected running time of the improved JPV algorithm obtaining digital signatures an public-key cryptosystem,

using Ty is as follows. Communications of the AC\21, 120-126 (1978).
[4] T. EIGmal, A public key cryptosystem and a signature
Timprovedspv (512) = 158 801,610(ns) scheme based on discrete logarithms, IEEE Transactions on

Information Theory31, 469-472 (1985).

Figure2 shows that the improved JPV algorithm using [5] National Institute for Standards and Technology, Cxbit
GCD function is better than the original JPV algorithmand ___ Signature Standard(DSS), Fedral RegiStr169 (1991).
the performance of the improved JPV algorithm is similar [6] International Organizatoin ofr Standard, ISO/IEC 1803

to the space-limited combined algorithm. Prime Number Generation (2005). , ,
[7]1T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein,

Introduction to Algorithms, 3nd ed, MIT press (2009).
[8] H. C. Pocklington, The determination of the prime or
4 Conclusion composite nature of large numbers by Fermat's theorem,
Proc. of the Cambridge Philosophical Socidty, 29-30

. A . (1914).
In this paper, we proposed a probabilistic analysis on JPV [9] A. O. L. Atkin and F. Morain, Elliptic curves and primayit

aIgor!thm and compareq the total_ running time of JPy proving, Mathematics of Computatidt, 29-63 (1993).
algorithm with the combined algorithm. When a 512-bit (10} . Bosma and M. P. van der Hulst, Faster primality tegtin
prime is generated, the combined algorithm is better than ~ crypTO'89, LNC435, 652-656 (1990).

JPV algorithm. Furthermore, we proposed a method tq11)u. M. Maurer,Fast Generation of Prime Numbers and
improve JPV algorithm. The improved JPV algorithm Secure Public-Key Cryptographic Parameters, Journal of
shows similar performance of the combined algorithm Cryptology8, 123-155 (1995).

that uses the same size of space that JPV algorithmui2] J. Shawe-Taylor, , Generating strong primes, Eledtson
requires. Letter$22, 875-877 (1986).

(@© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

542 %N s ‘r’)

H. Jo, H. Park: Probabilistic Analysis on JPV Algorithm...

[13] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone,

Handbook of Applied Cryptography, CRC Press, (1997).

[14] M. O. Rabin, Probabilistic Algorithm for Primality Tésg,
Journal of Number Theor§2, 128-138 (1980).

[15] R. Solovay and V. Strassen, A fast Monte-Carlo test for
primality, SIAM Journal on Computing, 84-85 (1977).

[16] J. Grantham, A probable prime test with high confidence,
Journal of Number Theory2, 32-47 (1998).

[17]1D. J. Lehmann, On Primality tests, SIAM Journal of
Computingll, 374-375 (1982).

[18] M. Joye, P. Paillier and S. Vaudenay, Efficient Generaof
Prime Numbers, CHES 2000, LNCS65, 340-354 (2000).

[19] R. D. Carmichael, On composite number P which satisfy
the Fermat congruenca® ! = 1(modP), Amer, Math,
Monthly 19, 22-27 (1912).

[20] J. Viega, M. Messier, and P. Chandra, Network Securithi w
OpenSSL, O'reilly Media (2002)

[21] The GNU Crypto Project,
http://www.gnu.org/softwargfliscretionary- } { }{ }gnu-crypto

i

Hosung Jo received the
M.S. degree in Information
and Communication Engineer
ing at Hanyang University,
Seoul, Korea in 2007. He is
currently a Ph.D. candidate
under supervision of Prof.
Heejin Park. His research
interests are in the areas
of cryptography, information

security, and computer algorithm.

\;”\
From 2003 to 2003, he was a research professor at Ewha
Womens University. He is currently an associate
professor in the Department of Computer Science and
Engineering at Hanyang University, Seoul, Korea. His

research interests are in the areas of cryptography,
information security, and computer algorithm.

Hegin Park received
the M.S. and Ph.D. degreesin
Computer Engineering from
Seoul National University in
1996, and 2001, respectively.
From 2001 to 2002, he
worked as a post-doctoral
researcher for the Department
of Computer Engineering
at Seoul National University.

(@© 2015 NSP
Natural Sciences Publishing Cor.

http://www.gnu.org/software/ \discretionary {-}{}{}gnu-crypto

	Introduction
	Previous Work
	Contribution
	Conclusion

