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Abstract: We consider the problem of design of the acoustic structbisetitrary geometry with prescribed desired properties. W
use optimization approach for the solution of this problerd minimize the Tikhonov functional on adaptively refinedsimes. These
meshes are refined locally only in places where the acoustictsre should be designed. Our special symmetric mesheraént
strategy together with interpolation procedure allowsabestruction of the symmetric acoustic material with priésal properties.
Efficiency of the presented adaptive optimization algoniti illustrated on the construction of the symmetric adeusaterial in two
dimensions.
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1 Introduction every element in the mesh. This allows us finally to get
acoustic material of the symmetric structure.

To construct the desired acoustic structure we
In this work we present a new adaptive optimization formulate an adaptive optimization algorithm which
algorithm which can construct acoustic materials with includes solution of the forward and adjoint problems for
arbitrary geometry from desired scattering parametersthe acoustic wave equation. The domain decomposition
We formulate our problem as a Coefficient Inversefinite element/finite difference (FE/FD) method & [is
Problem (CIP), and our goal is to determine an unknownused for the computational solution of these problems.
spatially distributed wave speed of the acoustic waveThis method is implemented efficiently using the software
equation from boundary measurements on the adaptivelpackages WavESLP and PETSc 16]. In the theoretical
refined meshes. To solve our CIP, we minimize thepart of this work we present proof of the energy estimate
Tikhonov functional in order to find the wave speed for a hyperbolic equation with one unknown function -
distribution inside designed domain which satisfiesthe wave speed- and different boundary conditions for the
prescribed scattering properties. In the case of numericatase of our domain decomposition. We illustrate
simulations of Sectio we formulate these properties as efficiency of the proposed method in numerical examples
obtaining as small as possible reflections from theon the construction of new acoustic material in two
designed structure. For minimization of the Tikhonov dimensions. The goal of our numerical simulations is to
functional we use Lagrangian approach and search for aeconstruct the wave speed function of the hyperbolic
stationary point of it on the adaptively refined meshes.equation from single observations of the solution of this
Compared with other works on this subje&4,6] we equation in space and time which gives us as small
need to refine mesh locally only inside the known reflections as possible. We note that the domain
geometry. For construction of a new mesh we usedecomposition approach in this case is particularly
symmetric mesh refinement strategy combined with thefeasible for implementing of absorbing boundary
interpolation procedure over the neighboring vertices forconditions [LQ].
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Developed in this work adaptive optimization method
can be used in construction and design of new materials
including nano-materials with so-called cloaking
properties, seelf3, 14,15]. To obtain cloaking structures
in all these works are used methods of transformational —
optics which are based on the accordance between
material parameters and coordinate transformations. In
the current work we propose to use an adaptive
optimization algorithm which is an alternative approach
for the construction of an approximate cloaking.
Depending on applications, this method can be used alone
or as a compliment to the method of transformational
optics. Advantage of a new technique compared to the
transformational optics is fast construction of any
material of arbitrary geometry with desired symmetric
structure of any size. This structure is not dependent on
the coordinate transformation and can be adapted to
desired properties of the physical material. The mesh size
of the symmetric structure can be defined as a paramete
in the adaptive mesh refinement procedure used in the
optimization algorithm. Thus, the new algorithm allows
efficiently compute a new material of any symmetric
structure with desired properties. A first version of a such b) Deew
algorithm was presented in8][ for design of a
nanophotonic structure.

The paper is organized as follows. In Sectidnwe Fig. 1: a) Computational coarse FE/FD mesh used in the domain
present statements of the forward and inverse problemgdecomposition of the domain © Dggm U Depwm- b) The finite
and in Sectior8 we describe the Lagrangian approach for element mesh in gkm.
solution of our CIP. Stability estimates for the solution of
forward and adjoint problems are given in Sectiann
Section 5 we present the domain decomposition
FEM/FDM to solve the minimization problem of Section Dt :=D x (0,T),0Dt := 9D x (0,T),T > 0 and assume
3, and in Section6 we present an adaptive conjugate that
gradient algorithm for the solution of our CIP. Finally, in 1 5 )
our concluding Sectioii we demonstrate efficiency of the fo € H(D),€(x) € C*(D). (2)
adaptive optimization algorithm identifying the wave
speed function in two dimensions to construct material of FOr computational solution oflf we use the domain

symmetric structure which produce as small reflections aglecomposition finite element/finite difference (FE/FD)
possible. method of B] which was applied for the solution of

different coefficient inverse problems for the acoustic

wave equation in work€2] 3,4,5]. To apply method of 3]
2 Statement of the forward and inverse we decompos® into two regionsDrem andDrpm such

that the whole domai® = Drgm U DEpum, See Figurel.
prOblemS In Depem we use the finite element method (FEM), and in
Drpm we will use the Finite Difference Method (FDM),
see details in3]. Furthermore, we decompose the domain
Drem  into  three regions Gp,G;,G, such that
Drem = Gp U G1 U Gy, where Gy is the innermost

Let x = (x1,X2) denote a point inR2 in an unbounded
domain D. We model the wave propagation by the
following Cauchy problem for the scalar wave equation:

/o 32 B s subdomain with the boundaBGop, G is the subdomain
CX) 5z —Au=0 n R (0,), (1)  where we want to design the acoustic material, Gads
u(x,0) = fo(x), w(x,00=0 in D. the outermost subdomain, see Figlie).

. Let the boundary D be decomposed as
Here,u is the total wave pressure generated by the planq@,D — 1D U ;D U d3D whered;D andd.D are top and

wave p(t) which is inclident abq = Xo and propagates  y ,m sides of the doma, respectively, andsD is the

alongx, axis, €(x) = 7 is the isotropic function with  ynjon of left and right sides of this domain. At

the spatially distributed wave spee(X). Sr = (DU D) x (0,T) we have time-dependent

Let now D c R? be a bounded domain with the observations. We define S = D x (0,T),
boundary  odD. We use the notation S;1 = D x (0,t], Si2 = D x (t1,T),
@© 2018 NSP
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S = 6D x (0,T) and S = dD x (0,T), the week form

Sy =0Gp x (0,T). B A du
We also introduce the following spaces of real valued L(V) = F(u,&) — / C—-—- dxdt+ | (Ou)(DA) dxdt
functions ot ot B

— A t) dSdt A dSd
HL(Dr) := {we HL(Dr) : w(-,0) = 0}, /sl Pex.) +/sls2 Au dSdy

Hi(Dr) == {we H'(Dr) :w(-T) =0}, (3) ®
ul= Hu (D7) x H/\l(DT) «C (5) . wherev = (u,A,&) € U, and search for a stationary point
with respect tor satisfying for allv= (0,A,&) € U*
In our computations we have used the following model L'(v;V) = 0, (9)
problem

wherel’(v;-) is the Jacobian df atv.

In order to find the Fréchet derivativ®)( of the
Lagrangian §) we considel(v+V) — L(v) W e U! and
single out the linear part of the obtained expression with

ca—tzr Au=0 in D,
u(x,0) = fo(x), U(x0)=0 in D,

dhu = p(x,t) onSyg, (4)  respect tov. When we derive the Fréchet derivative we
Onhu = —dtu onS US,, assume that in the Lagrangian8)( functions in
ou=0 onSUS,. v = (u,A,&) € Ul can be varied independent on each

others. We note that by doing so we get the same Fréchet

In (4) we use the first order absorbing boundary conditionsderivative of the Lagrangian8 as by assuming that
[10] and p(x,t) € L2(Sy.1). We note that these conditions functionsu andA are dependent on the coefficientsée
are exact in the case of computations of Secfiosince in ~ details in Chapter 4 of7]. Similar to [2,3,4] we use
our computations we initialize the plane wave orthogonalconditions A (x,T) = A (x,T) = 0 and imply such
to the domain of propaga“on conditions on the functionA to deduce that
We choose the coefficientx) in (4) such that L(u,A,€) :=L(v) =F(u,C). We also use condition$)
on 0D, together with initial and boundary conditions of

=111
{G(X) € [1L,M],M =const >0, forxe Gi, (4) to get that for aliv € U~ we have
¢

(X)Zl forx € Depm U Go. T ) — ﬂ 3\ % % 5
L0 = 0D W@+ W@ =0, (10)
We consider the following inverse problem or
Inverse Problem (IP) oL -
Let the coefficien€(x) in the problem 4) satisfies 0= ﬂ(v)(’\) =
conditions b) and assume tha(x) is unknown in the _9) du _
domain G. Determine the functiofi(x) in (4) for x € Gy —/ Cﬁ_d_ dxdt+ [ (Ou)(OA) dxdt
assuming that the following functiar(x,t) is known t ot Or (11)
- Ap(xt) dSdt
U(X,t) = U(th)a \V/(X,t) € ST (6) /Sl,l p )
+ AdudSdt VA € HY(Dr),
.. . $12US
3 Optimization method
= (@ =
In this section we present the reconstruction method to du
solve inverse problentP. This method is based on the / (U—T) Uz det—/ CQ(X,O)LT(X, 0) dx
finding of the stationary point of the following Tikhonov Sr p Ot
functional / oA T dsdt 1
—u
o S12U8 Ot (12)
(u,&) 2/ (t)dsdt+ y/cco dx, _/ ﬂ@ddt
(7 ot ot
whereu satisfies the equationd)( & is the initial guess for o
& (see details about choice of this guess in Sectiand j, +/D (0A)(Ou) dxdt, Yu e Hy(Dr),
7)), Uis the observed field &r, y > 0 is the regularization T
parameter ands(t) is the compatibility function in time 0— 5'—( )(g) Q@~ dxdt
and can be chosen as @[ pr Ot dt
: o> , (13)
To find minimum of {) we use the Lagrangian
approach 2,4,6] and define the following Lagrangian in + V/ €)€ dx x € D.
(© 2018 NSP
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We observe thatl(l) is the weak formulation of the state Proof.
equation 4) and (12) is the weak formulation of the A proof of this theorem follows from the stability
following adjoint problem estimate given in3. O
<52 B The stability result for the adjoint problem is obtained
Coz — A):a/\_ —(u-U)z  xeSr, similarly as for the forward problem, the only difference is
AGT)=5(.T)=0, (14)  intheintegration in timet, T).
OnA = A onS US, Theorem
oA =0 oONSUSUS 1. Assume that the conditiors) for the functioné&(x)

i - ~ . holds. Let DC R",n = 2,3 be a bounded domain with a
We define byu(€), A (€) exact solutions of the forward piecewise smooth boundadD. For any te (0,T) we

and adjoint problems, respectively, for the known function define b _

- . T (& y R = (&1.DU D) x (t,T). Assume that there

C. T'h'en using the fact that exact solution€), A (€) are  exists a solutiol of the problem14) and a solution u of

sufficiently stable (see Chapter 5 of bodi] for details), the problem 4). ThenA € H1(Dy) is unique and there

we get from §) exists a positive constant 8 B(||€||p,t) such that the
F(u(®),8) = L(v(©), (15) following energy estimate is true for alk (0, T]

and the Fréchet derivative of the Tikhonov functional can

be written as _ 2 ) o
- L [VEar ey o +IDAXDIE, 0 < BlI— 0251, 0, -
(& = ! &).6) = — §).6) = — ¢ 16
F(©) ==F'(u(©),6) = 3=(u(©).8) = 3z (/(©). (1) (19)
Inserting (3) into (16), we get the following
space-dependent function: Proof.
. T We multiply the equation inl(4) by 26,A and integrate
FI(E)(X) :==F'(u(€),&)(x) = overD x (t,T) to get
T 9 (€) du(c) <
—/0 5t gr o) At V(E-Eo)(X). T T
(17) //2 & A AN dxdr—//ZD-(D)\) AA dxdr
t D ; t D (20)
4 Stability estimates
y =2 [ -z a1 dsa
The stability estimate for the forward proble#) follows t 4,DUG,D

from the stability estimate of3] and can be derived using
the technique of12]. For analysis we first introduce the
L, inner product and the norm ovebr and D,
correspondingly, as

Next, we integrate by parts in time the first term 28)
and noting zero initial condition inld), we have

T T
_ 2 _
(@b))or = /D/O ab dxdt flallZ, o) = ((@.3))or //(z (€8A2) dxdr = —/ (CaA?) (xtydx  (21)
(ablo = [ abdx [lalf,p) = (@a)o. to °
Theorem Next, we integrate by parts in space the second term of

Assume that the conditiorS) for the functioné(x)  (20). From §) it follows that¢’= 1 ondD. Thus, using%)
holds. Let Dc R",n = 2,3, be a bounded domain with a and absorbing boundary condition itd, we get
piecewise smooth boundagdD. For any te (0,T) we
define @ = 01D x (O,t1). Assume that there exists a

T T
solution u of the problemdj. Then uc H(Dr) is unique 2//D -(OA) &Adxdr = 2//(0{)\)0,1/\de(
and there exists a positive constant=AA(||€||p,t) such

that the following energy estimate is true for alt(0, T| i DT ‘b
, —2//(D)\)(Ddt)\)dxdr 22)
= 2
[VEaun|| o+ 1ouect o ‘B )
< A[lIPOIE, 0y + 1570l 0 | - :2/ / (@A) der—//d[|D)\|2dxdT.
(18) t 9,DUD t D
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Integrating last term of22) in time and using initial
conditions of the equatiorif), we obtain

2 _ 2
//at|m| dxdr — /|m| (xT)dx— D/|m| (x,t) dx

/|m| (x,t)d

(23)
We insert 21)-(23) in (20) to get
- / (6aA2) (x,t)dx—/|D)\ 12(x,t) dx
D D
T (24)
=2 (&A)? — (u—1)zZs 0t)\> dSdr.
(}/ﬁlDL\J/ﬁzD
The equation above can be rewritten as
/(64/\2) (x,t)dx+/|D/\|2(x,t)dx
) b)
(25)

(]

t 9,Dud,D

(u—0)z5 A — (d)\)2> dSdr.

Young'’s inequality applied to25) directly leads to

/(54A2+ DA ) (x.t) dx

of [ i@

t 9,.DUGD

(26)
u)z5|2(x,T) dSdr,

which is the desired result.
O

5 The finite element method inDrem

As was mentioned above for the numerical solutiond)f (
we use the domain decomposition FE/FD method3pf [
Similarly with this work, in our computations we
decompose the finite difference domabDgpy into
squares, and the finite element domdggy - into
triangles. InDepm We use the standard finite difference
discretization of the equatiord and obtain an explicit
scheme as inj.

For the finite element discretization drgm we
define a partitiork;, = {K} which consists of triangles.
We define byh the mesh function als|x = hk, wherehg
is the local diameter of the elemeKt and assume the
minimal angle condition on thi, [9]. Let J; = {J} be a
partition of the time interval(0, T) into subintervals
J = (t_1, t] of uniform lengtht = t, — t_1.

To solve the state problem)(and the adjoint problem
(14) we define the finite element spac®¥g® c H!(Qr)
andW H3 (Qr). First, we introduce the finite element
trial spacen;’

\/\/ﬁJ ZZ{WE H&(QT) :W|K><J S Pl(K) X Pl(‘J)v
VK € Ky, VJ € J; 1,

whereP; (K) andPy (J) denote the set of linear functions on
K andJ, respectively. We also introduce the finite element
test spac#\f! as

W i={w € H} (Qr) : Wik« € PL(K) x Py(J),
VK € Ky, VI € J; }.

To approximate the functiom, "we use the space of
piecewise constant functio@ C Lo (D),

Ch:={uely(D):u|k € Py(K), VK € Kp},

wherePy(K) is the set of constant functions &h
SettingVh = W x W x Cy, the finite element method
for (9) now readsFind v, € V,, such that

L/(Vh) (\7) =0, YWe Vh.

To find approximate solutiow, € V}, we need to solve
the forward problem4), the adjoint problem 14) and
then find the discrete gradiertz(vy,). For the fully
discrete schemes of these equations we refed]to |

6 Adaptive conjugate gradient algorithm

To compute minimum of the functional we use the
adaptive conjugate gradient method (ACGM). The
regularization parametety in ACGM is computed
iteratively via rules of 1]. For the local mesh refinement
we use a posteriori error estimate @&4] which means
that the finite element mesh Deem should be locally
refined where the maximum norm of the Fréchet
derivative of the Lagrangian with respect to the
coefficient is large. However, since our goal is to design
material inside the known domaiB;, we refine mesh
only inside this domain.

Now we define

TOAM GEM
g"(x) = dt+

27
Jo ot at 27)

where ¢ is approximation of the functiorr,"on the
iteration stepm in AGCM, Ep (x,t,E1"),An (x,t,ET) are
computed by solving the state problen) and the adjoint
problem (4), respectively, with c™:= €. In our
computations of sectionwe use the following algorithm.

Algorithm (AGCM)

(© 2018 NSP
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Fig. 2: Real part of the computational solution @) (after the Fourier transform in time at different frequeesiv: a),c),e),g) on the
coarse mesh withy = 1.5in Gy; b),d),f),h) on the three times refined mesh with optim&iedG, . OptimizecE for different frequencies

w is presented in Figures, 4.

—Step 0. Set number of mesh refinemejnts 0. Choose —Step 1. Compute solutiori, (x,t, &) andAn (x,t,E7)
of state §) and adjoint {4) problems, respectively, on

initial meshK/ in Degm and time partition){ of the

time interval(0, T) as described in sectidn Start with K} andJ{. _
the initial approximationf'= € atK and computethe  _step 2. Update the coefficieqt = &M on K/ (only
sequences afy'via the following steps: inside the discretized domai@,;) and J} using the
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Fig. 3: Reconstructed functiorisin G; on three times adaptively refined meqh K= 3, for different frequencies. Right figures present

zoomed central bottom part of the domain.G

conjugate gradient method

gl =g aMd™(x), (28)
where
d(x) = —g™(x) + B"d™ *(x),
with
g l9™(x)]? ’
lg™1(x)[|?

whered®(x) = —g%(x). In (28) the step sizex in the
gradient update is computed as

gm_ (@)
|

and the regularization parametgl at iterationm is
computed iteratively accordingly td] as

Yo
V= (m+1)P’
—Step 3. Stop computingi"and obtain the function,”
at M = m if either [|g™|,pee,) < @ OF norms
19™|L,(Dre) are stabilized. Her@ is the tolerance in
updates m of gradient method. Otherwise set
m:= m+ 1 and go to step 1.

(29)

pe(0,1). (30)

—Step 4. Refine the me$q’] insideG; using symmetric
mesh refinement procedure, for example, as shown in
Figure5. _

—Step 5. Sef := j + 1 and construct a new meKlA in

Drem and a new partition)! of the time interval
(0, T) with the new time stepr which should be
chosen correspondingly to the CFL condition 2]
—Step 6. Interpolate the approximationcomputed on
the step 3, from every elemekt—1 on the previous
space mesk, ' to the new element! in the mesh

Kr{, and obtain the initial gues On a new mesh. Set
m=1andreturntostep 1. _

—Step 7. Stop refinements K¢ andJ} if norms defined
in step 3 either increase or stabilize, compared to the
previous space mesh.

7 Numerical Studies

The goal of this section is to present possibility of the
computational design of an acoustic structure with the
property to generate as small reflections as possible. This
problem is equivalent téP. Thus, we will reconstruct a
function ¢(x) inside a domainG; using the ACGM
algorithm of sectior6. We assume, that this function is
known insideDgpy UGy and is set to be(X) = 1.

(© 2018 NSP
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a)w=280,j=3

b) w=100j =3

Fig. 4: Reconstructed functiorisin G; on three times adaptively refined megh K= 3, for different frequencies. Right figures present
zoomed central bottom part of the domain. G

Our computational geometryp is split into two As for the forward problem iDgpy we solve the
geometrieDrepm andDrpy as described in sectidh) see  problem @) choosinge™ 1, and inDggy we solve
Figure 1. We denote bydDggym the outer boundary of

Drem and bydDgpw the inner boundary oDgpy. We _0%u
set the dimensionless computational donfias Co"t —Au=01in Dremx (o)
D= {x=(xg,%) € (~1.1,1.1) x (~0.62,0.62)}, ux,0)=0, u(x0)=0in Drem, (32)
U(X,t)bDFEM = u(xat)|3DFDMI )
and the domaiDgem as d,u=0o0n dGo.

Drem = {x= (x1,%2) € ((=1.0,1.0) x (-0.52,0.52)}. Here,dDgpy, denotes internal structured nodesDiom

which have the same coordinates as structured nodes at the
oundarydDegwm, see details ind]. We note, that we use
he boundary conditiod,u = 0 ondGg which implies that
waves are not penetrated ingg.
We also note that iDgpy the adjoint problem will be
the following wave equation with(X) = 1 forx € Depwu:

The spatial mesh irDggm and in Depy consists of
triangles and squares, respectively. We choose the initi
mesh sizeh = 0.02 in D = Dgem U Depm, as well as in
the contiguous regions between FE/FD domains. We also
decompose the domain:py into three different domains
Go,G1,Gy such that ey = Gy U G, U Gy which are
intersecting only by their boundaries, see Figlirerhe

2
goal of our numerical tests is to reconstruct the function ~ o°A _ AA =—(u—10)zs in Depm x (0,T)
of the domainG; of Figure 1 which produces as small o2
reflections as possible. A(XT)=0, A(x,T)=0in D,
We initialize a plane wave i in time T = [0,2.0) A 9Deom = A 1) |0Dpey
such that |
OnA (Xt) =00NSUS; 1,
[ sin(awt), if t € (0,2, OnA (X,t) = &A onS; L US,,
P(t) = {o, if t > 2T (31) (33)
(@© 2018 NSP
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Fig. 5: Reconstructed functiorin Gy for w = 60 in (31) on refined meshesr‘;Kj =0,1,2,3. Left reconstructions: the optimized
solution obtained on r‘]{is interpolated on I§,j =1,2,3. Then the interpolated on Iﬂ? is taken as an initial guess and optimized
further to get final reconstructed material shown oﬁm Right reconstructions are obtained after direct applioatAGCM.
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which we solve using finite difference method.Dagm
we solve the problem

2

o2 —AA =0in Drgm X (O,T),
A (X,T) = O, )\t(X,T) =0in DFEM,
A (X7t)|(3D|:EM =2 (Xat)|3DFDM| )
oA =00n%,

(34)

using finite element method. HerelDrgy, denotes
internal structured nodes ddggpm lying on the inner
boundarydDrpy of Depm, see details in 3] for the
exchange procedure between FE/FD solutions.

As initial guesscg(x) we take different constant
values of the functiore(X) inside domain of5; of Figure
1 on the coarse non-refined mesh, and we @k¢= 1.0
everywhere else iD. We choose three different constant
values ofcy(x) = {1.5,2.0,2.5} insideG;. We define that
the minimal and maximal values of the functi@ix)
belong to the following sdtlz of admissible parameters

Mg 1= {6 eC(D)|1<E(x) < néaxéo(x)} : (35)

The time step is chosen to le= 0.002 which satisfies the
CFL condition RQ].

7.1 Reconstructions

We generate data at the observation pointsSatby
solving the forward problem4j in the time interval
t = [0,2.0], with function p(t) given by @1) and for
different values ofw = {40,60,80,100}. To generate
non-reflected data &t St we take the functiore(X) = 1
for all x in D and solve the problen#l] with a plane wave
(31) andw = {40,60,80,100}. We regularize the solution
of the inverse problem by starting computations with
regularization parametely = 0.01 in (7) and then
updating this parameter iteratively in ACGM by formula
(30). Computing the regularization parameter in this way
is optimal for our problem. We refer td {] for different
techniques for choice of a regularization parameter.

Figure 2 shows real part of the Fourier transform of
the time-dependent solutiar{x,t) of (4) when the initial
guess forc'wascy = 1.5 in all points ofG; (left figures),
and after application of the adaptive optimization
algorithm on three times refined mesh & (right
figures) for different values ab in (31). All right figures
in Figure 2 show significant reduction of backscattered
reflections for all tested frequencies compared with left
figures.

Figures 3, 4 present reconstructions af Which we

have obtained on three time adaptively refined mesh

inside the domail®; for different values ofv in (31). We
note that different initial guessesy in (7) produce
different symmetric structures insid8; with different

values of the functionc(X), compare reconstructions
presented on Figures Left images of Figuré present
reconstructions obtained in ACGM when the optimized
function ¢, obtained on a coarse mesh, is sequentially
interpolated on the one, two and three times refined mesh.
Then this interpolated function is taken as an initial guess
€ in (7) and optimized further to get reconstruction on
the third refined mesh. Right images of Figuseare
obtained after direct application of the adaptive algaonith
of Section 6. Optimized values ofc(x) obtained on
Figures3-5 can be of physical interest since they present
symmetric structured domains with almost the same
material in every structured layer.
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