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Abstract: In this article, a residual power series technique for therggoseries solution of systems of initial value problems is
introduced. The new approach provides the solution in then fof a rapidly convergent series with easily computable ponents
using symbolic computation software. The proposed teclnmptains Taylor expansion of the solution of a system aprbdeices
the exact solution when the solution is polynomial. Nuneriexamples are included to demonstrate the efficiency,racguand
applicability of the presented technique. The resultsaktiat the technique is very effective, straightforwamt] aimple.
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1 Introduction discretization. Different from the classical power series
L » ) method, the RPS technigue does not need to compare the
In real life situations quantities a_nd their rate of changes.gefficients of the corresponding terms and recursion
depend on more than one variable. For example, thge|ations are not required. This technique computes the
rabbit population, though it may be represented Dy acqefficient of the power series by a chain of linear
single number, depends on the size of predatofyqyations of n-variable, where n is number of equations in
populations and the availability of food. In order to e given system. The RPS technique is different from the
represent and study such complicated problems we neegl,itional higher order Taylor series method. The Taylor
to use more than one dependent variable and more thagrjes method is computationally expensive for large
one equation. Systems of differential equations are thg, qers. The RPS technigue is an alternative procedure for
tools to use. These kinds of equations can be found inhiaining analytic Taylor series solution of systems of
almost all branches of sciences, engineering, andyps By using residual error concept, we get a series
technology, such as electromagnetic, solid state physicggytion; in practice a truncated series solution. The RPS
plasma physics, elasticity, fluid dynamics, oscillation technique has the following characteristigsg,9,10,11,
theory, m.athematical biology, chemical Kkinetics, 12,1314,15; first, the technique obtains Taylor
biomechanics, and control theorg,?,3,4,5,6]. In the gy nansion of the solution; as a result, the exact solution is

present paper, we invested- the _residual concept in theyajlable when the solution is polynomial. Moreover the
power series method to obtain a simple technique (we call|tions and all its derivatives are applicable for each

it residual power series (RPSY,B,9,1011,12,13,14,  ,ihitrary point in the given interval. Second, it does not
19)) to find out the coefficients of the series solutions. raqyire any modification while switching from the first
This technique helps us to construct a power serieg, der to the higher order; as a result the technique can be
solution for. strongly Ilne_ar and nonlinear systems. T_heapplied directly to the given problem by choosing an
RPS technique is effective and easy to use for solvingynhropriate value for the initial guesses approximations.

linear and nonlinear systems of initial value problemsThirgd the RPS technique needs small computational
(IVPs)  without linearization, perturbation, or '
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requirements with high precision and less time. Theinitial conditions. We first formulate and analyze the RPS
purpose of this paper is to obtain symbolic approximatetechnique for solving such systems of IVPs. After that, a
power series solutions for system of IVPs which is asconvergence theorem is presented in order to capture the
follows: behavior of the solution. The RPS technique consists in
/ expressing the solutions of system of IVP@nd2 as a
x(t) = fa(t,xa(t),xa(t), -+ Xa(t)), power series expansion about the initial pdirt to. To
Xo(t) = fa(t,xq(t),Xa(t), -+, Xn(t)), achieve our goal, we suppose that these solutions take the

(1) form "
ZOXLm(t)a

’
Xn(t): fn(tvxl(t)v)(Z(t)a"' 7Xn(t))a . . .
Wherer’m are terms of apprOXImatlonS and are given as

subject to the initial conditions Xi m(t) = Gim(t —to)™
B B B ~ Obviously, wherm = 0, sincex; o(t) satisfy the initial
x1(to) = X1, %a(to) =Xz, -+ Xa(to) =Xn, @ conditions 2, where Xio(t) are the initial guesses
where t € [to,to +a], fi : [toto +a x R" — R are  approximations o;(t), we havecio = Xio(to) = i (to). If
nonlinear continuous functions, are unknown functions We choose Xio(t) = X(to) as initial guesses

of independent variableto be determined, anty,a are ~ @pproximations ok;(t), then we can calculate m(t) for
real finite constants wita > 0. Throughout this paper, we M= 1,2,---.n and approximate the solutions(t) of
assume thatf;,x are analytic functions on the given System of IVPsl and2 by thekth-truncated series
interval. Also, we assume thtsatisfies all the necessary ‘
requirements for the existence of a unique solution. Ki+) —  (+ _+\M

In general, systems of IVPs do not always have X(t) = éoc.,m(t )™ )
solutions which we can obtain using analytical methods.
In fact, many of real physical phenomena encountered, Priorto applying the RPS technique, we rewrite system
are almost impossible to solve by this technique. Due toof IVPs 1 and2 in the form of the following:
this, some authors have proposed numerical methods to

approximate the solutions of systems of IVPs. To mention X — fi(t,xa(t), Xa(t), -, Xn(t)) = O. (4)
a few, the homotopy analysis method has been applied to o _ .
solve systeml and 2 as described in1[]. In [17] the The subsisting ok th-truncated serle#(t) into Eq.4

authors have developed the homotopy perturbatiodead$ to the following definition for théth residual
method. In 8] also, the author has provided the functions:

differential ~ transformation technique to further K

investigation to the. above system. quthermore, the Resk(t) = Z MGi m(t —to)™ L

reproducing kernel Hilbert space method is carried out in N

[19]. Recently, a class of collocation methods for solving K K

systeml and 2 is proposed in Z0]. However, none of — fi(t, Z Crm(t —to)™, z Com(t—to)™,  (5)
previous studies propose a methodical way to solve m=0 m=o

systems of IVPsl and 2. Moreover, previous studies k

require more effort to achieve the results and usually they ceey Z Cam(t —to)™),

are suited for linear form of systefnand2. On the other m=0

hand, the applications of other versions of series solation
to linear and nonlinear problems can be found2a, P2,
23,24,25,26] and references therein. Also, for numerical N
solvability of different categories of differential eqicats Res™(t) = Mlo R%‘k(t)'
one can consult the referenc@3[28].

The outline of the paper is as follows: in the next _ Iteasy to see thaRes?(t) = 0 for eactt € [to,to +-a.
section, we present the basic idea of the RPS techniqudNis show that Res®(t) are infinitely many times
In section 3, numerical examples are given to illustratedifferentiable st =t On the other hand,
the capability of proposed approach. This article ends ingsReS” (to) = §sRes(to) = 0, for eachs = 1,2, k. In
section 4 with some concluding remarks. fact, this relation is a fundamental rule in RPS technique

and its applications. Now, in order to obtain the

1st-approximate solutions, we plt= 1 and substitute

2 Solution of Systems of I VPs by RPS t =1t into Eq. 5 and using the fact that
Technique Res?(to) = Resl(tp) = 0, to conclude

In this section, we employ our technique of the RPS to find 6.1 = fifto,CL0,C20,°++,Cno)
out series solution for systems of IVPs subject to given = fi(to,xa(to), X2(to), -+, Xn(to))-

and the followingeoth residual functions:
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Thus, using 1st-truncated series the first approximatiorMoreover, form= 1, substitute =ty into Eq.1, we obtain
for system of IVP<L 2 can be written as

X (to) = filto,xa(to) Xe(to). -+ Xn(t0)).  (9)
Xt (t) =% (to) + fito, Xa(to), X2(to), - , Xn(to)) (t — to). On the other hand, from Edsand8 , we can write
Similarly, o find the 2nd approximation, we pkit= 2 %i(t) = Xi(to) + G .1 (t —to) + Cip(t —to) 2+ -+ -,

andx?(t) = 32, ¢jm(t—to)™, j=1,2,---,n. Onthe other

handJ we differentiate both sides of Exjwith respect td by substituting Eq9into Eq.1 and then setting = to, we

and substituté =t , to get get
Ci1 = fi(to,xa(to), X2(to), -~ , Xn(to))
d e G, : (10)
&R (to) = 2Gi 2 — 3 fi(to,C1,0,C2,0,-** ,Cn0) =x(to).
n 0 Further, form = 2, differentiating both sides of Efjwith
= 2 Ci155fito,CL0,C20,+Cno)- respect td, we obtain
=1 i
" a
L (t fi(t t t t
_tln fact §Res?(to) = §Res”(to) = 0. Thus, we can % (1) = dt ( Xl( 0):%2(lo),+ Xn(to)) 1)
write
+ Z Xi( i(t,x1(to), Xz(to), -+, Xn(to)),
1.0
Ci2 = 5[=: fi(to, X (to), X2(to), -+ , Xn(t0))
270t by substituting = tp in Eq.11, we can conclude that
5 ¢ja-2 fi(to.xa(10) Xell). -+ ()] :
+ Cj1355Tillo, X » X 31X . !
2,1 Nlloralto)xello). -+ alo X (to) = Efi (to,xl(to>,xZ<to>,--- Xa(to))
Hence, using 2nd-truncated series the second + Z x to fi(to, X1(to), X2(to), - - - , Xn(t0)).
approximation for system of IVPEand2 can be written
as (12)
X2 (t) = xi(to) + fi (to. Xa (to), X2(t0). - , Xn(t0)) (t — to) According to Egs.9 and 10, we can write the
1 approximation for system of IVPsand2 as follows:
2[ ot filto,xa (o). x2(to), -+, Xn(to)) N , )
%i(t) :Xj(to)—FXLl(t—to)—|—Ci72(t—to) 4+ (13)
2
Z Cj15.2 filtloxa(to),X2(to), -+ Xn(to) ] (t— o). by substituting Eq13into Eq.11 and setting = to, we
obtain

This procedure can be repeated till the arbitrary order

0
2¢i 2 = — fi(to, X1(to), X2(to), - - , Xn(t 14
coefficients of RPS solutions for system of IVPsnd2 27 5t (to.(to). Xa(t0) -+, Xa(to)) (14)

are obtained. Moreover, higher accuracy can be achieved / 0

by evaluating more components of the solution. In other +2X (to)ﬁfi (to,xa(to), %2 (to), -~ Xn(to)). (15)
words, choose largkin the truncation serie3. The next =1 )

theorem shows convergence of the RPS technique. Finally, by comparing Eqgsl2 and 14, we can conclude

Theorem 2.1: Suppose thaki(t) are the exact solutions thatc» = 2)(1 (to) By continuing the above procedure, we
for system of IVPs1 and 2. Then, the approximate can easily prove Eq. for m=3,4,---,n So, the proof of
solutions obtained by the RPS technique are just thehe theorem is complete.

Taylor expansion o%;(t). . _ Corollary 2.1. If some ofx;(t) is a polynomial, then the
Proof. Assume that the approximate solutions for systemRPS technique will be obtained the exact solution.
of IVPs 1 and2 are as follows: It will be convenient to have a notation for the error

. ) in the approximation (t) =~ xX(t). Accordingly, we will

() =cio+Cia(t—to) +Ciz(t—f0)"+ . (6) g Rem¥(t) denote the difference betwesgiit) and itskth
In order to prove the theorem, it is enough to show that the Taylor polynom|al that is,
coefficientsi i in Eq. 6 take the form Rem (t) =x(t) — Xg((t)

< X'(to)
o y(m _ i t—to)™
Cim= m| x™ (o), ) 2 m (t—to)
for eachm=0,1,---, wherex;(t) are the exact solutions The functionsRemk(t) are called thekth remainder
for system of IVPsl and2. Clear that form = 0 the initial ~ for the Taylor series o (t). In fact, it often happens that
conditions2 give the remaindersRem¥(t) become smaller and smaller,
Ci.o = Xi(to). (8) approaching zero, dsgets large.
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3 Numerical Result and Discussion infectious diseases. The reader is asked to refe29@p,
31,32,33,34,35,36,37] in order to know more details
The proposed method provides an analytical approximatabout mathematical epidemiology, including its history
solution in terms of an infinite power series. However, and kinds, basics of SIR epidemic models, method of
there is a practical need to evaluate this solution, and tasolutions, and so forth.
obtain numerical values from the infinite power series.  Aswe mentioned earlier, if we select the initial guesses
The consequent series truncation and the practicahpproximations a§(t) = Ns,lo(t) = N, andRy(t) = Nr
procedure are conducted to accomplish this taskthen the Taylor series expansions of solutions for Bés.
transforms the otherwise analytical results into an exactand17 are as follows:
solution, which is evaluated to a finite degree of accuracy.
In this section, we consider five examples to demonstrate
the performance and efficiency of the present technique.

St) = Z Cl’mtm = Ns+cCp 1t + Cl"ztz-l- Cl"3t3 4+
. , ; 0
Throughout this paper, all the symbolic and numerical m

computations performed by using Maple 13 software o
package 1) =5 comt™=Ni+Coat +Coat? +Coat>+---,

To show the accuracy of the present method for our m=0
problems, we report four types of error. The first one is the ®
residual errorRes((t), and defined as R(t) = z Camt™ = Nr + Cg 1t + Caot? + a3t + - - .

m=0
Res‘ = d K(t) — fi(t,XE(), X5 (1), - - xk(t)‘ According tokth residual functions in Edb, we can
- dtxi AL A28 ) »An ) . g )
write
while the exactExt, relative,Rel, and consecutive;on, K
errors are defined, respectively, by Re%(t) = z mCLmtmfl
m=1

EXtik(t) = ‘Xi,e(ad (t) _Xi-k(t)‘ ) —[-B( i Cont™)( i Cort™),
Relk(t) = |Xi,®(act(t)—x1k(t)‘ m=0 =0
0= [Xi exact (1)]

k
: Resf(t) = 5 mepmt™ " (18)
m=1

where x}‘ are thekth-order approximation oK exact (t) k k

obtained by the RPS technique, amdaq(t) are the —[=B(Y camt™(H comt™) (19)
exact solution. In most real life situations, the diffefaht m=0 m=0

equation that models the problem is too complicated to k m

solve exactly, and there is a practical need to approximate -y z Camt™], (20)
the solution. In the next two examples, the exact solutions m=0

cannot be found analytically. ‘

Example 3.1. Consider the nonlinear SIR mode@d: Res‘,éz(t) _ z mea mt™ L — Vi % Comt™.
/ m=1 1 m=0 7
S(t)=—-BSHI(),

Conli(t) = {41 - ¥V

In order to find the 1st-approximate solutions, we put

I'(t) = BSHI(t) — Y1 (1), (16) k=1 through Eq.18 and using the fact thaRes¥(0) =
R(t)=yi(t), Res<(0) = Resk(0) = 0, to conclude
subject to the initial conditions 11— [~BNsNi| =0,
_ _ _ C21— [~BNsNi — yNi] =0,
S(O) - N57 l (0) - N| 9 R(O) - NR7 (17) 03’1 o [_le] _ O

where 8,y and Ns,N;,Nr are positive real number. The ) ) ]
SIR model is one common epidemiological model for the ~ Based on the above equations, we can write the first
spread of disease, which consists of a system of thre@PProximations of the RPS solution for E4§.and17as

differential equations that describe the changes in the

number of susceptible, infected, and recovered S'(t) = Ns— BNsNit,
individuals in a given population. This was introduced as I1(t) = Ny + (BNsN, — yN ) t,
far back as 1927 by Kermack and McKendridd], and 1

despite of its simplicity, it is a good model for many RY(t) = Nr+ yNit.
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By continuing with the similar fashion, the second These results are plotted in Figure 1 for the three

approximations of the RPS solution for Eds$ and 17
take the form

S2(t) = Ns— BNsNit 4 ¢ ot?, (21)
12(t) = Ny — (BNsNy — YN )t + ¢+ 2,22, (22)
R2(t) = Nr— yNit + Ca ot?. (23)

In order to find the values of the coefficieris,, c; 2,
andcs in Eq.21, we putk = 2 through Eql8 and using
the fact thatd Res3(0) = S Res?(0) = $Res3(0) =0, to
obtain the following results:

212 — [=B(Ns)(BNsN| — yN;) — B(—BNsNi ) (Ny)] = O,

222 — [B(Ns)(BNsNi — yNi ) + B(—BNsNi ) — y(—yN + BNsN;)] =0,

2c31— [y(—YNi — BNsN] = 0.

components S(t),l(t),R(t), and the summation
S(t) + I(t) + R(t), respectively. Figure 1.a illustrates the
case when we introduce a small number of infectives
I(0) = 1 into a susceptible population. An epidemic will
occur and the number of infectives increases; the
maximum infective population . = 24211811 will
occur whereS has decreased to the value. 85324. As
time goes ono you travel along the curve to the right,
eventually approachin® = 0 and the disease died out.
The epidemic will end aS approaching to 0 with andR
approaching some positive valué = 3.7283 and

R = 497.27160. Meanwhile, the number of immune
population increases, but the size of the population over
the period of the epidemic is constant and equal to 500 as
shown in Figure 1.b. We mention here that, the RPS

Based on the above equations, we can write the second

approximations of the RPS solution for EG&and17 as
follows:

Sz(t) = Ns— BNsNit

£ S(BINS) (YN, — BNGN; + 2NN

12(t) = Ny + (BNsN; — yNi )t
%(BNS(BNSNI —yNi) — BZNsNZ + y(yNi — BNsN)))t2,

Re(t) = Nr+ yYNit + %V(_VNI + BNsN) t2.

For numerical results, the following values, for

parameters, are considere@8[ Ns = 499, N, = 1,
Nr = 1, and3 = 0.001, y = 0.1. By continuing with the

500 =

S(t) R(D)

400 A
300 A
200 4
100 A

I(t)

E
0 o
0 10 20 30 40 50 60 70 80 90 100

similar fashion, the 10th-order approximations of the RPS(a)

solution for S(t),I(t), and R(t) lead to the following
results:

SHO(t) = 499— 0.49% — 0.099301% — 0.01309924¢°
—1.281084280210 %* — 9.784814869210 %>
—5.908988970210 %° — 2.687103487%10 '’
— 6.753653697410 %8 + 2.6455233662110 14°
+5.2226667367410 1110,

110(t) = 14 0.39% + 0.079351% — 1.045421566%10 43
+1.019728888%10 %* + 7.745357092810 *°
+4.618096121476L0 %° + 2.027375470%10 '’
+4.219434359%10 %8 — 3.1143494062101%4°
—4.915232427%10 %10,

RY(t) = 14 0.1t +0.01995° + 2.64503333333333333880 °t°
+2.61355391666666666870 *t* 4 2.03945777%10>t°

+1.29089284870555555%60 ©t° 4 6.597280173%10 8t”

12.534219337%10 28 — 4.688260399%10 11t°
—3.114349406210 12¢10,

502 -

5015 A
S(t) +I(t) + R(t)
501

5005 +

500 E

0 10 20 30 40 50 60 70 80 90 100
(b)

Fig. 1: Plots of 50th terms RPS approximations for SIR mddgl
and17: a) S(t), I (t), andR(t) versus time; bS(t) +1(t) + R(t)
versus time.

solution is the same as the Adomian decomposition
solution obtained in 34], the homotopy perturbation
solution obtained in 35|, variational iteration solution
obtained in 86], and the homotopy analysis solution
obtained in B7] whenh; = —1 andy; =1,i =1,2,3.
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Example3.2. Consider the nonlinear Genesio syst&9{

Table 1: The values of consecutive error functiGonk(t) when
k =10 for different values of.

X (t) = y(t), (24) t; Conl9(t) Cony®(t) ConZO(t)
, 0 0 0 0

y (U)=21), (25) 01 832667x 1017 222045x 10716 555112x 10-Y7
Z(t) = —cx(t) — by(t) — az(t) +A(t), (26) 0.1 832667x 10717 222045x10°%¢ 555112x 1077
0.2 157097x 10713 4.48031x 10713 8.64239x 10714
subject to the initial conditions 0.3 135878x 101! 3.87549x 1011 7.47563x 1012
0.4 321718x10°10 917597x 1010 1.77000x 1010
X(0) = Gx¥(0) = Gy, X(0) = Gz, (27) 05 2374529x10°° 1.06822x10°®  2.06056x 10~
0.6 278278x10°8 7.93699x 108 1.53101x10°8

where a,b, and ¢ are positive real numbers, satisfying

ab < c. The Genesio system, proposed by Genesio and 0.7
Tesi [39], is one of paradigms of chaos since it captures

many features of chaotic systems. It includes a simple 0.
square part and three simple ordinary differential 1

equations that depend on three positive real parameters.

The reader is kindly requested to go throu@9,f40,41,

42,43 44] in order to know more details about Genesio 10
system, including its history and kinds, method of ¥ (t)

solutions, its applications, and so forth.

151668x 10~/
658878x 10~/
240704x 106
7.67035x 106

4.32584x 10~/
1.87924x 1076
6.86530x 106
2.18772x 10°°

8.34435x 1078
3.62497x 107
1.32429x 1076
4.22002x 1076

According to RPS technique, the initial guesses

approximations of Eqs24 and 27 are xo(t) = Gy,
Yo(t) = Gy, andp(t) = G, Thus, the first few
approximations of the RPS solution for EQgd.and27 are

yl(t) = Gy"‘ Gzt,
Z(t) = (¢Gx — (Gx)? +aG; + bGy)t,

1

y2(t) = Gy + G#

1
-5 (cGx — (Gx)? +aG, + bGy)t?,

2(t) = G, — (¢Gx— (Gx)? + aG,+ bGy)t
1
— 5[a(cGx— (Gy)* +aG, + bGy)
+2GxGy + aG; — bG, — cG,Jt>.

= —0.3+0.1t—0.202%+ 3.121333333810 1t*
—6.032%10 %% — 1.37413333333333333880 %4°
— 4516808888210 % + 2.063113904810 %’
+5.046371555810 48 — 2.443905241810%4°
+8.437388929%510 %0,

Z20(t) = +0.1 - 0.404 + 0.9364% — 0.24128>

— 6.8706666667%* — 2.710085333810 %°
+1.444179733810 454 4.037097244410 %’
—2.199514717%10 %8+ 8.437388929%104°
—2.406493851%10 410,

While one cannot know the error without knowing the
solution, in most cases the consecutive error can be used
as a reliable indicator in the iteration progresses. Indabl
1, the value of consecutive error functio@onk(t),
Confi(t), andConk(t) for the two consecutive approximate
consecutive solutions has been calculated for variaos
[0, 1] with step size (L to measure the difference between
consecutive solutions obtained from the 10th-order RPS
solutions for Eqs24 and27. However, the computational
results below provide a numerical estimate for the

For numerical results, the following values, for convergence of the RPS technique. Also, it is clear that

parameters, are consideretbf Gy = 0.2, Gy = —0.3,  the accuracy obtained using present method is in
G;=0.1,anda=12b=292c=6. If we collect the  advanced by using only few terms approximations. In

above results, then the 10th-order apprOXimationS of th%ddmon, we can conclude that h|gher accuracy can be
RPS solution fox(t),y(t), andz(t) are as follows: achieved by evaluating more components of the solution.
On the other hand, based on this heuristic, we terminate
the iteration in our method.

From the Table 1, it can be seen that the RPS
technique provides us with the accurate approximate
solution for Eqs.24 and 27. Also, we can note that the
approximate solution more accurate at the beginning
values of the independent intervd0,1]. Numerical
comparisons are studied next. Figure 2, shows a

x¥0(t) = 0.2— 0.3t + 0.05t% — 6.733333333810 %>
7.803333333810 4* — 0.012064°
—2.290222222210 %% — 6.452584127810~ %’
+2.57889238095238095240 48
+5.607079506210 ° — 2.443905241810 t1°,
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comparison between the numerical solution of Genesio 1(t) = 0, then the first few terms approximations of the
system for 10th-order RPS approximation together withRPS solution for Eqs2#8] and [29] are

Runge-Kutta method (RKM) of order four and .
Predictor-Corrector method (PCM) of order four. _ _ L _
Throughout this figure, the step size for the RKM and X2(t) = 0xa3(t) = 0.x1.4(t) = 5! Xas(t) =0,

PCM is fixed at Q01. The starting values of the PCM

obtained from the classical fourth-order RKM. It is Xo.2(t) =%, x1,3(t) = 0,1 4(t) = 0, Xy 5(t) = 0.
demonstrated that the RPS solutions agree very well with

the solutions obtained by the RKM and PCExample If we collect the above results, then the 20th-truncated

series of the RPS solution fai(t) andx,(t) are as follows:

20 5 22
05 1 X (t) = zo(_l)JW’
04 - 1= '
0.3 .

j=4 ) t2)1+2j
02 - x30(t) = (—1)17( —.
01 - ? jZO (1+2j)!
¢ — £ Thus, the exact solutions of Eg&8 and 30 have the
02 04 06 08

0.1 4 general form which are coinciding with the exact solutions
0.2 - ’

03 - - j (1) 2

x1(t) = —1))>—~— = cog*,

oy 0=3 1"
(a) ( 2)1+2j

0.5 i (t .

t) =Y (-1)) < =sint%

04 { 2(t) jZO( ) (1+2j)!

03 1 ; z(t)

o5 ) Let us now carry out the error analysis of the RPS

technique for this example. Figure 3 shows the exact
0.1 1 solution Xg exact (t), Xoexaa(t) and the four iterates
0 t approximationsx(t),xs(t) for k = 5,10,15,20. These
0.1 A graphs exhibit the convergence of the approximate
02 4 solutions to the exact solutions with respect to the order
03 of the solutions.
i | In Figure 4, we plot the error functior&xt¥(t) and
' ExtX(t) for k = 5,10,15,20 which are approaching the
(b) 2 : ) .
axisy = 0 as the number of iterations increase. These
Fig. 2: Plots of RPS solution vs. RKM and PCM solutions for graphs show that the exact errors are getting smaller as
Genesio syste% and 27 versus time: a) solid line: 10th terms the order of the solutions is increasing, in other words, as
RPS approximations, dashed-dot-dotted line: RKM solytipn ~ we progress through more iterations. On the other hand,
solid line: 10th terms RPS approximations, dashed line: PCMFigure 5 shows the residual error functidﬁes’{(t) and
solution Res§(t) for k = 5,10,15,20 for the two consecutive
solutions. These error indicators confirm the convergence
of the method with respect to the order of the solutions.
Example3.4. Consider the nonlinear system of

02 04 06 08

3.3. Consider the nonlinear system of second-order IVP

[45) © second-order IVP4g]:
" 2% (t
) = —4al) - —m———,  (28) X,(t) = 1 — cogt + SinXy(t) + cosG(t),
x3(t) +x5(t) ) 1 : (31)
éay:_m&xw+——3ﬁﬁl_ﬂ (29) X2(t):4+x§(t)_5_sin2t’

V() +x3(1)
subject to the initial conditions
x1(0) = 1,%1(0) = 0,%2(0) = 0,%,(0) =0.  (30)

As we mentioned earlier, if we select the initial guesses  Assuming that the initial guesses approximations have
approximations agi o(t) = 1,x11(t) =0,x0(t) =0,and  the form Xio(t) = 0 and xpo(t) = mt. Then, the

subject to the initial conditions

x1(0) =0,%(0) = 0,%(0) =0,/ (0) =11.  (32)
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Table 2: The maximum error functions of (t) andx(t) whenk = 5,10, 15, 20.
Description k=5 k=10 k=15 k=20
maxExty(t) 1.36436x10° 2.07625x10° 4.77396x 10 1% 1.11022x 10 1®
maxExt3 (t) 0 0 0 0
maxRest(tj) 4.03023x 102 2.73497x 10/ 1.12955x 10 1!  7.99893x 10 12
maxRess(t)  8.01106x 10 ° 1.21799x 10 1° 2.82828x<10 12 7.07071x 10 1°
maxRel§(tj) 2.52518x 10> 3.84276x 10 ° 8.83572x10 % 2.05483x 10 1°
maxRel5(t;) 0 0 0 0
ExXt{(t) 451099x 10% 258193x10 ¥ 363598« 10 ® 2.11471x10 17
Ext(t) 0 0 0 0
Res(t)) 4.89750x 10°°  1.94374x 108 208501x 10 ¥ 1.46313x10 1°
Res§(t)  813844x10° 842147x10 12 3.05697x10 13 3.05595x 10 13
RelX(t) 215903« 10 % 2.39813x 10 1° 4.99000x 10 3.09419x 10 17
RelX(t) 0 0 0 0
' 184 ExtS(r) Exti®(t) Ext®(r)
05 SES5 1
SE-5 o
0 T t 7E-5 A
s ne 6E5 -
5E-5 o
-1 4 4E-5 4
i 3E5 A
' ZE5 4 Ext2°(t)
2 - 1E-5 A .
0E+0 o
(a) 0 02 04 06 08 1 12 14 16
L5 (a)
038 1 1E4 - Ext5(f) Exti®(t) ExtiS(0)
9E-5 +
0.6 o SES o
04 7E5 4
6E-5 +
0.2 + 5E-5 +
0+ T T T T T T T " t e
0 02 04 06 08 1 12 14 16 akh' i
2E-5 o Ext2°(t)
(b) 1E5 1
OE+0 : : r : : : : y b
Fig. 3: Plots of RPS solution for EqQ28 and 30 blue, brown, 0 02 04 06 08 1 12 14 16
green, and red solid lines, denote four iterates approiomsit (b)

whenk = 5,10, 15, 20, respectively, and black dashed-dot-dotted
line, denote exact solution: af(t) and Xy exact (t), b)x§(t) and
X2 exact (t)-

10th-truncated series of the RPS solutionsxgt) and
X(t) for Egqs.31and32are as follows:

Fig. 4. Plots of exact error functions for Eq&8 and 30 when
k=5,10,15,20: a)Ext¥(t), b) Ext&(t).

It easy to see that, the 10th-truncated series of the
RPS solutions fox; (t) andx,(t) above agree well with
the general form

8

1O coge)

xalt) )

-5 (-1

Xo(t) = mt.
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1E2 - Ress(t) Res®(t) ResiS(r) that .the gﬁiciency of our technique gives it much V\_/ider

9L.3 o applicability for general classes of linear and nonlinear

8E3 o problems.

7E-3 o

6E-3 o
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