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Abstract: In this article, a residual power series technique for the power series solution of systems of initial value problems is
introduced. The new approach provides the solution in the form of a rapidly convergent series with easily computable components
using symbolic computation software. The proposed technique obtains Taylor expansion of the solution of a system and reproduces
the exact solution when the solution is polynomial. Numerical examples are included to demonstrate the efficiency, accuracy, and
applicability of the presented technique. The results reveal that the technique is very effective, straightforward, and simple.
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1 Introduction

In real life situations quantities and their rate of changes
depend on more than one variable. For example, the
rabbit population, though it may be represented by a
single number, depends on the size of predator
populations and the availability of food. In order to
represent and study such complicated problems we need
to use more than one dependent variable and more than
one equation. Systems of differential equations are the
tools to use. These kinds of equations can be found in
almost all branches of sciences, engineering, and
technology, such as electromagnetic, solid state physics,
plasma physics, elasticity, fluid dynamics, oscillation
theory, mathematical biology, chemical kinetics,
biomechanics, and control theory [1,2,3,4,5,6]. In the
present paper, we invested the residual concept in the
power series method to obtain a simple technique (we call
it residual power series (RPS) [7,8,9,10,11,12,13,14,
15]) to find out the coefficients of the series solutions.
This technique helps us to construct a power series
solution for strongly linear and nonlinear systems. The
RPS technique is effective and easy to use for solving
linear and nonlinear systems of initial value problems
(IVPs) without linearization, perturbation, or

discretization. Different from the classical power series
method, the RPS technique does not need to compare the
coefficients of the corresponding terms and recursion
relations are not required. This technique computes the
coefficient of the power series by a chain of linear
equations of n-variable, where n is number of equations in
the given system. The RPS technique is different from the
traditional higher order Taylor series method. The Taylor
series method is computationally expensive for large
orders. The RPS technique is an alternative procedure for
obtaining analytic Taylor series solution of systems of
IVPs. By using residual error concept, we get a series
solution, in practice a truncated series solution. The RPS
technique has the following characteristics [7,8,9,10,11,
12,13,14,15]; first, the technique obtains Taylor
expansion of the solution; as a result, the exact solution is
available when the solution is polynomial. Moreover the
solutions and all its derivatives are applicable for each
arbitrary point in the given interval. Second, it does not
require any modification while switching from the first
order to the higher order; as a result the technique can be
applied directly to the given problem by choosing an
appropriate value for the initial guesses approximations.
Third, the RPS technique needs small computational
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requirements with high precision and less time. The
purpose of this paper is to obtain symbolic approximate
power series solutions for system of IVPs which is as
follows:

x
′

1(t) = f1(t,x1(t),x2(t), · · · ,xn(t)),

x
′

2(t) = f2(t,x1(t),x2(t), · · · ,xn(t)),

...

x
′

n(t) = fn(t,x1(t),x2(t), · · · ,xn(t)),

(1)

subject to the initial conditions

x1(t0) = x1,x2(t0) = x2, · · · ,xn(t0) = xn, (2)

where t ∈ [t0, t0 + a], fi : [t0, t0 + a] × R
n → R are

nonlinear continuous functions,xi are unknown functions
of independent variablet to be determined, andt0,a are
real finite constants witha > 0. Throughout this paper, we
assume thatfi,xi are analytic functions on the given
interval. Also, we assume thatfi satisfies all the necessary
requirements for the existence of a unique solution.

In general, systems of IVPs do not always have
solutions which we can obtain using analytical methods.
In fact, many of real physical phenomena encountered,
are almost impossible to solve by this technique. Due to
this, some authors have proposed numerical methods to
approximate the solutions of systems of IVPs. To mention
a few, the homotopy analysis method has been applied to
solve system1 and 2 as described in [16]. In [17] the
authors have developed the homotopy perturbation
method. In [18] also, the author has provided the
differential transformation technique to further
investigation to the above system. Furthermore, the
reproducing kernel Hilbert space method is carried out in
[19]. Recently, a class of collocation methods for solving
system1 and 2 is proposed in [20]. However, none of
previous studies propose a methodical way to solve
systems of IVPs1 and 2. Moreover, previous studies
require more effort to achieve the results and usually they
are suited for linear form of system1 and2. On the other
hand, the applications of other versions of series solutions
to linear and nonlinear problems can be found in [21,22,
23,24,25,26] and references therein. Also, for numerical
solvability of different categories of differential equations
one can consult the references [27,28].

The outline of the paper is as follows: in the next
section, we present the basic idea of the RPS technique.
In section 3, numerical examples are given to illustrate
the capability of proposed approach. This article ends in
section 4 with some concluding remarks.

2 Solution of Systems of IVPs by RPS
Technique

In this section, we employ our technique of the RPS to find
out series solution for systems of IVPs subject to given

initial conditions. We first formulate and analyze the RPS
technique for solving such systems of IVPs. After that, a
convergence theorem is presented in order to capture the
behavior of the solution. The RPS technique consists in
expressing the solutions of system of IVPs1 and2 as a
power series expansion about the initial pointt = t0. To
achieve our goal, we suppose that these solutions take the
form

∞

∑
m=0

xi,m(t),

wherexi,m are terms of approximations and are given as
xi,m(t) = ci,m(t − t0)m.

Obviously, whenm = 0, sincexi,0(t) satisfy the initial
conditions 2, where xi,0(t) are the initial guesses
approximations ofxi(t), we haveci,0 = xi,0(t0) = xi(t0). If
we choose xi,0(t) = xi(t0) as initial guesses
approximations ofxi(t), then we can calculatexi,m(t) for
m = 1,2, · · · ,n and approximate the solutionsxi(t) of
system of IVPs1 and2 by thekth-truncated series

xk
i (t) =

k

∑
m=0

ci,m(t − t0)
m
. (3)

Prior to applying the RPS technique, we rewrite system
of IVPs1 and2 in the form of the following:

x
′

i − fi(t,x1(t),x2(t), · · · ,xn(t)) = 0. (4)

The subsisting ofk th-truncated seriesxk
i (t) into Eq.4

leads to the following definition for thekth residual
functions:

Resk
i (t) =

k

∑
m=1

mci,m(t − t0)
m−1

− fi(t,
k

∑
m=0

c1,m(t − t0)
m
,

k

∑
m=0

c2,m(t − t0)
m
,

...,

k

∑
m=0

cn,m(t − t0)
m),

(5)

and the following∞th residual functions:

Res∞
i (t) = lim

k→∞
Resk

i (t).

It easy to see that,Res∞
i (t) = 0 for eacht ∈ [t0, t0+ a].

This show that Res∞
i (t) are infinitely many times

differentiable at t = t0. On the other hand,
ds

dts Res∞
i (t0) =

ds

dts Resk
i (t0) = 0, for eachs = 1,2, · · · ,k. In

fact, this relation is a fundamental rule in RPS technique
and its applications. Now, in order to obtain the
1st-approximate solutions, we putk = 1 and substitute
t = t0 into Eq. 5 and using the fact that
Res∞

i (t0) = Res1
i (t0) = 0, to conclude

ci,1 = fi(t0,c1,0,c2,0, · · · ,cn,0)

= fi(t0,x1(t0),x2(t0), · · · ,xn(t0)).
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Thus, using 1st-truncated series the first approximation
for system of IVPs1 2can be written as

x1
i (t) = xi(t0)+ fi(t0,x1(t0),x2(t0), · · · ,xn(t0))(t − t0).

Similarly, to find the 2nd approximation, we putk = 2
andx2

j(t) =∑2
m=0 c j,m(t−t0)m, j = 1,2, · · · ,n. On the other

hand, we differentiate both sides of Eq.5 with respect tot
and substitutet = t0 , to get

d
dt

Res2(t0) = 2ci,2−
∂
∂ t

fi(t0,c1,0,c2,0, · · · ,cn,0)

−
n

∑
j=1

c j,1
∂

∂x2
j

fi(t0,c1,0,c2,0, · · · ,cn,0).

In fact d
dt Res2

i (t0) =
d
dt Res∞

i (t0) = 0. Thus, we can
write

ci,2 =
1
2
[

∂
∂ t

fi(t0,x1(t0),x2(t0), · · · ,xn(t0))

+
n

∑
j=1

c j,1
∂

∂x2
j

fi(t0,x1(t0),x2(t0), · · · ,xn(t0))].

Hence, using 2nd-truncated series the second
approximation for system of IVPs1 and2 can be written
as

x2
i (t) = xi(t0)+ fi(t0,x1(t0),x2(t0), · · · ,xn(t0))(t − t0)

+
1
2
[

∂
∂ t

fi(t0,x1(t0),x2(t0), · · · ,xn(t0))

+
n

∑
j=1

c j,1
∂

∂x2
j

fi(t0,x1(t0),x2(t0), · · · ,xn(t0))](t − t0)
2
.

This procedure can be repeated till the arbitrary order
coefficients of RPS solutions for system of IVPs1 and2
are obtained. Moreover, higher accuracy can be achieved
by evaluating more components of the solution. In other
words, choose largek in the truncation series3. The next
theorem shows convergence of the RPS technique.
Theorem 2.1: Suppose thatxi(t) are the exact solutions
for system of IVPs1 and 2. Then, the approximate
solutions obtained by the RPS technique are just the
Taylor expansion ofxi(t).
Proof. Assume that the approximate solutions for system
of IVPs1 and2 are as follows:

x̃i(t) = ci.0+ ci,1(t − t0)+ ci,2(t − t0)
2+ · · · . (6)

In order to prove the theorem, it is enough to show that the
coefficientsci.m in Eq.6 take the form

ci,m =
1

m!
x(m)

i (t0), (7)

for eachm = 0,1, · · · , wherexi(t) are the exact solutions
for system of IVPs1 and2. Clear that form = 0 the initial
conditions2 give

ci,0 = xi(t0). (8)

Moreover, form = 1, substitutet = t0 into Eq.1, we obtain

x
′

i(t0) = fi(t0,x1(t0),x2(t0), · · · ,xn(t0)). (9)

On the other hand, from Eqs.6 and8 , we can write

x̃i(t) = xi(t0)+ ci,1(t − t0)+ ci,2(t − t0)
2+ · · · ,

by substituting Eq.9 into Eq.1 and then settingt = t0, we
get

ci,1 = fi(t0,x1(t0),x2(t0), · · · ,xn(t0))

= x
′

i(t0).
(10)

Further, form = 2, differentiating both sides of Eq.1 with
respect tot, we obtain

x
′′

i (t) =
∂
∂ t

fi(t,x1(t0),x2(t0), · · · ,xn(t0))

+
n

∑
j=1

x
′

j(t)
∂

∂x j
fi(t,x1(t0),x2(t0), · · · ,xn(t0)),

(11)

by substitutingt = t0 in Eq.11, we can conclude that

x
′′

i (t0) =
∂
∂ t

fi(t0,x1(t0),x2(t0), · · · ,xn(t0))

+
n

∑
j=1

x
′

j(t0)
∂

∂x j
fi(t0,x1(t0),x2(t0), · · · ,xn(t0)).

(12)

According to Eqs. 9 and 10, we can write the
approximation for system of IVPs1 and2 as follows:

x̃i(t) = xi(t0)+ x
′

i,1(t − t0)+ ci,2(t − t0)
2+ · · · , (13)

by substituting Eq.13 into Eq.11 and settingt = t0, we
obtain

2ci,2 =
∂
∂ t

fi(t0,x1(t0),x2(t0), · · · ,xn(t0)) (14)

+
n

∑
j=1

x
′

j(t0)
∂

∂x j
fi(t0,x1(t0),x2(t0), · · · ,xn(t0)). (15)

Finally, by comparing Eqs.12 and14, we can conclude
thatci,2 =

1
2x

′′

i (t0). By continuing the above procedure, we
can easily prove Eq.7 for m = 3,4, · · · ,n So, the proof of
the theorem is complete.
Corollary 2.1. If some ofxi(t) is a polynomial, then the
RPS technique will be obtained the exact solution.

It will be convenient to have a notation for the error
in the approximationxi(t) ≈ xk

i (t). Accordingly, we will
let Remk

i (t) denote the difference betweenxi(t) and itskth
Taylor polynomial; that is,

Remk
i (t) = xi(t)− xk

i (t)

=
∞

∑
m=k+1

xm
i (t0)
m!

(t − t0)
m
.

The functionsRemk
i (t) are called thekth remainder

for the Taylor series ofxi(t). In fact, it often happens that
the remaindersRemk

i (t) become smaller and smaller,
approaching zero, ask gets large.
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3 Numerical Result and Discussion

The proposed method provides an analytical approximate
solution in terms of an infinite power series. However,
there is a practical need to evaluate this solution, and to
obtain numerical values from the infinite power series.
The consequent series truncation and the practical
procedure are conducted to accomplish this task,
transforms the otherwise analytical results into an exact
solution, which is evaluated to a finite degree of accuracy.
In this section, we consider five examples to demonstrate
the performance and efficiency of the present technique.
Throughout this paper, all the symbolic and numerical
computations performed by using Maple 13 software
package

To show the accuracy of the present method for our
problems, we report four types of error. The first one is the
residual error,Resk

i (t), and defined as

Resk
i =

∣

∣

∣

∣

d
dt

xk
i (t)− fi(t,x

k
1(t),x

k
2(t), · · · ,x

k
n(t)

∣

∣

∣

∣

,

while the exact,Ext, relative,Rel, and consecutive,Con,
errors are defined, respectively, by

Extk
i (t) =

∣

∣

∣
xi,exact(t)− xk

i (t)
∣

∣

∣
,

Relk
i (t) =

∣

∣xi,exact (t)− xk
i (t)

∣

∣

|xi,exact(t)|
,

Conk
i (t) =

∣

∣

∣
xk+1

i (t)− xk
i (t)

∣

∣

∣
,

where xk
i are thekth-order approximation ofxi,exact (t)

obtained by the RPS technique, andxi,exact(t) are the
exact solution. In most real life situations, the differential
equation that models the problem is too complicated to
solve exactly, and there is a practical need to approximate
the solution. In the next two examples, the exact solutions
cannot be found analytically.
Example 3.1. Consider the nonlinear SIR model [29]:

S
′
(t) =−β S(t)I(t),

I
′
(t) = β S(t)I(t)− γI(t),

R
′
(t) = γI(t),

(16)

subject to the initial conditions

S(0) = Ns, I(0) = NI ,R(0) = NR, (17)

whereβ ,γ and NS,NI ,NR are positive real number. The
SIR model is one common epidemiological model for the
spread of disease, which consists of a system of three
differential equations that describe the changes in the
number of susceptible, infected, and recovered
individuals in a given population. This was introduced as
far back as 1927 by Kermack and McKendrick [30], and
despite of its simplicity, it is a good model for many

infectious diseases. The reader is asked to refer to [29,30,
31,32,33,34,35,36,37] in order to know more details
about mathematical epidemiology, including its history
and kinds, basics of SIR epidemic models, method of
solutions, and so forth.

As we mentioned earlier, if we select the initial guesses
approximations asS0(t) = NS, I0(t) = NI , andR0(t) = NR
then the Taylor series expansions of solutions for Eqs.16
and17are as follows:

S(t) =
∞

∑
m=0

c1,mtm = NS + c1,1t + c1,2t2+ c1,3t3+ · · · ,

I(t) =
∞

∑
m=0

c2,mtm = NI + c2,1t + c2,2t2+ c2,3t3+ · · · ,

R(t) =
∞

∑
m=0

c3,mtm = NR + c3,1t + c3,2t2+ c3,3t3+ · · · .

According tokth residual functions in Eq.5, we can
write

Resk
S(t) =

k

∑
m=1

mc1,mtm−1

− [−β (
k

∑
m=0

c1,mtm)(
k

∑
m=0

c2,mtm)],

Resk
I (t) =

k

∑
m=1

mc2,mtm−1 (18)

− [−β (
k

∑
m=0

c1,mtm)(
k

∑
m=0

c2,mtm) (19)

− γ
k

∑
m=0

c2,mtm], (20)

Resk
R(t) =

k

∑
m=1

mc3,mtm−1− γ[
k

∑
m=0

c2,mtm].

In order to find the 1st-approximate solutions, we put
k = 1 through Eq.18 and using the fact thatResk

S(0) =
Resk

I (0) = Resk
R(0) = 0, to conclude

c1,1− [−β NSNI ] = 0,

c2,1− [−β NSNI − γNI] = 0,

c3,1− [−γNI] = 0.

Based on the above equations, we can write the first
approximations of the RPS solution for Eqs.16and17as

S1(t) = NS −β NSNIt,

I1(t) = NI +(β NSNI − γNI) t,

R1(t) = NR + γNIt.
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By continuing with the similar fashion, the second
approximations of the RPS solution for Eqs.16 and 17
take the form

S2(t) = NS −β NSNIt + c1,2t2
, (21)

I2(t) = NI − (β NsNI − γNI)t + c+2,2t2
, (22)

R2(t) = NR − γNIt + c3,2t2
. (23)

In order to find the values of the coefficientsc1,2,c2,2,

andc3,2 in Eq.21, we putk = 2 through Eq.18 and using
the fact that d

dt Res2
S(0) =

d
dt Res2

I (0) =
d
dt Res2

R(0) = 0, to
obtain the following results:

2c1,2− [−β (NS)(βNSNI − γNI)−β (−βNSNI)(NI)] = 0,

2c2,2− [β (NS)(βNSNI − γNI)+β (−βNSNI)− γ(−γNI +βNSNI)] = 0,

2c3,1− [γ(−γNI −βNSNI ] = 0.

Based on the above equations, we can write the second
approximations of the RPS solution for Eqs.16 and17 as
follows:

S2(t) = NS −β NSNIt

+
1
2
(β (NS)(γNI −β NSNI +β 2NSN2

I )t
2
,

I2(t) = NI +(βNSNI − γNI)t

1
2
(βNS(βNSNI − γNI)−β 2NSN2

I + γ(γNI −βNSNI))t
2
,

R2(t) = NR + γNIt +
1
2

γ(−γNI +β NSNI)t
2
.

For numerical results, the following values, for
parameters, are considered [38]: NS = 499, NI = 1,
NR = 1, andβ = 0.001,γ = 0.1. By continuing with the
similar fashion, the 10th-order approximations of the RPS
solution for S(t), I(t), and R(t) lead to the following
results:

S10(t) = 499−0.499t−0.099301t2−0.013099249t3

−1.2810842802x10−3t4−9.7848148692x10−5t5

−5.9089889702x10−6t6−2.6871034875x10−7t7

−6.7536536974x10−9t8+2.6455233662x110−10t9

+5.22266673677x10−11t10
,

I10(t) = 1+0.399t+0.079351t2−1.0454215667x10−2t3

+1.0197288885x10−3t4+7.7453570922x10−5t5

+4.618096121476x10−6t6+2.0273754701x10−7t7

+4.2194343597x10−9t8−3.1143494062x10−10t9

−4.9152324271x10−11t10
,

R10(t) = 1+0.1t +0.01995t2 +2.6450333333333333333x10−3t3

+2.6135539166666666667x10−4t4+2.039457777x10−5t5

+1.2908928487055555556x10−6t6+6.5972801735x10−8t7

+2.5342193377x10−9t8−4.6882603997x10−11t9

−3.1143494062x10−12t10
.

These results are plotted in Figure 1 for the three
components S(t), I(t),R(t), and the summation
S(t) + I(t) + R(t), respectively. Figure 1.a illustrates the
case when we introduce a small number of infectives
I(0) = 1 into a susceptible population. An epidemic will
occur and the number of infectives increases; the
maximum infective populationImax = 242.11811 will
occur whereS has decreased to the value 85.33824. As
time goes on∞ you travel along the curve to the right,
eventually approachingS = 0 and the disease died out.
The epidemic will end asS approaching to 0 withI andR
approaching some positive valueI = 3.7283 and
R = 497.27160. Meanwhile, the number of immune
population increases, but the size of the population over
the period of the epidemic is constant and equal to 500 as
shown in Figure 1.b. We mention here that, the RPS

(a)

(b)

Fig. 1: Plots of 50th terms RPS approximations for SIR model16
and17: a) S(t), I(t), andR(t) versus time; b)S(t)+ I(t)+R(t)
versus time.

solution is the same as the Adomian decomposition
solution obtained in [34], the homotopy perturbation
solution obtained in [35], variational iteration solution
obtained in [36], and the homotopy analysis solution
obtained in [37] whenh̄i =−1 andµi = 1, i = 1,2,3.
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Example 3.2. Consider the nonlinear Genesio system [39]:

x
′
(t) = y(t), (24)

y
′
(t) = z(t), (25)

z
′
(t) =−cx(t)− by(t)− az(t)+ x2(t), (26)

subject to the initial conditions

x(0) = Gx,y(0) = Gy,x(0) = Gz, (27)

where a,b, and c are positive real numbers, satisfying
ab < c. The Genesio system, proposed by Genesio and
Tesi [39], is one of paradigms of chaos since it captures
many features of chaotic systems. It includes a simple
square part and three simple ordinary differential
equations that depend on three positive real parameters.
The reader is kindly requested to go through [39,40,41,
42,43,44] in order to know more details about Genesio
system, including its history and kinds, method of
solutions, its applications, and so forth.

According to RPS technique, the initial guesses
approximations of Eqs.24 and 27 are x0(t) = Gx,
y0(t) = Gy, andz0(t) = Gz. Thus, the first few
approximations of the RPS solution for Eqs.24and27are

x1(t) = Gx +Gyt,

y1(t) = Gy +Gzt,

z1(t) = (cGx − (Gx)
2+ aGz + bGy)t,

x2(t) = Gx +Gyt +
1
2

Gzt
2
,

y2(t) = Gy +Gzt

−
1
2
(cGx − (Gx)

2+ aGz+ bGy)t
2
,

z2(t) = Gz − (cGx − (Gx)
2+ aGz+ bGy)t

−
1
2
[a(cGx − (Gx)

2+ aGz+ bGy)

+2GxGy+ aGz− bGz− cGz]t
3
.

For numerical results, the following values, for
parameters, are considered [16]: Gx = 0.2, Gy = −0.3,
Gz = 0.1, anda = 1.2,b = 2.92,c = 6. If we collect the
above results, then the 10th-order approximations of the
RPS solution forx(t),y(t), andz(t) are as follows:

x10(t) = 0.2−0.3t+0.05t2−6.7333333333x10−2t3

7.8033333333x10−4t4−0.012064t5

−2.2902222222x10−3t6−6.4525841270x10−4t7

+2.5788923809523809524x10−4t8

+5.6070795062x10−5t9−2.4439052416x10−5t10
,

Table 1: The values of consecutive error functionConk(t) when
k = 10 for different values oft.

ti Con10
x (t) Con10

y (t) Con10
z (t)

0 0 0 0
0.1 8.32667×10−17 2.22045×10−16 5.55112×10−17

0.1 8.32667×10−17 2.22045×10−16 5.55112×10−17

0.2 1.57097×10−13 4.48031×10−13 8.64239×10−14

0.3 1.35878×10−11 3.87549×10−11 7.47563×10−12

0.4 3.21718×10−10 9.17597×10−10 1.77000×10−10

0.5 3.74529×10−9 1.06822×10−8 2.06056×10−9

0.6 2.78278×10−8 7.93699×10−8 1.53101×10−8

0.7 1.51668×10−7 4.32584×10−7 8.34435×10−8

0.8 6.58878×10−7 1.87924×10−6 3.62497×10−7

0. 2.40704×10−6 6.86530×10−6 1.32429×10−6

1 7.67035×10−6 2.18772×10−5 4.22002×10−6

y10(t) =−0.3+0.1t−0.202t2+3.1213333333x10−1t3

−6.032x10−2t4−1.3741333333333333333x10−2t5

−4.5168088889x10−3t6+2.0631139048x10−3t7

+5.0463715556x10−4t8−2.4439052416x10−4t9

+8.4373889295x10−5t10
,

z10(t) = +0.1−0.404t+0.9364t2−0.24128t3

−6.8706666667−2t4−2.7100853333x10−2t5

+1.4441797333x10−2t6+4.0370972444x10−3t7

−2.1995147175x10−3t8+8.4373889295x10−4t9

−2.4064938515x10−4t10
.

While one cannot know the error without knowing the
solution, in most cases the consecutive error can be used
as a reliable indicator in the iteration progresses. In Table
1, the value of consecutive error functionsConk

x(t),
Conk

y(t), andConk
z(t) for the two consecutive approximate

consecutive solutions has been calculated for varioust in
[0,1] with step size 0.1 to measure the difference between
consecutive solutions obtained from the 10th-order RPS
solutions for Eqs.24 and27. However, the computational
results below provide a numerical estimate for the
convergence of the RPS technique. Also, it is clear that
the accuracy obtained using present method is in
advanced by using only few terms approximations. In
addition, we can conclude that higher accuracy can be
achieved by evaluating more components of the solution.
On the other hand, based on this heuristic, we terminate
the iteration in our method.

From the Table 1, it can be seen that the RPS
technique provides us with the accurate approximate
solution for Eqs.24 and 27. Also, we can note that the
approximate solution more accurate at the beginning
values of the independent interval[0,1]. Numerical
comparisons are studied next. Figure 2, shows a
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comparison between the numerical solution of Genesio
system for 10th-order RPS approximation together with
Runge-Kutta method (RKM) of order four and
Predictor-Corrector method (PCM) of order four.
Throughout this figure, the step size for the RKM and
PCM is fixed at 0.01. The starting values of the PCM
obtained from the classical fourth-order RKM. It is
demonstrated that the RPS solutions agree very well with
the solutions obtained by the RKM and PCM.Example

(a)

(b)

Fig. 2: Plots of RPS solution vs. RKM and PCM solutions for
Genesio system24 and27 versus time: a) solid line: 10th terms
RPS approximations, dashed-dot-dotted line: RKM solution; b)
solid line: 10th terms RPS approximations, dashed line: PCM
solution

3.3. Consider the nonlinear system of second-order IVP
[45]:

x
′′

1(t) =−4t2x1(t)−
2x2(t)

√

x2
1(t)+ x2

2(t)
, (28)

x
′′

2(t) =−4t2x2(t)+
2x1(t)

√

x2
1(t)+ x2

2(t)
, (29)

subject to the initial conditions

x1(0) = 1,x
′

1(0) = 0,x2(0) = 0,x
′

2(0) = 0. (30)

As we mentioned earlier, if we select the initial guesses
approximations asx1,0(t) = 1,x1,1(t) = 0,x2,0(t) = 0, and

x2,1(t) = 0, then the first few terms approximations of the
RPS solution for Eqs. [28] and [29] are

x1,2(t) = 0,x1,3(t) = 0,x1,4(t) =−
1
2

t4
,x1,5(t) = 0,

x2,2(t) = t2
,x1,3(t) = 0,x1,4(t) = 0,x1,5(t) = 0.

If we collect the above results, then the 20th-truncated
series of the RPS solution forx1(t) andx2(t) are as follows:

x20
1 (t) =

5

∑
j=0

(−1) j t22 j

(2 j)!
,

x20
2 (t) =

j=4

∑
j=0

(−1) j (t
2)1+2 j

(1+2 j)!
.

Thus, the exact solutions of Eqs.28 and30 have the
general form which are coinciding with the exact solutions

x1(t) =
∞

∑
j=0

(−1) j (t
2)2 j

(2 j)!
= cost2

,

x2(t) =
∞

∑
j=0

(−1) j (t
2)1+2 j

(1+2 j)!
= sint2

.

Let us now carry out the error analysis of the RPS
technique for this example. Figure 3 shows the exact
solution x1,exact(t), x2,exact(t) and the four iterates
approximationsxk

1(t),x
k
2(t) for k = 5,10,15,20. These

graphs exhibit the convergence of the approximate
solutions to the exact solutions with respect to the order
of the solutions.

In Figure 4, we plot the error functionsExtk
1(t) and

Extk
2(t) for k = 5,10,15,20 which are approaching the

axis y = 0 as the number of iterations increase. These
graphs show that the exact errors are getting smaller as
the order of the solutions is increasing, in other words, as
we progress through more iterations. On the other hand,
Figure 5 shows the residual error functionsResk

1(t) and
Resk

2(t) for k = 5,10,15,20 for the two consecutive
solutions. These error indicators confirm the convergence
of the method with respect to the order of the solutions.
Example3.4. Consider the nonlinear system of
second-order IVP [46]:

x
′′

1(t) = 1− cost + sinx
′

2(t)+ cosx
′

2(t),

x
′′

2(t) =
1

4+ x2
1(t)

−
5

5− sin2 t
,

(31)

subject to the initial conditions

x1(0) = 0,x
′

1(0) = 0,x2(0) = 0,x2
′(0) = π . (32)

Assuming that the initial guesses approximations have
the form x1,0(t) = 0 and x2,0(t) = πt. Then, the
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Table 2: The maximum error functions ofx1(t) andx2(t) whenk = 5,10,15,20.
Description k = 5 k = 10 k = 15 k = 20
maxExtk

1(ti) 1.36436×10−3 2.07625×10−9 4.77396×10−14 1.11022×10−16

maxExtk
2(ti) 0 0 0 0

maxResk
1(ti) 4.03023×10−2 2.73497×10−7 1.12955×10−11 7.99893×10−12

maxResk
2(ti) 8.01106×10−5 1.21799×10−10 2.82828×10−12 7.07071×10−13

maxRelk
1(ti) 2.52518×10−3 3.84276×10−9 8.83572×10−14 2.05483×10−16

maxRelk
2(ti) 0 0 0 0

Extk
1(tl) 4.51099×10−4 2.58193×10−10 3.63598×10−15 2.11471×10−17

Extk
1(tl) 0 0 0 0

Resk
1(tl) 4.89750×10−3 1.94374×10−8 2.08501×10−12 1.46313×10−12

Resk
2(tl) 8.13844×10−6 8.42147×10−12 3.05697×10−13 3.05595×10−13

Relk
1(tl) 2.15903×10−4 2.39813×10−10 4.99000×10−15 3.09419×10−17

Relk
2(tl) 0 0 0 0

(a)

(b)

Fig. 3: Plots of RPS solution for Eqs.28 and 30 blue, brown,
green, and red solid lines, denote four iterates approximations
whenk = 5,10,15,20, respectively, and black dashed-dot-dotted
line, denote exact solution: a)xk

1(t) and x1,exact(t),b)xk
2(t) and

x2,exact(t).

10th-truncated series of the RPS solutions ofx1(t) and
x2(t) for Eqs.31and32are as follows:

x10
1 (t) =

5

∑
j=0

(−1) j (t)
2 j

(2 j)!
,

x10
1 (t) = πt.

(a)

(b)

Fig. 4: Plots of exact error functions for Eqs.28 and30 when
k = 5,10,15,20: a)Extk

1(t), b) Extk
2(t).

It easy to see that, the 10th-truncated series of the
RPS solutions forx1(t) andx2(t) above agree well with
the general form

x1(t) =
∞

∑
j=0

(−1) j (t)
2 j

(2 j)!
= cos(t),

x2(t) = πt.
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(a)

(b)

Fig. 5: Plots of residual error functions for Eqs.28 and30 when
k = 5,10,15,20: a)Resk

1(t), b) Resk
2(t).

So, the exact solutions of Eqs.31 and 32 will be
x1(t) = cost andx2(t) = πt. Our next goal is to show how
the value ofk in the truncation series (3) affects the RPS
approximate solutions. To determine this effect an error
analysis is performed. We calculate the approximations
xk

1(t) and xk
2(t) for variousk and obtain the exact error

functions. The maximum and average errors when
k = 5,10,20 for Eqs.31 and32 have been listed in Table
2 for ti = 1

10i, i = 0,1,2, · · · ,10.

4 Conclusion

The main concern of this work has been to propose an
efficient algorithm for the solutions of system of IVPs.
The main goal has been achieved by introducing the RPS
technique to solve this class of differential equations. We
can conclude that the RPS technique is powerful and
efficient technique in finding approximate solution for
linear and nonlinear IVPs. The proposed algorithm
produced a rapidly convergent series with easily
computable components using symbolic computation
software. There is an important point to make here, the
results obtained by the RPS technique are very effective
and convenient in linear and nonlinear cases with less
computational work and time. This confirms our belief

that the efficiency of our technique gives it much wider
applicability for general classes of linear and nonlinear
problems.
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