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Abstract: In this work, the capture effort exerted on the adult popoirai{or exploitable population) of a two-stage species with
recruitment is considered as a control parameter to irgestithe optimal exploitation of the resource, sustaiftgitptoperties of the
population and rent earned from the resource. Pontryagiajdmum principle is used to characterize the optimal @niihe optimal
control is derived and then solved numerically using araitee method with Euler scheme. Simulation results showtti@optimal
control scheme allows us to get the sustainability of thesgstem and to validate the model.
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1 Introduction managers in controlling the appropriate level of stocks
and catches?3].

L . . In this sense, nowadays, there is great interest about
The capture and its impact on species conservation haﬁarvesting policies andy bioecononglic modeling of

been a matter of interest not only to biologists and ifferent biological populations. Populations modelshwit
ecologists, but also to mathematicians and those devoteg ) X : : > ;

to theg modeling and simulation of dynamical systems. ptimal harvesting policy have been studied for single
Mathematical models based on ordinary differential populations 0J, populations with stage-structured
equations of population dynamics with harvesting or31c')§2]|’s \?v:ter?/ 'tri’lfgaéga Sﬁterﬂzv%g\,%rzs}ﬁgf{l]c;f t?]r:adse
capture have been studied for decades and remains beiﬁrﬁodels remain theoreti{:al énd only a’few of them have
an issue in full swing2,18,19,17,10,9,15,26,29,30,31]. been applied to real case studies (for example, the models

Currently, there is great interest about harvesting,.oyosed by Fresard and Ropars-Collel[or Ladino
policies and bioeconomic modeling of different biological gndealverd)e/:lg 18). P =l

populations §,8,9,10,16,23,31,26]. Biological resources ) : .
are renewable resources. Among all the renewable Following the ideas in1g], where the authors study a

resources, an important one is fishery. Different species ofV0-Stage population with a linear recruitment function,
fishes are decreased due to exploitation on Jut where both stages are harvested, the main purpose of

nonsustainable basis, high growth rate of world this paper is o analyze the optimal coptrol problem in a
population and lack of knowledge of the characteristics of M0d€l, previously proposed by us irl, for the
exploited species23. To ensure the conservation of Population dynamics of a two-stage species with
resources in the future and provide a sustainable flow of €cTuitment given by the nonlinear Beverton-Holt
benefits to human society, it is a compelling need tofunction, but 'where only the post-recruit individuals are
control the actions associated to capture. The adequaf@rvested, since they constitute the part of the total
management of the resources will provide protection fromPOPulation that is commonly admitted as visible to
overexploitation.  Therefore,  further  scientific 11SNing.

investigation is required in the field of biology and the More concretely, in such a model, it is considered a
bioeconomy. Bioeconomic models assist natural resourcenigratory population with a two-stage structure:
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pre-recruit (eggs, larvae and juvenile ones) and a(t)

post-recruit or exploitable (adults). It shows how the (t) B+z(t) (t)
dynamics is determined by a basic threshold parameteéy(t) — ¥ — Y

Z. As the most important result for this model, it is

proved that whewZ < 1, then the extinction equilibrium l l l
point is globally asymptotically stable, assuring that the () w(t)  gEy()

species would disappear under this condition. Now, in this

paper, we achieve to maximize the net economic revenue

earned from the capture. The capture effort exerted on th&19- 1: Diagram of the dynamics of a two-stage population
adult population (or exploitable population) is considere With recruitment.

as a control parameter to investigate the optimal
exploitation of the resource, sustainability propertiés o

the population and rent earned from the resource.
Pontryagin’s maximum principle is used to characterize
the optimal control. The optimal control is derived and

then solved numerically using an iterative method with
Euler scheme. Simulation results show that the optimal
control scheme allows us to get the sustainability of the
ecosystem and to validate the model.

The numerical simulations, performed by means of
our own software J], have been executed by using
statistical data of some fish stocksmochilodus which
are abundant in the most important river basins of South
America and are the most famous long-distance migrants.
The fish population migrates, searching temporary
shelters, feeding habitats and spawning grou8tis [

The Prochilodus mariag a specific species of
Prochilodus has a dual role in aquatic ecosystems of the
Orinoco basin because: on one hand, due to its detritivore
characteristics, it is within the first link in the food chain
on the other hand, it is captured to be commercialized,
becoming a source of products of consumption for coastal
populations (indigenous and settler), and being the most
important protein base of these communiti2d][ Thus,
the exploitation of Prochilodus should be controlled
optimally, because any decline of this species could have
an important impact{g].

The organization of this paper is as follows. In
Section 2, we review the mathematical model of
population dynamics of a two-stage species with
recruitment stated in1g]. In Section 3, we obtain an
optimal harvesting policy for the model. In Section 4, we
provide specific examples and, by means of numerical
simulations, we corroborate our analytical results. Fynal

The stock is represented in the model by the size of
the population or population density.

—The total population is divided into two
subpopulations:pre-recruit population #&) (eggs,
larvae and juvenile ones) arekploitable population
y(t) (adults).

—The reproduction rate of the adults (exploitable)
population isd.

—The natural death rate of both the pre-recruit
population and exploitable populationis

—The recruitment ratey is proportional to thetotal
number of recruits Ri.e., y = cR, wherec = 1 for
simplicity of the model.

—The total number of recruits depends only on the size
of the pre-recruit population. The form of the stock-
recruitment relationship of Beverton-HoH][is taken
in order to establish the number of recruisn terms
of pre-recruit population so:

B a-x(t)
R= B

—Themaximum recruitmeris a [13].

—The parametef is the stock needed to produce (on
average) a recruitment equaldag2 [13].

—The parameterg is called catchability coefficient
which is a measure of the ability to catch individuals.
The more efficient the art of capture is, the higher
value ofqis [27].

—The parameteE is the capture effort(in the fishing,
for example, is number of boats per day, boat days,

in Section 5, we present some interesting conclusions and  etc.) [14,27].

future research directions which arise with this work.

2 Mathematical Model

We will base our study on a populations dynamics model
developed by us in1g] that we review bellow. The

—The parameteF is the capture death ratewhich is
proportional to capture efforE) and is given by the
relationshipF = g- E [14,27].

—An homogeneous distribution of both the pre-recruit
population and the exploitable population is assumed.
That is, every pre-recruit individual has the same
probability of being recruited, and every adult

assumptions made are coherent with the ideas, concepts ndividual has the same probability of being caught.

and parameters of mathematical modeling of biological
populations made by other autho67,21,11,4] and, in
this sense, some of them have the same meaning.

—The stockis defined as a subset of a given species, in
which population parameters remain consta®i].[

Given the above assumptions, the Figlirghows the

dynamics of the population modeled.

Moreover, the system representing the dynamics of a

two-stage species with recruitment and capture can be
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stated by Thesustainable economic refyprofit) at a given level
of fishing effort E is the difference between the total
(1) = By(t) — ax(t) X(t) revenue of the fishery and the total fishing costs.
=y B+x(t) H (1) Therefore sustainable economic rent can be expressed as
: ax(t)
y(t) = BrxO) — (H+gE)y(t) m(E) = TR(E) — TC(E). (5)

Thus, the optimal control problem for the modé&),(
allowing us to maximize the total discounted resource rent
earned from the fishery, can be formulated by

The parameters in this model are considered
non-negative. The regio® = {(x,y)/x>0,y >0} is a
positive invariant set for the systeri)( Therefore, it is
considered the phase space of this system. t

IE) = [ e*[(p-vaEyaEy-cEldt.  (6)
0
3 The optimal control problem wherew is theinstantaneous annual discount rate
We consider that the present valuation of capital flow
Nowadays bio-economic models are used as a tool t@Ver time depends on the discount raie, The discount
better understand the impact of policies on naturalrate would therefore determine the stock level, maximizing
resources and human welfar6].[ In the context of the present value of the flow of the resource rent over time.

commercial exploitation of renewable resources, the most NiS is known as theptimal economic yield biomass
important economic problem is to find the optimal 10 Solve the problem of maximizing(E) in (6),
trade-off between present and future harved@.[For ~ Subject to equations of systent)(and the control
this reason, it is necessary to take into account the studigi@striction 0< E < Emax (because a fishery always has a
on the development, conservation and exploitation offMaximum harvesting capabilit], implying a maximum
resourcesq). fishing effort), it is possible to apply the Pontryagin’'s
Usually, it is assumed that capture per unit effort is Maximum principle (],[16],[25]). The convexity of the
proportional to the population size. Sév = ay implies object|vg funct|or_1 W|th respect tg, the linearity of the
H = gEy, whereH and E are the capture and effort differential equations in the control and the compactness
respectively, applied to the harvested population in theOf the range values of the state variables allows us to give

exploited area, and is the constant called catchability the existence of the optimal control. _ _

coefficient, as said before. SupposeE,, is an optimal control with respective
In fisheries management, it is generally considered thaf@t€%w andye. We supposé, = (X, Yw) as optimal

thetotal cost (TC)s proportional to fishing effortd]. Thus equilibrium point. Now, it is intended to derive optimal

in this model the total cost of fishing effort is defined by ~ CONtrolEq such that

TC(E) = cE, ) J(Ew) =maxJ(E) [E€ U},

. . _— . whereU is the control set given b
wherec is theunit cost of fishingpr themarginal cost of 9 y

effort, and itis constant. U = {E: [to,t{] = [0,Emad | E is Lebesgue measurable
On the other hand, it is usually assumed thatttial
revenue (TRis proportional to captured], that is Thus, theHamiltonianof this optimal control problem
is
TREE) = pH(E), 3)

L = (p—VvqEy)qEy—CE+ A1 [5y— Bix — HX|+
where p represents theprice per unit biomassof ax
population captured. Actually, it is evident that the price +A2 | g — (M +qE)y}
is a function which decreases with increasing biomass.

Therefore, following the usual economic hypotheses, wewhere A1 and A; are adjoint variables. Here, the
assume that transversality conditions giv& (tf) =0,i =1,2.

Now, it is possible to find the characterization of the
TR(E) = (p— VQEY)QEY; (4) optimal controlE,, as follows. On the seft | 0 < Eq(t) <
Emax}, we have
where(p — vgEy) is the price per unit biomassnd the L
constantv represents the variability of the quantity Z= — pay— 2VePEY2 — c— Ay,
demanded with respect to the variability of the price. This JoE
expression can be used to consider monopolistic or - .
oligopolistic concurrency, which is a more general case Thus, aify = (X, Yo), E = Ew(t), we have
and includes the one in which the price per unit biomass L ) )
is constant, what means perfect concurrence Q) [28]. JE PAYew — 2VQ EwYw” — € — A20yw = 0.
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This implies that
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On the other hand, the adjoint equations at the point
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Equations §) and @) constitute a first order system of
simultaneous differential equations and it is easy to get 1

the analytical solution of the equations with the help of
initial conditionsAi(t;) = 0,i = 1,2. In this regard, it has
to be noticed that we have formulated the optimal control
problem through considering fishing effort as control
parameter. Hence, the optimal control problem will be
numerically solved using the forward-backward sweep /
technique of Euler method to pursue numerical S
simulations in the next section. L S
The following Theorem summarize the above analysis. o 5 1 1 2 B N B 4

Time

Theorem 3.1.There exist corresponding solutions to the

: (b)
system 1), X, andy,,, and an optimal controk,, that
maximizesJ(E) overU. Furthermore, there exist adjoint s
functionsA; and A, satisfying equationsg) and @) with
transversality conditiong;(tf) = 0, i = 1,2. In such a
context, the optimal control for the problem is given by

Exploitable population y(t)
>

_ PO —C—A0Yw

Fo 2vQ2ye?

Fishing effort E(t)

4 Numerical simulation 0

Below, different scenarios are simulated in order to show ©
different dynamics of the system according to some
relevant parameters. From a biological and fisheries poin
of view, this is important since it is possible to design
strategies for the control and sustainability of this
population.

Due to the importance in the fishing trade of the
speciesProchilodus mariagactual statistics about some
population parameters of this species were used for
performing the numerical simulations by means of our
software [l]. These parameters were obtained from serious research publications about them. Although using
research results on the state of fishing Rmochilodus real data of model parameters would be of great interest,
mariae in the Orinoco river of Colombia for the time numerical analysis presented has the advantage of being
period from 2005 to 2008. Thus, we have that the totalable to simulate and analyze different scenarios of the
death rate of the speci&sis 1.38 and the fishing death  feasible parametric biological space. In this sense, the
is 0.75 R4]. However, the other parameters were simulations of this work should be considered from a
estimated theoretically because of the difficulty of gettin qualitative rather than a quantitative approach.

f:ig. 2: Variation of optimal pre-recruit and exploitable
population and capture effort with (increasing) time. The
solid line corresponds td = 5, the blue dashed line to
0 = 14,6 and the dotted line td = 50.
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Fig. 3: Variation of optimal pre-recruit and exploitable Fig. 4: Variation of optimal pre-recruit and exploitable
population and capture effort with the increasing time. Thepopulation and capture effort with the increasing time. The
solid line corresponds ta = 5, the blue dashed line to solid line corresponds tg = 0.1, the blue dashed line to
o = 20 and the dotted line ta = 50. ¢ = 0.63 and the dotted line tg = 1.2.

The numerical simulation of optimal control with proportional to the reproduction rate of exploitable
different sets of parameters is possible with apopulationd. From the Figur€(c), it can be seen that the
forward-backward sweep technique of Euler method tocapture effort used to harvest the populations varies
solve the system1f and their corresponding adjoint jnversely with 5. Note that, at the initial level, capture
equations§) and @). effort decreases with time. But, after a specific time of

From Figure2(a) and 2(b) one can deduce that, in span, it is constant and the populations converge to a
presence of capture, the density of the populations idinite quantity.
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Fig. 5: Variation of optimal pre-recruit and exploitable Fig. 6: Variation of optimal pre-recruit and exploitable
population and capture effort with (increasing) time. The population and capture effort with (increasing) time. The
solid line corresponds tq = 0.5, the blue dashed line to solid line corresponds te = 1, the blue dashed line to
g= 1.5 and the dotted line tg= 3. ¢ = 2 and the dotted line to= 4.

From Figure3(a) and3(b), it can be inferred that, in  capture is constant and the populations approximate a
presence of capture, the density of the populations idinite quantity and remain so over the time.
proportional to the maximum recruitment. This also From Figure4 it can be deduced that the natural death
happens in the Figur8(c), in which the capture effort rateu has animportantrole in the dynamics of the system.
used to harvest the populations varies inversely with It is clearly observed from Figuré(a) and 4(b) that, in
Observe that, from the initial level, capture effort presence of capture, the densities of the populations vary
decreases with time. But, after a precise time of span, thénversely withu. On the other hand, from Figugc), it
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can be infered that the capture effort used to harvest the On the other hand, it is possible that the integration of
populations is proportional tp. Notice again that, at the the pre-recruit population to the exploitable populatien i
initial level, capture effort decreases with time. Butgaft not immediately, that is, after a certain period of time,
a specific time of span, it remains constant and, as beforayhich may be the corresponding recruitment age. This
the population is set to a finite size. aspect is another interesting research direction thatdvoul
From Figure5(a) and5(b), it can be deduced that, in be appropriate to analyze with the proposed model, but
presence of capture, the densities of the populations varincluding delay.
inversely with the catchability coefficierd. It is also
evident from the Figur&(c)that the capture effort used to
harvest the populations varies inversely wih Again, Acknowledgement
note that, at the initial level, capture effort decreasah wi
time. However, after a particular time of span, the captureJose C. Valverde thanks Ministerio de Ciencia e
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