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Abstract: In this work, the capture effort exerted on the adult population (or exploitable population) of a two-stage species with
recruitment is considered as a control parameter to investigate the optimal exploitation of the resource, sustainability properties of the
population and rent earned from the resource. Pontryagin’smaximum principle is used to characterize the optimal control. The optimal
control is derived and then solved numerically using an iterative method with Euler scheme. Simulation results show that the optimal
control scheme allows us to get the sustainability of the ecosystem and to validate the model.
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1 Introduction

The capture and its impact on species conservation has
been a matter of interest not only to biologists and
ecologists, but also to mathematicians and those devoted
to the modeling and simulation of dynamical systems.
Mathematical models based on ordinary differential
equations of population dynamics with harvesting or
capture have been studied for decades and remains being
an issue in full swing [2,18,19,17,10,9,15,26,29,30,31].

Currently, there is great interest about harvesting
policies and bioeconomic modeling of different biological
populations [6,8,9,10,16,23,31,26]. Biological resources
are renewable resources. Among all the renewable
resources, an important one is fishery. Different species of
fishes are decreased due to exploitation on a
nonsustainable basis, high growth rate of world
population and lack of knowledge of the characteristics of
exploited species [23]. To ensure the conservation of
resources in the future and provide a sustainable flow of
benefits to human society, it is a compelling need to
control the actions associated to capture. The adequate
management of the resources will provide protection from
overexploitation. Therefore, further scientific
investigation is required in the field of biology and the
bioeconomy. Bioeconomic models assist natural resource

managers in controlling the appropriate level of stocks
and catches [23].

In this sense, nowadays, there is great interest about
harvesting policies and bioeconomic modeling of
different biological populations. Populations models with
optimal harvesting policy have been studied for single
populations [20], populations with stage-structured [23,
31,26], prey-predator systems [9,10,23,22,31], and
models with time delay [32]. However, most of these
models remain theoretical and only a few of them have
been applied to real case studies (for example, the models
proposed by Fresard and Ropars-Collet [12] or Ladino
and Valverde [2,18]).

Following the ideas in [15], where the authors study a
two-stage population with a linear recruitment function,
but where both stages are harvested, the main purpose of
this paper is to analyze the optimal control problem in a
model, previously proposed by us in [18], for the
population dynamics of a two-stage species with
recruitment given by the nonlinear Beverton-Holt
function, but where only the post-recruit individuals are
harvested, since they constitute the part of the total
population that is commonly admitted as visible to
fishing.

More concretely, in such a model, it is considered a
migratory population with a two-stage structure:
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pre-recruit (eggs, larvae and juvenile ones) and
post-recruit or exploitable (adults). It shows how the
dynamics is determined by a basic threshold parameter
R. As the most important result for this model, it is
proved that whenR ≤ 1, then the extinction equilibrium
point is globally asymptotically stable, assuring that the
species would disappear under this condition. Now, in this
paper, we achieve to maximize the net economic revenue
earned from the capture. The capture effort exerted on the
adult population (or exploitable population) is considered
as a control parameter to investigate the optimal
exploitation of the resource, sustainability properties of
the population and rent earned from the resource.
Pontryagin’s maximum principle is used to characterize
the optimal control. The optimal control is derived and
then solved numerically using an iterative method with
Euler scheme. Simulation results show that the optimal
control scheme allows us to get the sustainability of the
ecosystem and to validate the model.

The numerical simulations, performed by means of
our own software [1], have been executed by using
statistical data of some fish stocks ofProchilodus, which
are abundant in the most important river basins of South
America and are the most famous long-distance migrants.
The fish population migrates, searching temporary
shelters, feeding habitats and spawning grounds [3].

The Prochilodus mariae, a specific species of
Prochilodus, has a dual role in aquatic ecosystems of the
Orinoco basin because: on one hand, due to its detritivore
characteristics, it is within the first link in the food chain;
on the other hand, it is captured to be commercialized,
becoming a source of products of consumption for coastal
populations (indigenous and settler), and being the most
important protein base of these communities [24]. Thus,
the exploitation of Prochilodus should be controlled
optimally, because any decline of this species could have
an important impact [18].

The organization of this paper is as follows. In
Section 2, we review the mathematical model of
population dynamics of a two-stage species with
recruitment stated in [18]. In Section 3, we obtain an
optimal harvesting policy for the model. In Section 4, we
provide specific examples and, by means of numerical
simulations, we corroborate our analytical results. Finally,
in Section 5, we present some interesting conclusions and
future research directions which arise with this work.

2 Mathematical Model

We will base our study on a populations dynamics model
developed by us in [18] that we review bellow. The
assumptions made are coherent with the ideas, concepts
and parameters of mathematical modeling of biological
populations made by other authors [6,7,21,11,4] and, in
this sense, some of them have the same meaning.

–Thestockis defined as a subset of a given species, in
which population parameters remain constant [27].

Fig. 1: Diagram of the dynamics of a two-stage population
with recruitment.

The stock is represented in the model by the size of
the population or population density.

–The total population is divided into two
subpopulations:pre-recruit population x(t) (eggs,
larvae and juvenile ones) andexploitable population
y(t) (adults).

–The reproduction rate of the adults (exploitable)
population isδ .

–The natural death rate of both the pre-recruit
population and exploitable population isµ .

–The recruitment rateγ is proportional to thetotal
number of recruits R, i.e., γ = cR; wherec = 1 for
simplicity of the model.

–The total number of recruits depends only on the size
of the pre-recruit population. The form of the stock-
recruitment relationship of Beverton-Holt [4] is taken
in order to establish the number of recruitsR in terms
of pre-recruit population so:

R=
α ·x(t)
β + x(t)

–Themaximum recruitmentis α [13].
–The parameterβ is the stock needed to produce (on
average) a recruitment equal toα/2 [13].

–The parameterq is called catchability coefficient,
which is a measure of the ability to catch individuals.
The more efficient the art of capture is, the higher
value ofq is [27].

–The parameterE is thecapture effort(in the fishing,
for example, is number of boats per day, boat days,
etc.) [14,27].

–The parameterF is the capture death rate, which is
proportional to capture effort (E) and is given by the
relationshipF = q ·E [14,27].

–An homogeneous distribution of both the pre-recruit
population and the exploitable population is assumed.
That is, every pre-recruit individual has the same
probability of being recruited, and every adult
individual has the same probability of being caught.

Given the above assumptions, the Figure1 shows the
dynamics of the population modeled.

Moreover, the system representing the dynamics of a
two-stage species with recruitment and capture can be
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stated by














ẋ(t) = δy(t)−
αx(t)

β + x(t)
− µx(t)

ẏ(t) =
αx(t)

β + x(t)
− (µ +qE)y(t)

(1)

The parameters in this model are considered
non-negative. The regionΩ = {(x,y)/x≥ 0,y≥ 0} is a
positive invariant set for the system (1). Therefore, it is
considered the phase space of this system.

3 The optimal control problem

Nowadays bio-economic models are used as a tool to
better understand the impact of policies on natural
resources and human welfare [9]. In the context of
commercial exploitation of renewable resources, the most
important economic problem is to find the optimal
trade-off between present and future harvests [10]. For
this reason, it is necessary to take into account the studies
on the development, conservation and exploitation of
resources [9].

Usually, it is assumed that capture per unit effort is
proportional to the population size. So,H

E = αy implies
H = qEy, where H and E are the capture and effort,
respectively, applied to the harvested population in the
exploited area, andq is the constant called catchability
coefficient, as said before.

In fisheries management, it is generally considered that
thetotal cost (TC)is proportional to fishing effort [8]. Thus
in this model the total cost of fishing effort is defined by

TC(E) = cE, (2)

wherec is theunit cost of fishingor themarginal cost of
effort, and it is constant.

On the other hand, it is usually assumed that thetotal
revenue (TR)is proportional to capture [8], that is

TR(E) = ρH(E), (3)

where ρ represents theprice per unit biomassof
population captured. Actually, it is evident that the price
is a function which decreases with increasing biomass.
Therefore, following the usual economic hypotheses, we
assume that

TR(E) = (p−νqEy)qEy, (4)

where(p− νqEy) is the price per unit biomassand the
constant ν represents the variability of the quantity
demanded with respect to the variability of the price. This
expression can be used to consider monopolistic or
oligopolistic concurrency, which is a more general case
and includes the one in which the price per unit biomass
is constant, what means perfect concurrence (ν = 0) [28].

Thesustainable economic rent(profit) at a given level
of fishing effort E is the difference between the total
revenue of the fishery and the total fishing costs.
Therefore sustainable economic rent can be expressed as

π(E) = TR(E)−TC(E). (5)

Thus, the optimal control problem for the model (1),
allowing us to maximize the total discounted resource rent
earned from the fishery, can be formulated by

J(E) =
∫ t f

t0
e−ωt [(p−νqEy)qEy− cE] dt, (6)

whereω is theinstantaneous annual discount rate.
We consider that the present valuation of capital flow

over time depends on the discount rate,ω . The discount
rate would therefore determine the stock level, maximizing
the present value of the flow of the resource rent over time.
This is known as theoptimal economic yield biomass.

To solve the problem of maximizingJ(E) in (6),
subject to equations of system (1) and the control
restriction 0≤ E ≤ Emax (because a fishery always has a
maximum harvesting capability [6], implying a maximum
fishing effort), it is possible to apply the Pontryagin’s
maximum principle ([5],[16],[25]). The convexity of the
objective function with respect toE, the linearity of the
differential equations in the control and the compactness
of the range values of the state variables allows us to give
the existence of the optimal control.

SupposeEω is an optimal control with respective
statesxω andyω . We supposeAω = (xω ,yω ) as optimal
equilibrium point. Now, it is intended to derive optimal
controlEω such that

J(Eω) = max{J(E) | E ∈U},

whereU is the control set given by

U = {E : [t0, t f ]→ [0,Emax] | E is Lebesgue measurable}.

Thus, theHamiltonianof this optimal control problem
is

L = (p−νqEy)qEy− cE+λ1

[

δy− αx
β+x − µx

]

+

+λ2

[

αx
β+x − (µ +qE)y

]

where λ1 and λ2 are adjoint variables. Here, the
transversality conditions giveλi(t f ) = 0, i = 1,2.

Now, it is possible to find the characterization of the
optimal controlEω as follows. On the set{t | 0< Eω(t)<
Emax}, we have

∂L
∂E

= pqy−2νq2Ey2− c−λ2qy.

Thus, atAω = (xω ,yω), E = Eω(t), we have

∂L
∂E

= pqyω −2νq2Eωyω
2− c−λ2qyω = 0.
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This implies that

Eω =
pqyω − c−λ2qyω

2νq2yω 2 . (7)

On the other hand, the adjoint equations at the point
Aω = (xω ,yω) are

dλ1

dt
= ωλ1−

∂L
∂x

|Aω= λ1

[

ω +
αβ

(β +xω )2
+µ

]

−λ2
αβ

(β +xω )2

(8)

dλ2

dt
= ωλ2−

∂L
∂y

|Aω= λ1δ +λ2(ω +µ +qE)− (pqE−2νq2E2yω )

(9)
Equations (8) and (9) constitute a first order system of

simultaneous differential equations and it is easy to get
the analytical solution of the equations with the help of
initial conditionsλi(t f ) = 0, i = 1,2. In this regard, it has
to be noticed that we have formulated the optimal control
problem through considering fishing effort as control
parameter. Hence, the optimal control problem will be
numerically solved using the forward-backward sweep
technique of Euler method to pursue numerical
simulations in the next section.

The following Theorem summarize the above analysis.

Theorem 3.1.There exist corresponding solutions to the
system (1), xω and yω , and an optimal controlEω that
maximizesJ(E) overU . Furthermore, there exist adjoint
functionsλ1 andλ2 satisfying equations (8) and (9) with
transversality conditionsλi(t f ) = 0, i = 1,2. In such a
context, the optimal control for the problem is given by

Eω =
pqyω − c−λ2qyω

2νq2yω 2

.

4 Numerical simulation

Below, different scenarios are simulated in order to show
different dynamics of the system according to some
relevant parameters. From a biological and fisheries point
of view, this is important since it is possible to design
strategies for the control and sustainability of this
population.

Due to the importance in the fishing trade of the
speciesProchilodus mariae, actual statistics about some
population parameters of this species were used for
performing the numerical simulations by means of our
software [1]. These parameters were obtained from
research results on the state of fishing forProchilodus
mariae in the Orinoco river of Colombia for the time
period from 2005 to 2008. Thus, we have that the total
death rate of the speciesZ is 1.38 and the fishing deathF
is 0.75 [24]. However, the other parameters were
estimated theoretically because of the difficulty of getting

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

800

900

1000

Time

P
re

re
cr

u
it 

p
o

p
u

la
tio

n
 x

(t
)

(a)

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

Time

E
xp

lo
ita

b
le

 p
o

p
u

la
tio

n
 y

(t
)

(b)

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time

F
is

h
in

g
 e

ff
o

rt
 E

(t
)

(c)

Fig. 2: Variation of optimal pre-recruit and exploitable
population and capture effort with (increasing) time. The
solid line corresponds toδ = 5, the blue dashed line to
δ = 14,6 and the dotted line toδ = 50.

serious research publications about them. Although using
real data of model parameters would be of great interest,
numerical analysis presented has the advantage of being
able to simulate and analyze different scenarios of the
feasible parametric biological space. In this sense, the
simulations of this work should be considered from a
qualitative rather than a quantitative approach.
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Fig. 3: Variation of optimal pre-recruit and exploitable
population and capture effort with the increasing time. The
solid line corresponds toα = 5, the blue dashed line to
α = 20 and the dotted line toα = 50.

The numerical simulation of optimal control with
different sets of parameters is possible with a
forward-backward sweep technique of Euler method to
solve the system (1) and their corresponding adjoint
equations (8) and (9).

From Figure2(a) and 2(b) one can deduce that, in
presence of capture, the density of the populations is
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Fig. 4: Variation of optimal pre-recruit and exploitable
population and capture effort with the increasing time. The
solid line corresponds toµ = 0.1, the blue dashed line to
µ = 0.63 and the dotted line toµ = 1.2.

proportional to the reproduction rate of exploitable
populationδ . From the Figure2(c), it can be seen that the
capture effort used to harvest the populations varies
inversely with δ . Note that, at the initial level, capture
effort decreases with time. But, after a specific time of
span, it is constant and the populations converge to a
finite quantity.
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Fig. 5: Variation of optimal pre-recruit and exploitable
population and capture effort with (increasing) time. The
solid line corresponds toq = 0.5, the blue dashed line to
q= 1.5 and the dotted line toq= 3.

From Figure3(a) and3(b), it can be inferred that, in
presence of capture, the density of the populations is
proportional to the maximum recruitmentα. This also
happens in the Figure3(c), in which the capture effort
used to harvest the populations varies inversely withα.
Observe that, from the initial level, capture effort
decreases with time. But, after a precise time of span, the
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Fig. 6: Variation of optimal pre-recruit and exploitable
population and capture effort with (increasing) time. The
solid line corresponds toc = 1, the blue dashed line to
c= 2 and the dotted line toc= 4.

capture is constant and the populations approximate a
finite quantity and remain so over the time.

From Figure4 it can be deduced that the natural death
rateµ has an important role in the dynamics of the system.
It is clearly observed from Figure4(a) and 4(b) that, in
presence of capture, the densities of the populations vary
inversely withµ . On the other hand, from Figure4(c), it
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can be infered that the capture effort used to harvest the
populations is proportional toµ . Notice again that, at the
initial level, capture effort decreases with time. But, after
a specific time of span, it remains constant and, as before,
the population is set to a finite size.

From Figure5(a)and5(b), it can be deduced that, in
presence of capture, the densities of the populations vary
inversely with the catchability coefficientq. It is also
evident from the Figure5(c) that the capture effort used to
harvest the populations varies inversely withq. Again,
note that, at the initial level, capture effort decreases with
time. However, after a particular time of span, the capture
is constant and the populations approximate a finite
quantity and remain so over time.

The stock level maximizing the present value of the
flow of resource rent over time is determined by the
economic parameters (such as price per unit biomass of
catch, fishing cost per unit effort and discount rate). From
Figure6, it can be inferred that the fishing effort increases
with the increasing of the unit cost of fishingc and
consequently both populations decreases.

5 Conclusions and future research directions

The optimal control problem is formulated and solved
both analytically and numerically in a bioeconomic
context. The sensitivity analysis was performed with
respect to some relevant parameters of the system. Since
this work is not a particular case, the analytical results
may be helpful for researchers in this topic, mainly for
those engaged in fisheries research.

The results obtained are biologically consistent and
hence they allow us to validate the model. On one hand,
these results show that, as the reproduction rate and the
recruitment increase, the population increases and
therefore the optimal capture effort should be lower. On
the other hand, the density of the populations varies
inversely with the natural death rate and the catchability
coefficient, and in such cases the optimal capture effort
used to harvest the populations is proportional to the
natural death rate, although varying inversely with the
catchability coefficient. Moreover, note that after a
specific time the populations converge to a finite quantity
when the effort reaches its optimum.

From the work developed here, new research
directions raise in this area. For example, generally the
reproduction of eggs, natural death and fishing death rates
are depending on environmental conditions, fishing
seasons and techniques used and thus it may vary.
Therefore, it would be interesting to analyze the model
with non-constant parameters. Moreover, it is possible to
consider other more complex scenarios ([2] and [17])
with general forms of recruitment, depending on special
features in the system (such as cannibalism of young
fishes by adults), interaction with other species
(competition, predation or mutualism), transmission
disease, etc.

On the other hand, it is possible that the integration of
the pre-recruit population to the exploitable population is
not immediately, that is, after a certain period of time,
which may be the corresponding recruitment age. This
aspect is another interesting research direction that would
be appropriate to analyze with the proposed model, but
including delay.
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[15] W. Jing, W. Ke, Appl. Math. Comput.148(1), 235–247
(2004).

[16] M. Kot, Elements of mathematical ecology, Cambridge
University Press, New York, 2001.

[17] L.M. Ladino, E.I. Sabogal, J.C. Valverde, Math. Methods.
Appl. Sci. (2014), http://dx.doi.org/10.1002/mma.3271.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2492 L. M. Ladino et. al. : Optimal Control of a Bioeconomic Model...

[18] L.M. Ladino, J.C. Valverde, Math. Methods Appl. Sci.36,
722–729 (2013).

[19] E. Liz, F. Hilker, Springer Proceedings in Mathematicsand
Statistics102, 61–73 (2014).

[20] D. Manna, G. Samanta, Electron. J. Appl. Stat. Anal.7, 117–
131 (2014).

[21] J.D. Murray, Mathematical biology I. An Introduction,
Springer, Berlin, 2002.

[22] D. Pal, G.S. Mahapatra, Appl. Math. Comput.242, 748–763
(2014).

[23] D. Pal, G.S. Mahaptra, G.P. Samanta, Math. Biosci.241,
181–187 (2013).

[24] H. Ramı́rez, R. Ajiaco, C. Barreto, Estado actual de la
pesca del bocachico (Prochilodus mariae) en la Orinoquia
colombiana, Proyecto de investigación interinstitucional:
Universidad de los Llanos (UNILLANOS), Corporación
Colombia Internacional (CCI), Instituto Colombiano
Agropecuario (ICA) e Instituto Colombiano de Desarrollo
Rural (INCODER), Bogotá, 2010.
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