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Abstract: In this paper, chaos in fractional-order neutral delay differential equation (NDDE) is discussed. Chaos in the system is
illustrated by presenting its waveform graphs, states diagrams and largest Lyapunov exponent. The largest Lyapunov exponent (LLE)
and the LLE of the system with different parameters are derived. In addition, we compare the fractional-order with integer NDD
systems, and find that the convergence speed of the synchronization fraction system is faster. We also get the conclusion that the
fractional NND system has better anti-interference ability.
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1. Introduction

Fractional-order integrals and derivatives have been known
since the development of the regular calculus. Fractional
calculus had been studied since the 17th century. In recent
years, the behavior of many physical systems has been
properly described using the fractional-order system the-
ory. The scientists from physics, demography and finance
have focused on the fractional-order differential systems
in their research fields [1–3]. It is interesting to investi-
gate the nonlinear fractional-order systems. Complex os-
cillations are demonstrated in many physical systems due
to the effect of delayed feedback. These oscillations have
been proved in semiconductor lasers, microwave devices
and electronic circuits [4–7]. Time-delay phenomena are
also appeared in physical systems, such as AIDS epidemic,
aircraft stabilization, chemical engineering systems, con-
trol of epidemics, distributed networks, manual control,
microwave oscillator and systems with lossless transmis-
sion lines [8]. Hence, the time-delay systems have been re-
ceived considerable attention. The neutral delay differen-
tial system which contains derivatives with a delayed argu-
ment is more challenging than other systems, and the study
of chaotic delay dynamical systems lags behind those or-
dinary dynamical systems [9]. Existence and uniqueness
theorem for delay differential equations have been investi-

gated in [10,11]. Fractional-order neutral differential sys-
tem has been focused in the research work of [12–14].
But the chaos in these systems has not been fully inves-
tigated in the previous work. A detailed numerical bifur-
cation analysis of neutral delay differential system was
discussed in [15]. The authors in [15] investigated bifur-
cations of periodic solutions by computing their Floquet
multipliers with the methods proposed in [16,17], and by
analogy with the corresponding methods for ordinary dif-
ferential equations (ODE). Balanov et al. [18] investigated
the solutions more complex than periodic ones and the re-
sults were presented as plots containing solution regimes
that may be considered as bifurcation diagrams for the
neutral delay differential equation (NDDE). The map of
regimes was demonstrated as a function of two control pa-
rameters. They got the range of two control parameters for
every state of NDDE, which included a unique equilibrium
state, a single period-one limit cycle, period-two, multi-
stability and chaos. Blakely et al. presented the experimen-
tal evidence to verify the predictions of chaotic dynamics
in a transmission line terminated with a nonlinear element
and showed that an extension to the existing theory which
added the effects of a finite bandwidth to the negative resis-
tor would generate their experimental results more accu-
rately [19]. All of the studies mentioned above are regard-
ing the integer neutral delay differential system. Balanov
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et al. explored numerically the solution space of a neutral
differential delay equation such as Eq. (1) that arises nat-
urally in the Cosserat description of torsional waves on a
driven drill-string [18].

dx

dt
− dx(t− τ)

dt
= (1)

F (x(t)− x(t− τ) + Ω)− x(t)− x(t− τ) + Ω

J
.

Such torsional vibrations are a major concern to industry,
which can occur during the operation of drilling assem-
blies used in the exploration for oil and gas. A drilling as-
sembly can penetrate several kilometers below the surface
using a drill-bit fitted to its lower end. The dynamics of the
drill-string is extremely complex and often prone to insta-
bilities that are not fully understood. One particular sce-
nario about the torsional instability of the drill-string arises
from self-sustained relaxation oscillations, which induced
by non-linear reaction torques due to friction and cutting
at the drill-bit. A build-up of torsional vibrations may re-
sult in reduced rate-of-penetration, premature component
fatigue or even costly fracture of the drill-string. An essen-
tial step towards developing practical strategies to combat
such torsional vibrations requires a reliable model for the
entire drilling assembly and some insight into the struc-
ture of its solution space [18]. Model (1) is transformed
from the classical solutions of driven drill-string in dynam-
ical boundary conditions. The purely torsional excitations
of a drill-string with unstressed length L,described by the
rotary angleψ(s, t) satisfy the wave equation̈ψ(s, t) =
c2ψ′′(s, t),whens = 0,ψ(0, t) = ψ,F is a reaction torque
which exist in friction and cutting processes.x(t)is the deriva-
tive of the function representing upwards moving torsional
disturbances. By introducing fractional-order differential
into system (1), we obtain a fractional-order neutral delay
differential system as follows:

aDα
t y(t) = aDβ

t y(t− τ) + F (y(t)− y(t− τ) (2)

+Ω)− y(t)− y(t− τ) + Ω,

whereF (z) = − Az√
(z2+ε2)

(1 + bexp(−
√

(z2+ε2)

∆ )),which

is the expression of non-dimensional reaction torque based
on recent drilling data.A,b,ε are certain constants.α, β as
the fractional-order, are non-integer constants. The chaotic
behavior of system (2) will be explored in this paper. The
research on chaotic characteristics is focused on phase plot,
bifurcation diagram and the largest Lyapunov exponent
(LLE) which are the most important characteristic quan-
tities to perform chaos in both fractional-order system and
integral-order system. One positive Lyapunov exponent in-
dicates the existence of chaos. Wolf [20] and Jacobian [21]
algorithms are the most popular algorithms to calculate the
largest Lyapunov exponent of integral-order system. How-
ever, Jacobian algorithm is not applicable for calculating
LLE of a fractional-order system since Jacobian matrix
of fractional-order system is hard to be obtained. Further-
more, Wolf algorithm is relatively difficult to implement.

The method of the small sets [22] presented by Rosenstein
et al. can calculate LLE of a Fractional-order system. In
this paper, the method of the small sets will be used which
mainly focuses on analyzing the time sequence of frac-
tional systems. The importance of this method is the phase
space reconstruction and the small data sets in time se-
quence. The C-C method [23,?] which uses the correlation
integral is chosen to determine the parameters of phase
space reconstruction, which are the delay time d and the
embedding dimension m. In this way, we can get the char-
acteristics of chaotic attractors in the chaotic time series.
In addition, the information hidden in the sequence may
be revealed as well. Then we can calculate the LLE by
the small data sets. Chaotic phenomena will be exhibited
if the LLE is positive. The remainder of this paper is or-
ganized as followings. In Section 2, Fractional derivative
and Grunwald-Letnikov (GL) definition are introduced. In
Section 3, we present the method of calculating of the
largest Lyapunov exponent. The mathematical model is
presented in section 4 with the chaotic phenomena and the
LLE. In section 5, the difference between fractional and
integer NDDE are discussed. Section 6 is the conclusion.

2. Fractional derivative and its
approximation

Initial Capitals There are many definitions for fractional
differential operator [25,?,?]. One of the definitions is Grunwald-
Letnikov (GL) definition [25,?,?], which can be described
by

aDα
t f(t) = lim

h→0
h−α

[t−a/h]∑

j=0

(
α

j

)
f(t− hj), (3)

where:
(

α
j

)
= α(α−1)···(α−j+1)

j! . This formula can be re-

duced to

0D
α
t y(tm) ≈ h−α

m∑

j=0

ω
(α)
j ym−j , (4)

h is the time step. For a general nonlinear fractional-order
differential system, the explicit analytical solution is usu-
ally not existed. A numerical algorithm is required for the
solution. For example, the nonlinear system in [30]:

0D
α
t y(tm) + N(y(t)) = g(t), α > 0 (5)

where,N represents a nonlinear operator,g(t) is a func-
tion with respect to t. From Eq. (4), it can be transformed
to a discrete form as follows:

h−α
m∑

j=0

ω
(α)
j ym−j + N(ym) = g(tm), (6)

m = 1, 2, 3, ..., [
t− a

h
]
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By Eq. (6), we can have

ym = h−α(g(tm)−N(ym))−
m∑

j=0

ω
(α)
j ym−j , (7)

m = 1, 2, 3, ..., [
t− a

h
]

For Eq. (7), an iterative formula to solveym can be de-
scribed as follows:

y(l)
m = h−α(g(tm)−N(ym))−

m∑

j=0

ω
(α)
j y

(l)
m−j , (8)

m = 1, 2, 3, ..., [
t− a

h
]

. wherel is the iteration number.If|hαN ′| < 1, the algo-
rithm is convergent, andym = y

(l)
m . For system (2), one of

the discrete forms is

h−α
m∑

j=0

ω
(α)
j ym−j = (ymτ − ymτ−1)/h + F (ym (9)

+ymτ + Ω) + ym + ymτ + Ω = 0.

We use the Newton-Raphson method, which is a conver-
gent iterative algorithmf(x) = 0 for an algebraic equation
, solution is obtained by calculating iterative formula, so-
lution x is obtained by calculating iterative formulax(l) =
x(l−1) − f(x(l−1))

f ′(x(l−1))
. Thus Eq.(9) can be rewritten as

h−α
m∑

j=0

ω
(α)
j ym−j − (ymτ − ymτ−1)/h− F (ym (10)

+ymτ + Ω)− ym − ymτ + Ω.

According to Newton-Raphson method, we get that:

y
(l)
(m) = y

(l−1)
(m)

− (y(l−1)
m −

(hα∗(y′mτ+F (z)−ymτ+Ω))−y
(l)
(m)

m∑
j=0

ω
(α)
j ym−j

1+hα )
1− hα ∗ F ′(z)

(11)
where,z = yl−1

(m) + ymτ + Ω, F ′(z) is the derivative of
F (z).

3. The method of calculating largest
Lyapunov exponent

The largest Lyapunov exponent is an important character-
istic not only in integral-order system but also in fractional-
order system, because any system containing at least one
positive Lyapunov exponent is defined to be chaotic [31,
32]. Wolf algorithm, Jacobian algorithm and the small data
sets have been mentioned in section 1. In this paper, we
apply the small data sets and the C-C method to calculate

the LLE of fractional-order system. That is, the delay time
d and embedding dimension m can be determined by the
C-C method. Then we can use the small sets method to
estimate the LLE.

The small sets method will be introduced briefly in
this section. The parametersd andm can be derived from
the C-C method which reconstructs the attractor dynam-
ics from the single time series of the dynamic system. The
scalar time seriesxl, l = 1, 2, 3 · · ·N , in a m-dimensional
space are defined by the vectorsYl = (xl, xl+τ , xl+(m−l)τ , ) ∈
Rm, whereM = N − (m− 1)τ . After reconstructing the
dynamics, the C-C method locates the nearest neighbor of
each point on the trajectory. The nearest neighborYk̂ can
be found by searching for the point that minimizes the dis-
tance to the particular reference pointYk which can be ex-
pressed as:dk(0) = xl+τ min

Yk̂

= ‖Yk − Yk̂‖, |k − k̂| > p,

,wherep is mean period, and‖ · · · ‖ denotes the Euclidean
norm. Then we can obtain the following largest Lyapunov
exponent based on the method proposed by Sato et al. [29].

λ1(l) =
1

l · 4t

1
(m− l)

M−k∑

k=1

ln
dk(l)
dk(0)

. (12)

where4t is the sampling period of the time series, and
dk(l) is the distance between thekth pair of nearest neigh-
bors afterl discrete-time steps. Sato et al [33] also pre-
sented an improved expression as the following:

λ1(k′) =
1

k′ · 4t

1
(m− k′)

M−k′∑

k=1

ln
dk(l + k′)

dk(l)
, (13)

wherek′ is held constant, andλ1 is extracted by locating
the plateau ofλ1(l, k′) with respect tol. From the defi-
nition of λ1(l, k′), we assume that thekth pair of nearest
neighbors diverge approximately at a rate defined by the
largest Lyapunov exponent:

dk(l) = Ckeλ1(l·4t). (14)

HereCk is the initial separation. Applying the loga-
rithm to both sides of Eq. (5), the following equation can
be derived:

lndk(l) ≈ lnCk + λ1(l · 4t)(k = 1, 2 · · · ,M). (15)

Eq. (6) represents a set of approximately parallel lines each
with a slope roughly proportional toλ1. Then we can get
the largest Lyapunov exponent easily and accurately by us-
ing a least squares fit to the ”average” line defined by

y(l) =
1
4t
〈lndk(l)〉. (16)

here〈lndk(l)〉 is the average value for all values of k. This
process of averaging is the key step to calculate accurate
value ofλ1. In order to calculate more accurately, we also
calculate the average value of the nearest neighbors ofy(l).
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4. Chaotic phenomena and the LLE of the
system (2)

In the integer-order NDDE mentioned in [16], chaos was
found in different range of the control parameter. In this
paper, we also find similar phenomenon in fractional-order
NDDE. For the system (2) (represented by Eq. (2)), we
takeα = 1.02, 1.06, 1.1, β = 1, A = 0.83, τ = 2,Ω =
0.461,∆ = 0.1, b = 0.2, ε = 0.001, h = 0.001. Fig.
1-3 illustrates the waveform diagrams and phase portraits
respective to . From above simulation results, we can see
that whenα = 1.02 and 1.06, the system (2) is chaotic.
When α = 1.1, the system presents the period-1, and
the corresponding LLE are 0.0138, 0.0440, 0, respectively.
The numerical simulations are consistent with the result
of theoretical calculation. Whenα = 1.01, β = 1, A =
0.65, τ = 2, Ω = 0.15, 0.08, 0.06,∆ = 0.1, b = 0.2, ε =
0.001, h = 0.001, the attractor is changed. Fig. 4-6 depicts
the state of attractor in detail. WhenΩ = 0.06, 0.08, 0.15,
the LLE are 0.3572, 0.2211 0.8759, so we can get that
when Ω = 0.06, 0.08, 0.15, the system is chaotic. Ex-
cept above chaotic attractor, there is another chaotic phe-

nomenon, whenα = 1.01, β = 1, A = 1.5, τ = 2, Ω =
0.01,∆ = 0.1, b = 0.2, ε = 0.001, h = 0.001, which
is illustrated in the following. The LLE of the system (2)
is 0.1625. We calculate the LLE of the system (2) using
the methods in the previous section. And we can get that
the results are consistency with the waveform diagram and
phase portrait.
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5. Synchronization of fractional system with
noise

In this section, we discuss the synchronization of the frac-
tional and integer NDDE. We employ (2) as the response
system, and the drive system is as Eq.(17).

dx

dt
− dx(t− τ)

dt
= (17)

F (x(t)− x(t− τ) + Ω)− x(t)− x(t− τ) + Ω

J
−k(x(t)− y(t)).

Coupling (2) with (17), a synchronization system is ob-
tained as (18).

{
aDa

t y(t) =a Da
t y(t− τ) + F (y(t)− y(t− τ) + Ω) + Ly

aDa
t x(t) =a Da

t y(t− τ) + F (y(t)− y(t− τ) + Ω) + Lx
(18)

WhenLy = −y(t)− y(t− τ) + Ω, Lx = −x(t)− y(t−
τ) + Ω − k(x(t) − y(t)). Defining the synchronization
error as e(t)=y(t)-x(t), we can obtain the error system from

system (17) as Eq.(19).

dαe(t)
dtα

= −(1 + k)e(t).. (19)

Taking the Laplace transformation in both sides of Eq.(19),
we obtain

sαL(e(t))− sα−1e(0) = −(1 + k)Le(t). (20)

It follows thatL(e(t)) = sα−1e(0)
sα+(1+k) ,By the final-value the-

orem of the Laplace transformation,ifk 6= 1, we have
lim
h→0

e(t) = lim
h→0

sL(e(t)) = lim
h→0

sαe(0)
sα+(1+k) = 0, The

above analysis implies that coupled system with fractional-
order response system (2) is synchronized as long ask 6=
1. The simulation is illustrated in Fig. 8. From the simula-
tion, we can get that fractional orderNND system achieves
synchronization earlier than the integer orderNND sys-
tem. According to the experimental data, the error of frac-
tional orderNND system reach10−4 at 2271, but the
integer orderNND system is at 2845. We add the White
noise which the Mean value is 0 in system 17. We get the
conclusion that the fractionalNND system have better
anti-interference ability from the simulation results (Fig.9).

6. Conclusion

In this paper, we have studied the dynamics of the fractional-
order neutral differential system by means of the largest
Lyapunov exponent. The novel numerical algorithm and
the Newton-Raphson method are used to analyze the NNDE.
We also calculate the largest Lyapunov exponent by using
the small data sets instead of Wolf algorithm. The Lya-
punov exponents with different situation are given, chaotic
phenomenon are presented respectively, and in addition,
we compare fractional order with integer order NDDE,
and find that the fractional-order system achieve synchro-
nize more quickly than the integer order system, and the
fractional-order system has better anti-interference ability.

Acknowledgment

This work is supported in part by the National Nature Sci-
ence Foundation of China (No. 61103114), Fundamental
Research Funds for the Central Universities (No. CDJZR10180006),
National Key Technology R&D Program (No. 2012BAH19F00),
and the Key Project of Chongqing Higher Education Re-
form (No. 112023)

References

[1] G. Ervin, Fractional dynamics and the Standard Model for
particle physics. Commun. Nonlinear. Sci. Numer. Simul.
13 (2008) 1397-1404.

c© 2013 NSP
Natural Sciences Publishing Cor.



238 Yong Feng et al : Chaos in a fractional-order neutral ...

[2] C. H. Lin, C. L. Kuo, S. J. Chen, J. L. Chen, C. H. Lin, Chaos
Synchronization Based Voltage Relays for Voltage Dis-
turbances Detection in a Microdistribution System, Appl.
Math. Inf. Sci. 1 (2013):11S-18S

[3] W.C. Chen, Nonlinear dynamics and chaos in a fractional-
order financial. Chaos, Soliton. Fract. 5 (2008) 1305-1314.

[4] K. Bataineh and S. Obeidat, Essentially Copied Topological
Spaces, Math. Sci. Lett. 1 (2012), 97-104

[5] J. N. Blakely, L. Illing, and D. J. Gauthier, High speed chaos
in an optical feedback system with flexible timescales. IEEE
J. Quantum Electron. 40 (2004) 299 -305.

[6] M. L. Poinkam, P. Woafo, L. Domngang, Cluster states in a
ring of four coupled semiconductor lasers. Commun. Non-
linear. Sci. Numer. Simul. 12 (2007) 942-952.

[7] V. Dronov, M. R. Hendrey, T. M. Antonsen, and E. Ott,
Communication with a chaotic traveling wave tube mi-
crowave generator. Chaos 14 (2004) 30-37.

[8] H. L. Chang, Delay-dependent and delay-independent guar-
anteed cost control for uncertain neutral systems with time-
varying delays via LMI approach. Chaos, Soliton. Fract. 33
(2007) 1017C1027.

[9] J. K. Hale, L. T. Magalhaes, W. M. Oliva, Dynamics in Infi-
nite Dimensions, New York, 2002.

[10] A. S. Abdel-Rady, A. M. A. El-Sayed, S. Z. Rida and I.
Ameen, ”On some impulsive differential equations”, Math.
Sci. Lett. 1 (2012) 105-113.

[11] Huili Xiang, ”The Eigenvalues And The Optimal Potential
Functions of Sturm-Liouville Operators”, Math. Sci. Lett. 1
(2012) 125-132.

[12] Y. K. Chang, A. Anguraj, K. Karthikeyan, Existence re-
sults for impulsive neutral differential and integrodifferen-
tial equations with nonlocal conditions via fractional opera-
tors. Nonlinear Analy. 71 (2009) 4377-4386.

[13] Y. Zhou, F. Jiao, J. Li, Existence and uniqueness for frac-
tional neutral differential equations with infinite delay. Non-
linear Analysis 2009; 71:3249-3256.

[14] Z. X. Tai, X. C. Wang, Controllability of fractional-order
impulsive neutral functional infinite delay integrodifferen-
tial systems in Banach spaces. Appl. Math. Lett. 22 (2009),
1760-1765.

[15] K. Engelborghs, D. Roose, T.Luzyanina, Bifurcation anal-
ysis of periodic solutions of neutral functional differential
equations: acase study. International J. Bifurc. Chaos. l8
(1998), 1889C1905.

[16] K. Engelborghs, T. Luzyanina, G. Samaey, DDE-BIFTOOL
v. 2.00: a Matlab package for bifurcation analysis of delay
differential equations.Technical Report TW,vd330, Depart-
ment of Computer Science, K.U. Leuven, Leuven, Belgium,
2001.

[17] K. Engelborghs, T. Luzyanina, D. Roose, Numerical bifur-
cation analysis of delay differential equations. J. Comput.
Appl. Math. 125 (2000) 265C275.

[18] A.G. Balanov, N.B. Janson , P.V.E. McClintock, R.W.
Tucker, C.H.T. Wang, Bifurcation analysis of a neutral de-
lay differential equation modeling the torsional motion of a
driven drill-string. Chaos, Soliton. Fract. 15 (2003) 381C39.

[19] J. N. Blakely and N. J. Corron. Experimental observation of
delay-induced radio frequency chaos in a transmission line
oscillator. Chaos 14 (2004) 1035-1041.

[20] A. Wolf, J.B. Swinney, H.L. Swinney, et al. Determining
Lyapunov exponents from a time series. Physica D. 16
(1985) 285C317.

[21] G. Barana, I. Tsuda. A new method for computing Lyapunov
exponents . Phys. Lett. A 175 (1993) 421-427.

[22] M. T. Rosenstein, J. J. Collins, et al. A practical method
for calculating largest Lyapunov exponents from small data
sets. Physica. D. Nonlinear Phenomena 65 (1993) 117-134.

[23] H. S. Kim, R. Eykholt, J. D. Salas. Nonlinear dynamics, de-
lay times, and embedding windows. Physica D. 127 (1999)
48-60.

[24] W. W. Zhang, S. B. Zhou, X. F. Liao, H. H. Mai, K. Xiao. Es-
timate the Largest Lyapunov Exponent of Fractional-order.
ICCCAS 2008, pp.1121-1124.

[25] P. L. Butzer, U. Westphal. An Introduction to Fractional Cal-
culus, World Scientific. Singapore, 2000.

[26] I. Podlubny, Fractional Differential Equations, Academic
Press, San Diego, CA, 1999.

[27] S. G. Samko, A. A. Kilbas and O. I. Marichev , Fractional
Integrals and Derivatives: Theory and Applications, Gordon
and Breach, Yverdon, 1993.

[28] S. M. Kenneth, R. Bertram. An Introduction to the
Fractional Calculus and Fractional Differential Equations.
Wiley-Interscience. US, 1993.

[29] Wang Xue-guang, Chen Shu-hong, An Improved Image
Segmentation Algorithm Based on Two-Dimensional Otsu
Method, Inf. Sci. Lett. 1 (2012) 77-83.

[30] H. Zhu, S. B. Zhou, Z.S. He, Chaos synchronization of
the fractional-order Chens system. Chaos, Soliton. Fract. 41
(2009) 2733C2740.

[31] R. Shaw, Strange attractors, chaotic behavior, and informa-
tion flow. Z Naturforsch. 36A (1981) 80-112.

[32] W. W. Zhang, S. B. Zhou, H. Li, H. Zhu, Chaos in a
fractional-order R?ssler system. Chaos, Soliton. Fract. 42
(2009) 1684-1691.

[33] S. Sato, M. Sano, and Y. Sawada, Practical methods of mea-
suring the generalized dimension and the largest Lyapunov
exponent in high dimensional chaotic systems, Prog. Theor.
Phys. 77 (1987) 1-5.

c© 2013 NSP
Natural Sciences Publishing Cor.


