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Abstract: In this paper, we present necessary and sufficient conditoninput data for the output class-oriented concept &attic
form a tree after one removes its greatest element. In addlitie present algorithms for computing the tree of a clagsy®ed concept
lattice constrained by equivalence relations.
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1 Introduction An object-attribute data table describing which
objects have which attributes can be identified with a

Formal concept analysis (FCA) is a method of exploratorytriplet (X,Y,I) (called aformal context) whereX is the set

data analysis that aims at the extraction of natural clasterof objects,Y is the set of attributes, andC X x Y is a

from object-attribute data tables. There are many types ofelation. An objectx € X has the set of attributes:

binary relations between objects have been studipaif{d xI = {y € Y | xly} C Y. Similarly, an attributey is

[11]. One of the clusters, called class-oriented conceptspossessed by the set of objedtg= {x € Y | xly} C X.

is naturally interpreted as human-perceived concepts in &or eachA C X andB C Y denote by

traditional senseq] and [7]. A*={yeY |foreachxe A: (x,y) € I} andB* = {x ¢

This paper presents conditions for input data whichX | for eachy € B: (x,y) € 1}.

are necessary and sufficient for the output class-oriented In reality, we findA* = {y € Y | AC Iy} = NyeaX

concept lattice constrained by equivalence relations taandB* = {x& X |[BCxl} =gy

form a tree after removing its greatest element. We

provide two algorithms for tree in class-oriented concept  Two objects may be viewed as being equivalent if they

lattices constrained by equivalence relations and givehave the same description. Aquivalence relation can be

illustrative examples. Though some characterizing treesiefined by fox,x € X,x=x X < xl = X1.

in concept lattices have been studied id], [the With equivalence relatiorey, an object has the same
differences between concept lattices and class-orientegredecessor and successor neighborhood. For an afgject
concept lattices make this paper be valuable. X, the set of objects that are equivalentxtts called an

equivalence class of x and defined by=x x = {x' € X |
X =x x} ={X eX|x=x X} =x=x=[X.
2 Preliminaries The family of all equivalence classes is denoted by
X/ =x= {[X]|x € X}. A new family of subsets, denoted
We assume that a data set is given in terms of a formaby 0(X/ =x), can be obtained froxd/ =x by adding the
context as §]. For simplicity, we only consider finite empty set ® and making it closed under set union, which
cases. In this paper, all the notations and properties, FCAs a subsystem of %2 and the basis isX/ =x. The
are referred to] and [8]; class-oriented concept lattices following properties hold:
come from L], [7] and [L1]; lattice theory is seen7] and (E1)A1,Ax € 0(X/ =x) = AiNA € 0(X/ =x);
[9]; graph theory is cf.4] and [10]. (E2)A1,A € 0(X/ =x) = ALUA € 0(X/ =x).
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A pair (A,B),AC X,BCY, is called aclass-oriented
concept if A€ o(X/ =x) andB = A*. The set of objecté
is called theextension of the conceptA, B), and the set of
attributesB is called theintension. For two class-oriented
conceptgA;,B1) and(Az, B2), we say that

(A1,B1) < (A,By) ifandonly if
..................... (F1)

The family of all class-oriented concepts forms a
complete lattice calledclass-oriented concept lattice
which is denoted byZ(X/ =x) in this paper. It gives a
hierarchical structure of the elementsa{X/ =x) and
their corresponding attributes. The meeand the joinv
are defined by

(A1,B1) A\ (A2, Bo)
(A2,B2) = (ArUAg),

AL C A

(A1NA2), (A1NA2)*), (A1, B1) V

(:Bl N Bz)) (F2).

3 Trees in class-oriented concept lattices

This paper will adopt the definition of trees similarly to
thatin [1] as follows.

A finite partially ordered seto(X/ =x), <t) will be
called atree if for eacha,b € X:
(Ti) there is an infimum ofr andb in (o(X/ =x),<71),
and
(Tii) there is a supremum ofa and b
(o(X/ =x),<t) < aandb are comparable.

in

Evidently, the notation tree above is actually a real
rooted tree as that defined in graph theory (see [4]), bu

not vice versa. However, the authors in [1] use the similar
tree to the above dealing with many properties for concept(Av B),(

lattices. Analogously to [1], this section will work on the
family of class-oriented concept lattices relative to $ree
According to lattice theory, we find that the condition
(Ti) is satisfied for eacl2(X/ =x); the condition (Tii) is
satisfied if and only if8(X/ =x) is linearly ordered.
Based on these, we can express that
the whole class-oriented concept lattice is a tree if
and only ifitis linearly ordered.
In fact, this case is not valuable to observe.
We mainly focus on trees which appear#(X/ =x)
if we remove its greatest elementX,Yx), where
Yx = Nyex Xl . Let Z*(X/ =x)
denote Z(X/ =x) \ {(X,Yx)}. In what follows, we
investigate the conditions whick* (X/ =x) becomes a
tree.

3.1 Formal contexts generating trees

The following assertion characterize®" (X/ =x) to be a
tree.

Theorem 3.1.Let (X,Y,l) be a formal context. Then

P (X/ =x) is a tree if and only if, for any concepts
(A,B),(C,D) € #*(X/ =x) at least one of the following
is true:

(1))ACCorCCA,

(2)AuC=X.
Proof. Similarly to the proof for Theorem 2 in1], the
need consequences are obtairied.

We will take advantage of the following notion.

Definition 3.1. Let (X,Y,l) be a formal context. We say
that(X,Y,1) generates a tree i8* (X/ =x) is a tree.

Recall that due to (F1l) and the definition of
class-oriented concepts([x],xI) is a class-oriented
concept for anyk € X and covers the least elemedtY)
in #(X/ =x). In addition, for any(A,B) € #(X/ =x),
we receiveA = [J,ca[X] @and B = NyaXl according to
definitions and the finite giX| and|Y|. The extensions of
all the atoms{([x],xI) : x € X} are important in the
following theorem which characterizes contexts
generating trees.

Theorem 3.2. Let (X,Y,I) be a formal context. Then
(X,Y,l) generates a tree if and only if, for any
(A,B) € *(X/ =x), there exista € A such that there is
one and only one chain between 0 ahih %+ (X/ =x)
satisfying 0C [a] CA1 C ... CA=A
Proof. (=) Itis evident by Definition 3.1.

(<) If (A,B) covers the least elementid* (X/ =x),
i.e A= [x] for x € A, then the needed result is accepted.

Next, supposeéA # [x] for any x € A. We prove the
needed result.

Otherwise, in light of definition of a tree, one of the
following cases will be happen.

Case 1. There are two incomparable elements
C,D) € #*(X/ =x) such that

(A,B)V (C,D) € B*(X/ =x).

Case 2(A,B) A (C,D) ¢ #*(X/ =x) holds for some
two elementgA,B), (C,D) € #*(X/ =x).

We analyze the two cases respectively.

Under the supposition of Case 1:

Both (A,B) < (A,B) v (C,D) and

(C.D) < (AB)V(C,D)
hold owing to the incomparable property GA B) and
(C,D).

Since#(X/ =x) is a complete lattice with the set of
atoms{([x],xI) | x € X}, we obtaind = J,cy [X| for each
elementU,V) € #(X/ =x). The given condition implies
that there exists at least a chain between QArzktween
0 andC satisfying 0C [x1] Ca; C ... Cany =Aand 0C
[X2] Cc1 C ... Ccm=C, wherex; € Aandx; € C. Thus,
for (A,B)V (C,D) = (AUC,BND), there are two different
chains 0C x1] Cag C...Can=ACAL C...CA =
AuCand0C [x]JCciC...Ccm=CCCC...CCs=
AUC, a contradiction to the known condition.

Under the supposition of Case 2:

If (A,B) and (C,D) are comparable. We obtain the
existence of infimum ofA,B) and(C,D) in #*(X/ =x).
This follows a contradiction to the supposition. Hence,
(A,B) and(C,D) are incomparable.

Because’(X/ =x) is a complete lattice, we assert that
the infimuma A B € Z(X/ =x) holds for eacha, €
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PB(X/ =x). In addition, it is easily seea A < a,B if a Xa] € [Xa] U %] C [Xa] U [X,] U [X,] C ... C
andf are incomparable. [Xa] U X, ] U X, ] U... U [X,] is @ maximal chain fronfx, |
Therefore, combining to [Xq] U [X,] U... U %], where a = 1,.... ka ¢
%A(X/ Ex) :%(X/ Ex)\{(X,Yx)} {il,...,it};ip 75 iq, p,gq= 1,...,t;i1,i2,...,it = 1,2,...,k

with the two incomparabléA,B), (C,D) € #*(X/ =x), and |{1,...,t} U{a}| < k. Hence, we obtain many
we receive(A,B) A (C,D) € % (X/ =x), a contradiction  chains. For every chain, we give it a positive integer

to the supposition. number and all these numbers are not repeated. In other
Summing up the above analysis, we may be assuresvords, all the chains is sequenced in number natural
that % (X/ =x) is atree]. order. Theorem 3.2 states that every elements in

P (X/ =x) is in a unique maximal chain.
Since #*(X/ =x) = B(X/ =x) \ {(X,Yx)} follows
concept lattices element(X,Yx), then(A,B) € #*(X/ =x). Thus, every
element in class-oriented concept lattice constrained by

. . . an equivalence relation can be found if we search out
Trees in class-oriented concept lattices, as they wer%ﬁ(x/ =)

introduced in the previous sections, can be computed by From these ideas. we have a method as follows
algorithms for computing class-oriented concepts. ' '
We see that a concept is uniquely determined by its
extension and all the extensions of elements in, . :
PB(X/ =x) with hierarchy order as?(X/ =x) forms a (=12, [X]). Let £ = {[x] : 1 = %""’k}’ where
complete lattice which is isomorphic t#(X/ =). This ~ XINX]=0.(#j.i.j=1....kjandUi,[x] =X.
implies that we should focus on the construction of  Stép 2.2. Leta = 1. We obtain all the chains
extension of a concept iF#(X/ =x). Here, by Theorem C1.C2.-...Cy, between(xs] and the extension of the
3.1 and Theorem 3.2, we present algorithms to generate @@ximal elements in*(X/ =x) which contain [xq]
tree in class-oriented concept lattice. Meanwhile, Werespectltvelly. Let . a = CGa =
search out all the class-oriented concepts. (G \ Ujz1C) U max(Mj—.Cj),(t = 2,...,11). Let
oA = 1G] (C\UL1C) #0.)=2,....n}u{1} and
The core of an algorithm for computing the tree is &, stands for the family of all the constituent elements in

Step 2.1. It is easy to obtajr;] from the binary table,

shown in the following. allC € «.
Step 1.1 We easily obtaifx;j] from the binary table, Suppose we have obtain all thg andS, ina <m<
(j=12,...,|X]). Let A4 ={[x] :i=1,...,k}, where |
X]N[X]=0,(#j;i, i =1,...,k andU 1 [x] = X. Now let o = m+ 1. In #*(X/ =x), we gain all the
Step 1.2. Evidently, it hagq, | U [Xj,] # [Xi,] U [X;,] if chains betweerx,] and the maximal elements which
{ilajl} #+ {iz,jz},(il,jl,iz,jz = 1,...,|(), and besides, contain [Xa] but not contain[xl],...,[xa,z] and [ngl],
Xl < [x] U Xl # ji,j = 1,...,k). Let ie. we need only focus on the chains provided by
L ={Xx|U[x]:i1#]jandi,j=1,... k}. {xj]:j=a,a+1,... Kk} LetCqy,...,Cq, be all these
...... different  chains. Let % = Cq,%0 =
~ Step 1t Let# = {[Xili] U i) U ---ku i Dip #(Co \UZiCap) Umax(MiZ; Cay), (t = 2,...,8)}. Let
iy P# Qi,iz,... it =1,....k}. ¢ =3,...,K). Aa = {Ga| (Caq \Utj_:]i(caj) £0.j=2,....8)U{%a)

Therefore, we obtain{.%,.%.,..., %} of the and &, stands for the family of all the constituent

extensions of elements iBB(X/ =x) \ {(0,Y),(X,Yx)}  €lementsinalC € oq. _ ,
and the cover relations among them defined by (F1). Stép 2.3. The set of extensions of members in

From the binary table, we easily obtain the constitutionsZ (X/ =x) is {84 :a =1,....k} U{0} and the cover
of xI, (i=1,...,]X|) and receive the set of atoms in relationships defined by (F1) are shown by every,
B(X/) =x) as {([x],x]) :i =1,...,K)}. Moreover, it (9= 1,...,k), and besides, we receive®S for each

follows 4 = {(Ix,] U ... U [Nl | SESa(@=1..K.

x,)U...Ux] e 4},(t=1,..,k=1k), and further, . .
- _ Therefore, we obtaig”* (X/ =x). Evidently, </ # 0
Y - titutesz”* (X/ =x). Th . : a
{0.Y)} VALY .U Ay constitute (X/ =x). The is real owing to[xq| € €q, for eacha,(a =1,....k) . We

algorithm of Breath First Searching (BFS) for a spanning . . . .
tree is used here. Actually, a spanning tree of the diagrantl this method DFS (depth first searching) algorithm.

of B(X/ =x)\ {(X,Yx)} is just B*(X/ =x). This
approach is a little like to the BFS algorithm searching
out the tree of a graph. So, we call it BFS algorithm.

We present an illustrative example to show DFS
algorithm above to obtaig* (X / =x) for a given formal
context.

Next we provide a method to search out all the Example 3.1. A context(X,Y,l) in [5] is Table 1. The
extension ofA* (X/ =x). correspondent class-oriented concept lattice shosyn [
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We get the corresponding” (X,Y, 1), which is depicted
in Figure 1, is a tree.
Table 1 A formal context

po
X

NK
X
X

Im atics|dmyic

X

smvm

X

vc|at|Cs

X1
X2 .
X3
X4 .
X5 .

picture completion

picture arrangeme
block design
object assembly
digit symbol

X
X
X

X | X
X

X

X
X
X

X | X | X| X

X | X

po: perceptual organization, Im: ong-term memory, sm:

short-term memory, vm: visual memory, vc: visual-motor
coordination, at: abstract thought, cs: common sense, d
decision making,

ic: intellectual curiosity, ad: attention to detail.

The process of getting the extensions of all the%A

members ing* (X/ =x) as follows.
We can indicate from Table 1 that i#(X/ =x), the
least elementisd,Y) and the greatest elementis,0); in

addition,
xa] = {Xa}, (o] = {Xa}, [Xs] = {Xa,Xa}, [Xs] = {Xs}; Xul
= {po, at,cs,dm,ic,ad},xsl =

{po,Im,vm,ad},xol
{po,vc,at,dm,ad}, xsl = {sm,vm,vc}.
Step 1. All the extension of the atoms are
21 = {[xa], [x2], [xa], [xs] }.
Step 2. First, we compute all the maximal chains
generated witH [x1]} as follows.

Ci @ ] C [xa] U] C ] U x| U [X);
Ca: [ 1] € Pa]U ] C [x ] (o] U [Xs]
] C X U x| C [xa] U [xg] U [x];
Ca: [ ]C[XlU[Xs] [xa] U [xg] U [Xs]
] C© ] U] C xa] U [xs] U [xa];
Cs: [ 1] C [Xa] U [xs] C [xa] U [Xs] U [X3].
Second, we receive all the chaif§ (j = 1,...,6)
produced by{C;: j=1,...,6}.
1 =Cq, 6 = (Cz\@l) U max(Clﬂ(Cz) : [Xl] U [Xz] C
[Xa] U [x2] U [xg];
©3 = ((Cg\((clLJ(Cz)) @] max((Clﬂ(Czﬂ(C3) : [Xl] C

[Xa] U [xa];
Gy = Cy \ ((Cl uUCruU (Cg) @] max(ﬂ?zl(cj) . [Xl] C
[Xa] U [xa] U [xs];
65 = ((Cs \ ((Cl UCruCsu (C4)) @] maXﬂ?:l(Cj : [Xl] C
xa] U [xs];
66 - Cs\ ((C1UC2UC3UC4UC5) =0.

Thus, we obtainz = {61, %62, ¢3,%4,%5} andS; =
{xa], [xa] U [xa], [xa] U [xa], [Xa] U [Xs], [Xa] U [X2] U [Xa], [xa] U
[X2] U [Xs],, [X1] U [xa] U [xs]}.

Third, we compute all the maximal chains generated

with {[xz]} and not containingx;] as follows. Certainly,
[x] belongs to%; \ {[x]}.
Cy; [Xz] C [Xz] U [Xg] C [Xz] U [Xg] U [Xs];

At the same time, we obtaia, = {467, %65} andS, =
{[xa], [x2] U [xa], [x2] U [xs], [X2] U [a] U [xs] }.

Fifth, we compute all the maximal chains generated
with {[xs]} and not containing any elements{ipx], 2] }
as follows. Certainlyjxs] belongs taZ \ {[xa], [%2]}. Co :
[X3] C [X3] U[Xs].

Sixth, we get the chaiffy generated witH Co}. % :

we

[X3] C [X3] U [Xs].

Meanwhile, {%9}
S3 = {[xa], [xs] U [xs]}.

Seventh, we compute all the maximal chains produced
by {[xs]} and not containing any elements in
{[x1],[%2],[xs]} as follows. Certainly,[xs] belongs to

Eighth, we get%io produced by{Cio}. %10 : [Xs).
Simultaneously@, = {10} andG&4 = {[Xs]}.

Step 3. The set of extensions of elements in
(X/ =x) is {6 : j =1,...,4 U{0}. The hierarchy
relation among them are shown i, . j=1,...,4}.

0 C Sholds for eaclbe &j,(j =1,...,4).

The diagram of all the extensions of elements in
B (X =x) is Figure 1.

In fact, the diagram of#* (X/ =x) is Figure 1 if a
node stands for the extension of a corresponding element
in %X/ =x), that is, 0 : {(0,Y)};

D] {(DglxiD Y il o ] {(x] U g3l noxgh

and

obtain .24

M\ {[x], ¥, [Xa]}. C1o [Xs].

Da] U ] U ] = (%] U ] U], xil nxjl Nk}, where
p#aq,p,qe i jt}ijt=1235.
(11)

(12) (13) (19

Figure 1  Formal context generating a tree

DFxs;  @)=xals  B)=xal;  (@)=[xs];
xsl;  (B)=x1] U [xo;  (7)=[xd] U [xg];
X3, (9)=[x2] U [xs]; (10)=[x3] U [xs];
o] U [xs];  (12)7x1] U [x] U [xa];
[xs]; (14)=[X2] U [X3] U [Xs].

where
(B)=[xq) U
(8)=[x2] U
(11):[X1] U
(13)=x1] U [xg] U

4 Conclusion

Using the idea of tree which is similar to that in graph

theory, we find out the relationships between formal

contexts and trees in class-oriented concept lattices.
Simultaneously, we present an algorithm to compute the
trees in a class-oriented concept lattice. Through an
example, the algorithm is illustrated. In the future, we

hope to find much more results with the assistance of
graph theory to apply in the research of class-oriented
concept lattices, and also of FCA.
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with {(C7,(Cg}.
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