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Abstract: In this paper, we present necessary and sufficient conditions on input data for the output class-oriented concept lattice to
form a tree after one removes its greatest element. In addition, we present algorithms for computing the tree of a class-oriented concept
lattice constrained by equivalence relations.
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1 Introduction

Formal concept analysis (FCA) is a method of exploratory
data analysis that aims at the extraction of natural clusters
from object-attribute data tables. There are many types of
binary relations between objects have been studied [5] and
[11]. One of the clusters, called class-oriented concepts,
is naturally interpreted as human-perceived concepts in a
traditional sense [5] and [7].

This paper presents conditions for input data which
are necessary and sufficient for the output class-oriented
concept lattice constrained by equivalence relations to
form a tree after removing its greatest element. We
provide two algorithms for tree in class-oriented concept
lattices constrained by equivalence relations and give
illustrative examples. Though some characterizing trees
in concept lattices have been studied in [1], the
differences between concept lattices and class-oriented
concept lattices make this paper be valuable.

2 Preliminaries

We assume that a data set is given in terms of a formal
context as [8]. For simplicity, we only consider finite
cases. In this paper, all the notations and properties, FCA
are referred to [1] and [8]; class-oriented concept lattices
come from [1], [7] and [11]; lattice theory is seen [7] and
[9]; graph theory is cf. [4] and [10].

An object-attribute data table describing which
objects have which attributes can be identified with a
triplet (X ,Y, I) (called aformal context) whereX is the set
of objects,Y is the set of attributes, andI ⊆ X ×Y is a
relation. An object x ∈ X has the set of attributes:
xI = {y ∈ Y | xIy} ⊆ Y . Similarly, an attributey is
possessed by the set of objects:Iy = {x ∈ Y | xIy} ⊆ X .
For eachA ⊆ X andB ⊆ Y denote by

A∗ = {y ∈Y | for eachx ∈ A : (x,y) ∈ I} andB∗ = {x ∈
X | for eachy ∈ B : (x,y) ∈ I}.

In reality, we findA∗ = {y ∈ Y | A ⊆ Iy} =
⋂

x∈A xI
andB∗ = {x ∈ X | B ⊆ xI}=

⋂
y∈B Iy.

Two objects may be viewed as being equivalent if they
have the same description. Anequivalence relation can be
defined by forx,x′ ∈ X ,x ≡X x′ ⇔ xI = x′I.

With equivalence relation≡X , an object has the same
predecessor and successor neighborhood.For an objectx∈
X , the set of objects that are equivalent tox is called an
equivalence class of x and defined by≡X x = {x′ ∈ X |
x′ ≡X x}= {x′ ∈ X | x ≡X x′}= x ≡X= [x].

The family of all equivalence classes is denoted by
X/ ≡X= {[x]|x ∈ X}. A new family of subsets, denoted
by σ(X/≡X), can be obtained fromX/≡X by adding the
empty set /0 and making it closed under set union, which
is a subsystem of 2X and the basis isX/ ≡X . The
following properties hold:

(E1) A1,A2 ∈ σ(X/≡X)⇒ A1∩A2 ∈ σ(X/≡X);
(E2) A1,A2 ∈ σ(X/≡X)⇒ A1∪A2 ∈ σ(X/≡X).
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A pair (A,B),A ⊆ X ,B ⊆ Y , is called aclass-oriented
concept if A ∈ σ(X/≡X) andB = A∗. The set of objectsA
is called theextension of the concept(A,B), and the set of
attributesB is called theintension. For two class-oriented
concepts(A1,B1) and(A2,B2), we say that

(A1,B1) ≤ (A2,B2) if and only if A1 ⊆ A2
· · · · · · · · · · · · · · · · · · · · · (F1)

The family of all class-oriented concepts forms a
complete lattice calledclass-oriented concept lattice
which is denoted byB(X/ ≡X) in this paper. It gives a
hierarchical structure of the elements inσ(X/ ≡X) and
their corresponding attributes. The meet∧ and the join∨
are defined by

(A1,B1)∧(A2,B2)= ((A1∩A2),(A1∩A2)
∗),(A1,B1)∨

(A2,B2) = ((A1∪A2),(B1∩B2)) · · · · · · · · · · · · (F2).

3 Trees in class-oriented concept lattices

This paper will adopt the definition of trees similarly to
that in [1] as follows.

A finite partially ordered set(σ(X/ ≡X),≤T ) will be
called atree if for eacha,b ∈ X :
(Ti) there is an infimum ofa andb in (σ(X/ ≡X),≤T ),
and
(Tii) there is a supremum of a and b in
(σ(X/≡X),≤T )⇔ a andb are comparable.

Evidently, the notation tree above is actually a real
rooted tree as that defined in graph theory (see [4]), but
not vice versa. However, the authors in [1] use the similar
tree to the above dealing with many properties for concept
lattices. Analogously to [1], this section will work on the
family of class-oriented concept lattices relative to trees.

According to lattice theory, we find that the condition
(Ti) is satisfied for eachB(X/ ≡X); the condition (Tii) is
satisfied if and only ifB(X/≡X) is linearly ordered.

Based on these, we can express that
the whole class-oriented concept lattice is a tree if

and only if it is linearly ordered.
In fact, this case is not valuable to observe.

We mainly focus on trees which appear inB(X/ ≡X)
if we remove its greatest element(X ,YX), where
YX =

⋂
x∈X xI. Let Bf(X/≡X)

denote B(X/ ≡X) \ {(X ,YX)}. In what follows, we
investigate the conditions whichBf(X/ ≡X) becomes a
tree.

3.1 Formal contexts generating trees

The following assertion characterizesBf(X/≡X) to be a
tree.

Theorem 3.1. Let (X ,Y, I) be a formal context. Then
Bf(X/ ≡X) is a tree if and only if, for any concepts
(A,B),(C,D) ∈ Bf(X/ ≡X) at least one of the following
is true:

(1) A ⊆C or C ⊆ A,
(2) A∪C = X .

Proof. Similarly to the proof for Theorem 2 in [1], the
need consequences are obtained.�.

We will take advantage of the following notion.

Definition 3.1. Let (X ,Y, I) be a formal context. We say
that(X ,Y, I) generates a tree ifBf(X/≡X) is a tree.

Recall that due to (F1) and the definition of
class-oriented concepts,([x],xI) is a class-oriented
concept for anyx ∈ X and covers the least element( /0,Y )
in B(X/ ≡X). In addition, for any(A,B) ∈ B(X/ ≡X),
we receiveA =

⋃
x∈A[x] and B =

⋂
x∈A xI according to

definitions and the finite of|X | and|Y |. The extensions of
all the atoms{([x],xI) : x ∈ X} are important in the
following theorem which characterizes contexts
generating trees.

Theorem 3.2. Let (X ,Y, I) be a formal context. Then
(X ,Y, I) generates a tree if and only if, for any
(A,B) ∈ Bf(X/≡X), there existsa ∈ A such that there is
one and only one chain between /0 andA in Bf(X/ ≡X)
satisfying /0⊂ [a]⊂ A1 ⊂ . . .⊂ An = A.

Proof. (⇒) It is evident by Definition 3.1.
(⇐) If (A,B) covers the least element inBf(X/≡X),

i.e A = [x] for x ∈ A, then the needed result is accepted.
Next, supposeA 6= [x] for any x ∈ A. We prove the

needed result.
Otherwise, in light of definition of a tree, one of the

following cases will be happen.
Case 1. There are two incomparable elements

(A,B),(C,D) ∈ B
f(X/≡X) such that

(A,B)∨ (C,D) ∈ Bf(X/≡X).
Case 2.(A,B)∧ (C,D) /∈ Bf(X/ ≡X) holds for some

two elements(A,B),(C,D) ∈ Bf(X/≡X).
We analyze the two cases respectively.
Under the supposition of Case 1:
Both (A,B)< (A,B)∨ (C,D) and

(C,D)< (A,B)∨ (C,D)
hold owing to the incomparable property of(A,B) and
(C,D).

SinceB(X/ ≡X) is a complete lattice with the set of
atoms{([x],xI) | x ∈ X}, we obtainU =

⋃
x∈U [x] for each

element(U,V ) ∈ B(X/≡X). The given condition implies
that there exists at least a chain between /0 andA, between
/0 andC satisfying /0⊂ [x1] ⊂ a1 ⊂ . . . ⊂ an = A and /0⊂
[x2] ⊂ c1 ⊂ . . . ⊂ cm =C, wherex1 ∈ A andx2 ∈ C. Thus,
for (A,B)∨ (C,D) = (A∪C,B∩D), there are two different
chains /0⊂ [x1] ⊂ a1 ⊂ . . . ⊂ an = A ⊂ A1 ⊂ . . . ⊂ At =
A∪C and /0⊂ [x2]⊂ c1 ⊂ . . .⊂ cm =C ⊂C1 ⊂ . . .⊂Cs =
A∪C, a contradiction to the known condition.

Under the supposition of Case 2:
If (A,B) and (C,D) are comparable. We obtain the

existence of infimum of(A,B) and(C,D) in B
f(X/≡X).

This follows a contradiction to the supposition. Hence,
(A,B) and(C,D) are incomparable.

BecauseB(X/≡X) is a complete lattice, we assert that
the infimumα ∧ β ∈ B(X/ ≡X) holds for eachα,β ∈
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B(X/≡X). In addition, it is easily seenα ∧β < α,β if α
andβ are incomparable.

Therefore, combining
Bf(X/≡X) = B(X/ ≡X)\ {(X ,YX)}

with the two incomparable(A,B),(C,D) ∈ Bf(X/ ≡X),
we receive(A,B)∧ (C,D) ∈ Bf(X/ ≡X), a contradiction
to the supposition.

Summing up the above analysis, we may be assured
thatBf(X/≡X) is a tree.�.

3.2 Algorithms for trees in class-oriented
concept lattices

Trees in class-oriented concept lattices, as they were
introduced in the previous sections, can be computed by
algorithms for computing class-oriented concepts.

We see that a concept is uniquely determined by its
extension and all the extensions of elements in
B(X/ ≡X) with hierarchy order asB(X/ ≡X) forms a
complete lattice which is isomorphic toB(X/ ≡X). This
implies that we should focus on the construction of
extension of a concept inB(X/ ≡X). Here, by Theorem
3.1 and Theorem 3.2, we present algorithms to generate a
tree in class-oriented concept lattice. Meanwhile, we
search out all the class-oriented concepts.

The core of an algorithm for computing the tree is
shown in the following.

Step 1.1 We easily obtain[x j] from the binary table,
( j = 1,2, . . . , |X |). Let L1 = {[xi] : i = 1, . . . ,k}, where
[xi]∩ [x j] = /0,(i 6= j; i, j = 1, . . . ,k) and

⋃k
i=1[xi] = X .

Step 1.2. Evidently, it has[xi1]∪ [x j1] 6= [xi2]∪ [x j2] if
{i1, j1} 6= {i2, j2},(i1, j1, i2, j2 = 1, . . . ,k), and besides,
[xi] ⊂ [xi] ∪ [x j],(i 6= j; i, j = 1, . . . ,k). Let
L2 = {[xi]∪ [x j] : i 6= j andi, j = 1, . . . ,k}.

. . . . . .
Step 1.t. LetLt = {[xi1] ∪ [xi2] ∪ . . . ∪ [xit ] : ip 6=

iq; p 6= q; i1, i2, . . . , it = 1, . . . ,k}. (t = 3, . . . ,k).

Therefore, we obtain {L1,L2, . . . ,Lk} of the
extensions of elements inB(X/ ≡X) \ {( /0,Y ),(X ,YX )}
and the cover relations among them defined by (F1).
From the binary table, we easily obtain the constitutions
of xiI, (i = 1, . . . , |X |) and receive the set of atoms in
B(X/ ≡X) as {([xi],xiI) : i = 1, . . . ,k)}. Moreover, it
follows Ht = {([xi1] ∪ . . . ∪ [xit ],

⋂t
j=1 xi j I) |

[xi1]∪ . . .∪ [xit ] ∈ Lt} ,(t = 1, . . . ,k − 1,k), and further,
{( /0,Y )}∪H1∪ . . .∪Hk−1 constitutesBf(X/ ≡X). The
algorithm of Breath First Searching (BFS) for a spanning
tree is used here. Actually, a spanning tree of the diagram
of B(X/ ≡X) \ {(X ,YX)} is just Bf(X/ ≡X). This
approach is a little like to the BFS algorithm searching
out the tree of a graph. So, we call it BFS algorithm.

Next we provide a method to search out all the
extension ofBf(X/≡X).

[xα ] ⊂ [xα ] ∪ [xi] ⊂ [xα ] ∪ [xi1] ∪ [xi2] ⊂ . . . ⊂
[xα ]∪ [xi1]∪ [xi2]∪ . . .∪ [xit ] is a maximal chain from[xα ]
to [xα ] ∪ [xi1] ∪ . . . ∪ [xit ], where α = 1, . . . ,k;α /∈
{i1, . . . , it}; ip 6= iq, p,q = 1, . . . , t; i1, i2, . . . , it = 1,2, . . . ,k
and |{1, . . . , t} ∪ {α}| < k. Hence, we obtain many
chains. For every chain, we give it a positive integer
number and all these numbers are not repeated. In other
words, all the chains is sequenced in number natural
order. Theorem 3.2 states that every elements in
Bf(X/≡X) is in a unique maximal chain.

SinceBf(X/ ≡X) = B(X/ ≡X) \ {(X ,YX)} follows
that for (A,B) ∈ B(X/ ≡X), if (A,B) not as the greatest
element(X ,YX ), then(A,B) ∈ Bf(X/ ≡X). Thus, every
element in class-oriented concept lattice constrained by
an equivalence relation can be found if we search out
Bf(X/≡X).

From these ideas, we have a method as follows.

Step 2.1. It is easy to obtain[x j] from the binary table,
( j = 1,2, . . . , |X |). Let L1 = {[xi] : i = 1, . . . ,k}, where
[xi]∩ [x j] = /0,(i 6= j, i, j = 1, . . . ,k) and

⋃k
i=1[xi] = X .

Step 2.2. Let α = 1. We obtain all the chains
C1,C2, . . . ,Cγ1 between[xα ] and the extension of the
maximal elements inBf(X/ ≡X) which contain [xα ]
respectively. Let C1 = C1,Ct =
(Ct \

⋃t−1
j=1C j) ∪ max(

⋂t
j=1C j),(t = 2, . . . ,γ1). Let

A1 = {C j| (C j \
⋃ j−1

i=1 Ci) 6= /0, j = 2, . . . ,γ1}∪ {C1} and
S1 stands for the family of all the constituent elements in
all C ∈ A1.

Suppose we have obtain all theAα andSα in α ≤m<
k.

Now let α = m+ 1. In Bf(X/ ≡X), we gain all the
chains between[xα ] and the maximal elements which
contain [xα ] but not contain[x1], . . . , [xα−2] and [xα−1],
i.e. we need only focus on the chains provided by
{[x j] : j = α,α +1, . . . ,k}. Let Cα1, . . . ,Cαδ be all these
different chains. Let Cα1 = Cα1,Cαt =

(Cαt \
⋃t−1

j=1Cα j) ∪ max(
⋂t

j=1Cα j ),(t = 2, . . . ,δ )}. Let

Aα = {Cαt | (Cαt \
⋃t−1

j=1Cα j) 6= /0, j = 2, . . . ,δ} ∪ {Cα1}

and Sα stands for the family of all the constituent
elements in allC ∈ Aα .

Step 2.3. The set of extensions of members in
B

f(X/ ≡X) is {Sα : α = 1, . . . ,k}∪ { /0} and the cover
relationships defined by (F1) are shown by everyAα ,
(α = 1, . . . ,k), and besides, we receive /0⊂ S for each
S ∈Sα ,(α = 1, . . . ,k).

Therefore, we obtainBf(X/ ≡X). Evidently,Aα 6= /0
is real owing to[xα ] ∈ Cα1 for eachα,(α = 1, . . . ,k) . We
call this method DFS (depth first searching) algorithm.

We present an illustrative example to show DFS
algorithm above to obtainBf(X/≡X) for a given formal
context.

Example 3.1. A context(X ,Y, I) in [5] is Table 1. The
correspondent class-oriented concept lattice shown [6].
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We get the correspondingBf(X ,Y, I), which is depicted
in Figure 1, is a tree.

Table 1 A formal context

po lm sm vm vc at csdm ic ad
x1 : picture completion × × × ×
x2 : picture arrangement× × × × × ×
x3 : block design × × × × ×
x4 : object assembly × × × × ×
x5 : digit symbol × × ×

po: perceptual organization, lm: ong-term memory, sm:
short-term memory, vm: visual memory, vc: visual-motor
coordination, at: abstract thought, cs: common sense, dm:
decision making,
ic: intellectual curiosity, ad: attention to detail.

The process of getting the extensions of all the
members inBf(X/≡X) as follows.

We can indicate from Table 1 that inB(X/ ≡X), the
least element is( /0,Y ) and the greatest element is(X , /0); in
addition,
[x1] = {x1}, [x2] = {x2}, [x3] = {x3,x4}, [x5] = {x5}; x1I =
{po, lm,vm,ad},x2I = {po,at,cs,dm, ic,ad},x3I = x4I =
{po,vc,at,dm,ad},x5I = {sm,vm,vc}.

Step 1. All the extension of the atoms are
L1 = {[x1], [x2], [x3], [x5]}.

Step 2. First, we compute all the maximal chains
generated with{[x1]} as follows.

C1 : [x1] ⊂ [x1] ∪ [x2] ⊂ [x1] ∪ [x2] ∪ [x3];
C2 : [x1]⊂ [x1]∪ [x2]⊂ [x1]∪ [x2]∪ [x5];

C3 : [x1] ⊂ [x1] ∪ [x3] ⊂ [x1] ∪ [x3] ∪ [x2];
C4 : [x1]⊂ [x1]∪ [x3]⊂ [x1]∪ [x3]∪ [x5];

C5 : [x1] ⊂ [x1] ∪ [x5] ⊂ [x1] ∪ [x5] ∪ [x2];
C6 : [x1]⊂ [x1]∪ [x5]⊂ [x1]∪ [x5]∪ [x3].

Second, we receive all the chainsC j ( j = 1, . . . ,6)
produced by{C j : j = 1, . . . ,6}.
C1 = C1; C2 = (C2 \C1)∪ max(C1 ∩C2) : [x1]∪ [x2] ⊂
[x1]∪ [x2]∪ [x5];
C3 = (C3 \ (C1 ∪ C2)) ∪ max(C1 ∩ C2 ∩ C3) : [x1] ⊂
[x1]∪ [x3];
C4 = C4 \ (C1 ∪ C2 ∪ C3) ∪ max(

⋂4
j=1C j) : [x1] ⊂

[x1]∪ [x3]∪ [x5];
C5 = (C5 \ (C1 ∪C2 ∪C3 ∪C4))∪max

⋂4
j=1C j : [x1] ⊂

[x1]∪ [x5];
C6 : C6\ ((C1∪C2∪C3∪C4∪C5) = /0.

Thus, we obtainA1 = {C1,C2,C3,C4,C5} andS1 =
{[x1], [x1]∪ [x2], [x1]∪ [x3], [x1]∪ [x5], [x1]∪ [x2]∪ [x3], [x1]∪
[x2]∪ [x5], , [x1]∪ [x3]∪ [x5]}.

Third, we compute all the maximal chains generated
with {[x2]} and not containing[x1] as follows. Certainly,
[x2] belongs toL1\ {[x1]}.

C7 : [x2] ⊂ [x2] ∪ [x3] ⊂ [x2] ∪ [x3] ∪ [x5];
C8 : [x2]⊂ [x2]∪ [x5]⊂ [x2]∪ [x5]∪ [x3];

Fourth, we get all the chains{C j : j = 7,8} generated
with {C7,C8}.
C7 = C7; C8 = (C8 \C7)∪max(C7∩C8) = [x2] ⊂ [x2]∪
[x5] .

At the same time, we obtainA2 = {C7,C8} andS2 =
{[x2], [x2]∪ [x3], [x2]∪ [x5], [x2]∪ [x3]∪ [x5]}.

Fifth, we compute all the maximal chains generated
with {[x3]} and not containing any elements in{[x1], [x2]}
as follows. Certainly,[x3] belongs toL1\ {[x1], [x2]}. C9 :
[x3]⊂ [x3]∪ [x5].

Sixth, we get the chainC9 generated with{C9}. C9 :
[x3]⊂ [x3]∪ [x5].

Meanwhile, we obtain A3 = {C9} and
S3 = {[x3], [x3]∪ [x5]}.

Seventh, we compute all the maximal chains produced
by {[x5]} and not containing any elements in
{[x1], [x2], [x3]} as follows. Certainly,[x5] belongs to
L1\ {[x1], [x2], [x3]}. C10 : [x5].

Eighth, we getC10 produced by{C10}. C10 : [x5].
Simultaneously,A4 = {C10} andS4 = {[x5]}.

Step 3. The set of extensions of elements in
Bf(X/ ≡X) is {S j : j = 1, ...,4} ∪ { /0}. The hierarchy
relation among them are shown in{A j : j = 1, . . . ,4}.
/0⊂ S holds for eachS ∈S j,( j = 1, ...,4).

The diagram of all the extensions of elements in
Bf(X/≡X) is Figure 1.

In fact, the diagram ofBf(X/ ≡X) is Figure 1 if a
node stands for the extension of a corresponding element
in B

f(X/ ≡X), that is, /0 : {( /0,Y )};
[x j] : {([x j],x jI)}; [xi] ∪ [x j] : {([xi] ∪ [x j],xiI ∩ x jI)};
[xi]∪ [x j]∪ [xt ] : {([xi]∪ [x j]∪ [xt ],xiI ∩ x jI ∩ xt I)}, where
p 6= q, p,q ∈ {i, j, t}; i, j, t = 1,2,3,5.

/0
Figure 1 Formal context generating a tree
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where (1)=[x5]; (2)=[x1]; (3)=[x2]; (4)=[x3];
(5)=[x1] ∪ [x5]; (6)=[x1] ∪ [x2]; (7)=[x1] ∪ [x3];
(8)=[x2] ∪ [x3]; (9)=[x2] ∪ [x5]; (10)=[x3] ∪ [x5];
(11)=[x1] ∪ [x2] ∪ [x5]; (12)=[x1] ∪ [x2] ∪ [x3];
(13)=[x1]∪ [x3]∪ [x5]; (14)=[x2]∪ [x3]∪ [x5].

4 Conclusion

Using the idea of tree which is similar to that in graph
theory, we find out the relationships between formal
contexts and trees in class-oriented concept lattices.
Simultaneously, we present an algorithm to compute the
trees in a class-oriented concept lattice. Through an
example, the algorithm is illustrated. In the future, we
hope to find much more results with the assistance of
graph theory to apply in the research of class-oriented
concept lattices, and also of FCA.
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