%N S\ 61

Information Sciences Letters
An International Journal

Inf. Sci. Lett. 11, No. 1, 61-68 (2022)

http://dx.doi.org/10.18576/is1/110108

Weingarten Isotropic Embankment Surfaces According
to Adapted Frame

W. M. Mahmoud'>* and S. M. Abd ElHafez'

'Department of Mathematics, Faculty of Science, Aswan University, Aswan, Egypt
2 Academy of Scientific Research and Techonolgy(ASRT), Egypt

Received: 2 Jun. 2021, Revised: 12 Sep. 2021, Accepted: 9 Oct. 2021
Published online: 1 Jan. 2022

Abstract: The Tubembankmentlike surfaces with adapted frames had discussed in this study. We get the parametric description of
the Isotropic Tubembankmentlike Surfaces and give a computational application to evident these surfaces by introducing them in
isotropic 3—space. Weingarten of Isotropic Tubembankmentlike Surfaces is also calculated in terms of Gaussian and mean curvatures.
Mathematica 3D visualizations are using to create these curvatures. We also present new applications for Tubembankmentlike surfaces

in Isotropic space, as well as surface characterization.
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1 Introduction

In this paper, we investigate the (x,y)—Weingarten
Tubembankmentlike surfaces in Isotropic 3—space that
satisfy that all surfaces under discussion are smooth,
regular, and topologically connected unless otherwise
stated. We clarify the fundamental concept of the Frenet
frame in Isotropic 3—space, as well as the parametric
equation of the Tubembankmentlike surface, to prepare
some fundamental facts about the first and second
fundamental forms, the Gaussian curvature and mean
curvature in the (x,y)—Weingarten according to Frenet
frame in I3 and (x,y)—Weingarten Tubembankmentlike
surface.

The Jacobi equation is satisfied by a Weingarten surface,
often known as a W—surface.

‘I’(Ji/,%):det(j% f;;)zo (1)

where #" denotes Gaussian curvature and .7Z’denotes the
surface’s mean curvature. A Weingarten surface is a
surface with constant Gaussian curvature or constant
mean curvature [1].

Several geometers ([1],[2],[3]) have examined the
We-surface and come up with interesting results.

An embankment surface is a one-parameter family of

cones enclosure that is very important for engineers
drawing embankment construction plans (for more on
embankment constructions, see [4]).

Future structural engineers, on the other hand, will need
to be familiar with Gaussian and mean curvatures. For
example, in a uniform state of tensile prestressing, a
Tensile fabric structure (such as a membrane roof)
behaves like a soap film stretched over a wire bent in the
shape of a closed space curve. Soap film takes on a shape
that has the smallest area of all the other surfaces
stretched over the same wire; this surface is therefore
called minimal surface [5].

2 Isotropic space

Metrics and motion Isotropic geometry is based on the
following affine transformation group Gg of affine
transformations (x,y,z) — (',y,7’) in R®

X =d+xcos(§) —ysin(§),
Y = e+xsin({) +ycos(£), 2
7 =fHcx+cy+z,

where d, e, f, ¢1, ¢, £ €R.
Isotropic congruence transformations or isotropic motions
are examples of affine transformations.
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The distance between two points that is isotropic
P = (x1,y1,21) and Q = (x2,y2,22) is defined as the
Euclidean distance,

d(P.0): =/ (1 —x2)* + (11 —2)?

Let X = (x1,y1,21) and ¥ = (x2,y2,22) be vectors in 131.
The isotropic inner product of X and Y is defined by

)2 if x,-:yi:O
(X, Y)i= {x1x2 +yiy2 if otherwise

3)

Also,consider y : [ — 131 as a regular curve with
/ d')/
ot
principal normal vector field, and unit bi-normal vector
field, respectively. The Frenet-Serret frame is defined by
T, N, A and its formulas are provided by

(r) # 0. If v has unit tangent vector field, unit

s 0 x O[T
Nl=]-x 0 | |N 4)
z 0 —t0||#

where

W7, 7)=h(N N)=h(BRB)=1, g
WTN)=h(T,B)=h(N,B)=0.

Isotropic curvature and isotropic torsion of 7y are
represented by x and 7, respectively, [10].

A surface S immersed in 13' is called admissible if it has
no isotropic tangent planes.

A surface I in I} by

Eel(‘Pv 19) = (Eell (‘Pv ﬁ)vne12(¢a 19),179[3 (‘Pv 1))) (6)

For a surface that is always totally isotropic, the
coefficients g11,g12, g2 of the first fundamental forms for
the induced metric and the coefficients L11, L1o,Los of the
second fundamental forms for the normal vector field
found. S’s 1st and 2nd fundamental forms are defined by

I = g11 d¢2 + g12 d¢d§ + g22 dﬁzv (7)
II= Ly d¢2-‘r L1io d(bdf} + Loo dv?

where

gu=2(I3,13),
g =z Iy, Iy), Lig
_ det (I3 Ip )

>
\V 811822 87>

since g11820 — g3, > 0.

@ = (0,0, 1) denotes the isotropic unit normal vector field.
The Gaussian curvature %~ and mean curvature .7 are
defined by using the classical notation above.

_ L1l — L3, v g11loo —2g1olio + L1182
811822 — g%g 7 811822 — g%g

The surface S is said to be isotropic flat if 7" (resp. )
vanishes (resp. isotropic minimal) [[6]- [7]- [8]].

g12 =2 (1—&)71—‘19) )
_ der(I§ Iy Tyo)
Vegn—g, (8)
L det (Ty.Tp.Tyy )
20 = — .

L1 >
\/ 811822—87>

H

3 TubeEmbankmentlike surface in 7}

If a one-parameter family of regular implicit surfaces
¥ : g(X,1) = 0,1 € [11,12]. The intersection curve of two
neighbored surfaces ¥, and W,, fulfills the two
equations g(X,1) =0 and g(X,1+ A 1) = 0. We calculate
the limit for A 1 — 0 and we get

X,1)—g(X A
e e A BN
At—0 Al

The following definition is based on this.

Definition 1./9] Let ¥, : g(X,1) = 0,1 € [11,12] be a one
parameter family of regular implicit C*>— surfaces.
The surface that the two equations define

8X.1)=0,  &(X,)=0

is called an envelope of the given family surfaces.

Definition 2./9] Let I" : X = r(s) = (a(s),b(s),1(s)) be a
regular space curve and 0 < { € R with ‘fl/‘ <\d?+b"2.

The envelope of the one parameter family of cones
co) — 2 2 2 2
8(Xzs) = (x—a(s))"+ (y=b(s))" = (z—1(s))" =0
is called an embankment surface and I its base curve.
We’ll look at a special case of embankment surface:

Remarklet y: I C R — 131 be a non-zero curvature
Tubemankmentlike surface with a unit speed directrix
curve I

Lot = ¥(9) +1 (cos(D)A(9) +sin(B)B(¢)) (9)
where 1 = V(2 + 1.

The Tubemankmentlike surface equation in 131 is given
by

et = v(9) +16(9,9) (10)

The base curve y and the director curve 6 mentioned,
where 7 is a differentiable curve parametrized by its arc
length, and J is a differentiable curve parametrized by its
arc length, i.e., <y/,y/>' =1land (8,6), = 1.
14
The curve 0 is orthogonal to the tangent vector field

7 of the base curve ¥, i.e., <5/, %> We have two types:

1.The plane curves y and & are non isotropic
parametrized by y = (sin(¢),0,cos(¢)) and
0 = (0,cos(¥),sin(®¥)). Then the surface S is
parameterized by

Lo =7v(9)+ 16(9,0) )
= (sin(@),zcos(¥),cos(@) + ¢ sin(H)).
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2.The isotropic curve y = (0,0,sin(¢)) and non
isotropic  space curve O parametrized Dby
6 = (0,cos(®¥),sin(¥¥)), where (8,8); = 1.Then the
surface S is parametrized by

Loy = v(9) + 16 0.9
= (0, clos(g(),s)in@)j— l si)nw)). (12)

If we refer to the surfaces generated by (11) and (12) of
Type 3 and Type 4 in isotropic Tubemankmentlike surfaces
I}, respectively ([111,[12]).

4 Tubemankmentlike surfaces Satisfying
Al = Aile,

4.1 Tubemankmentlike surfaces of type 3

In this section, we discussed the Tubembankmentlike
surface of Type 3 in 13' that fulfills the equation

ALy, = A, (13)
where ; e R,i=1,2,3 and
Al = (ALe, , ALy, , ALy, )
where

Lo, =sing, Ijg, = 1cos(¥), Ij, =cos(¢)+isin(1h).
For the Tubembankmentlike surface given by (11), the

coefficients of the first and second fundamental forms are

11 — (cos(9) — (cos(9) +1 cos(9))k(9))
Hsin(9) — K(9)sin(9) -+ sin(9)<(9)
g1 = 1 sin(9)(sin(9) — K(9) sin(9) +1 sin(9)z(9)
g =17 sin2(19)
(14)

Lis = (~2-+ K(0))sin(8)7(9) — 1 sin(9)(9)
+(cos(9) + 1 cos(B))T (9) (15)
L12 =—1 Sin(ﬁ)f((]’), L22 =—1 sin(z?),

respectively. The Gaussian curvature .#  and the mean
curvature J¢ are

(224 %(9))sin(9)T(¢) + (cos(9) + cos())7 (9)

tsin(9)(cos(¢) — (cos(¢) +1cos())x(9))2
(16)

A = —((csc(V)

+ (1 (2003(¢)+ 1 cos(¥))cot(V)
+csc(® )))K‘(
(¢

P42 sin(9)7(9)

—K(9)(2( ¢ cos(9)cot(D) +cse(B)) + ¢ sin(9)7(¢))
— 1(cos(9)+ 1 cos(9))7 (9))/(2 1 (cos(9)(—1+K(9))
+1 cos(9)x(9))?))

(17)
respectively.

Theorem 4.1.1 The isotropic-Tubembankmentlike

surface given by (11) are isotropic flat .2 = 0 under the
following condition

o(9) = — (cos(¢) +1 cos(ﬁ))csc(ﬁ)‘c/(gb)

—24x(¢)
Proof. A Tubembankmentlike surface satisfies the

equation .#~ = 0 from Eq. (16), We have

!

(—=2+x(9))sin(9)7(9) + (cos(¢) + ¢ cos(¥))7 (9) =0

By solving this equation we have that

cos(9) +1 cos(8))7
(o) - (eos(9) 1 cos(®))7'(9)
—2+x(9)
Theorem 4.1.2 The isotropic-Tubembankmentlike

surface (11) is harmonic 7 = 0 under the following
condition

csc(@)ese(d) — 1cos(9)T (¢) — 2 cos(D)7 ()
21 ’

()=~

Proof. A Tubembankmentlike surface satisfies the
equation .7 = 0 from Eq. (17), We have

csc() + (1(2cos(¢) +1cos(D)) cot(D) 4 csc(3)) k2(¢)
+2isin(¢)T(9) — K(q))(Z(zcos(q))cot(ﬁ),—i— cse(9))
+1sin(@)7(9)) —1(cos(9) +cos(8))7 (9) =0

then,

csc(@)csc(¥) — zcos(q))r/(q)) —2 cos(ﬁ)r/(q))
21

() =—
(18)
Theorem 4.1.3 The isotropic-Tubembankmentlike

surface given by (11) is Weingarten surface iff the curve
is a straight line and satisfies one of two conditions

1.7(¢) =0

2.T(¢) :7( 2cos?(¢) cse(®) )

1 (7sin(¢)—sin(3¢))/*

Proof. Weingarten Tubembankmentlike surface satisfies
Jacobi equation

Ho = (cscw><< sin(9) + K(9) sin(9)
~(cos(9) +1 cos(9))K (9))(~2+ x(9)) sin(9)
+cos(9) +1 cos(8))7 (8))— (cos(#) — (cos(

1 cos(9)) k(¢ ))(T(¢)( 2cos(¢) + cos(¢) k(
+sin(@)K’ () + (=3 + x(9))sin(9)7 () + ( )
+1 cos(¥)) )/(z (cos(¢) — (cos(¢) +1 cos()

7(9)

0)

0)

(cos(9)

)K(9))°).

Hy = ((cos(9) — (cos() +1 cos(8))x(9)) (9) +2x(9)
)

)+
((—2+k(9))sin(¢)T() + (cos(9) +1 cos(8))7 (9))
+(1/z)cot(ﬁ)cos(ﬁ)(cos@) — (cos(@) 41 cos(¥))x(9))
((=2+x(¢))sin(9)7(9) + (cos(¢)

+ COS(ﬁ))T,(¢)))/(COS(¢) — (cos(¢) +1 cos(9))x(¢))
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Ay = (-~ ((sin(9) ~ k(9)sin(9) + (cos(9)
+1 cos(9))x (9))(csc(¥) + (1 (2cos(9)

+1 cos()) cot() +csc(¥)) k(¢ i

—xk(9)(2(z cos(¢)co

1 5in()7(9)) — ¢ (cos(6

—cos(¢)(—1
+1 cos(ﬂ)K((I)))( 21 cot(V)k?(9)si

+CSC(19))K(¢)K/(¢) —(2(r cos(¢) cot(13)
+ese(D)) +1 sin(9)7(9))K (9) + 31 sin(9)7 (¢)
—1k(9)(cos(9)7(9) +sin(9)(~2cot(d) +7(9)))
—1 (cos(9) +1 cos(1¥))
(7 (¢))))/(21 (cos(9)(—1+K(9)) +1 cos(8)x(9))*)
,and

"

Sy = <72K(¢)sm( )(ese(®) +

“+icos(¥))cot(¥) +csc(¥)) Kk
—x(¢)(2(zcos(¢)cot() + ;
—i(cos(¢) +icos(D))T (¢))+
(—cos(¢) + (cos(¢) +cos(D))K(9))
(cos(®) —2(icos(¢ )+Cos(l9)) (¢

2 )
+K,2(¢)(2icos (@) +cos() (1 + 12 +2sin(9))) — 12 sin(19)
TI(‘P)))/( (cos(@)(—1+K(9)) +1cos(3)K(9))*)

By apply J#y 5%y = Jy, Since this equation leads to
one of two conditions:

L.7(¢)=0
2.7(¢) = —

(1(2cos(¢)

2(¢) 4 2sin(9)T(9)
csc()) +isin(9)T(9))
(1/1)csc()?

K
K

(M)
1 (7sin(¢)—sin(3¢))

4.2 Tubemankmentlike surfaces of type 4

In this section, we discussed the Tubembankmentlike
surface of Type 4 in 131 that fulfills the equation

ALy, = A, (19)
where ; e R,i=1,2,3 and
ATy, = (ALje, , Ao, , ALy, )
where
Ly =0, Iy, = 1cos(¥), Iy, =sin(@)+ 1 sin().

For the Tubembankmentlike surface given by (12), the
coefficients of the first and second fundamental forms are

g1 = 1% cos?(9)k>(9) + (sin(9) +1 sin(9))*7*(9)
g12 = 1 sin(¥)(sin(9) + ¢ sin(3)T(9), goo = 1> sin’(V)

(20)
L1 = —sin(¢) — (sin(¢) +1 sin())72(9) + zcos(ﬁ)f/(q)),
Lio = —sin(¥)7(¢), Lo = —1 sin(®9),
(21

respectively. The Gaussian curvature % and the mean
curvature ¢ are

= sin()+sin(9)72(¢) —1cos(9)7 (9)

BK2(¢)sin(¥) cos? () (22)

H = — (zzcsc(ﬂ)lcz((b) +sec(¥)(sec(¥)sin(@) (1 +csc()

Sin(9))72(9) +1(sec()sin(9) — 17 (4))) )/ (2° K(9))

(23)

respectively.

Theorem 4.2.1 The

surface given by (12) are developable % = 0O satisfies

==+/—1+1cos(¥)csc(d)7'(9).

Proof. A Tubembankmentlike surface satisfies the

equation # = 0 from Eq. (22), We

sin(¢) +sin(¢)72(9) — 1cos(¥)7 (¢) = 0. We get

7(¢) = ++/—1 +1cos(¥) csc(9) 7 ().

Theorem 4.2.2 The isotropic-Tubembankmentlike surface

(12) is isotropic minimal under one of two condition.

1.K(¢) _ (3 sec(l?)sinl(gb)tan(l?))
2K(¢) _ (S sec(ﬂ)sinl((p)tan(l?))

isotropic-Tubembankmentlike

have

Proof. A Tubembankmentlike surface satisfies the
equation 7 = 0 from Eq. (23), We have

— (P esc() k(¢ )+sec(19)(sec(19)sm(¢)(l
+csc(¥)sin(9)) T2 () + 1(sec(d)sin(¢ )fn' (9))) =

then we have one of these conditions

1.K(¢) _ (3 sec(l?)sinl(gb)tan(l?))
2K(¢) _ (S sec(ﬂ)sinl((p)tan(l?))

Theorem 4.2.3 The Weingarten isotropic
Tubembankmentlike surface given by (12) satisfies the
following conditions:

o cos(¢—1)—cos(¢+1)
k(¢) = i( W)
or

K(¢) = 2tan(¢)x (¢)

if the curve 7y is the straight line.
Proof. Weingarten Tubembankmentlike surface satisfies

Jacobi equation

Sy =~ (1/(PK3(9))) esc(v) sec(8)* (2K (9) (sin(9)
+5in(9)7%(9) — 1 cos(D)7 (9)) — k(9) (cos(¢) +cos(9)7*(9)
+25in(9)7(9)7 (9) — 1 cos(9) (< (9)))

Ty = (sec(V)(—csc (13)+23ec (9)) sm( Y(1+1%(9))
+41 cot(20) esc(20)7 (9))/ (P K2(9))
My = (1/(2°%*(¢))) tan( zzcotz(ﬁ)csc(ﬁ)K3(¢)
Q) (D) (8) - 250 () 1 e ()
22(p) ++ sec(d)(~2sec(9) sin(9) + 17 (9)))
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,and

Hy = —(1/(*K(9))) esc(9) sec?(8) 2k (9) (sin(9)
+sin(¢)z (sec(V)sin(¢ )—zr( 2

—1 cos()1 (sec(V)sin(¢
—Kk(¢)(cos(@)+cos(¢)i (sec(d
+2sin(@): (sec(V)sin(@) — 1

—1 cos(V)(z (sec(¥)sin(¢p) —1 T

By apply % 5%y = K% Since this equation leads to

sec(ﬂ)((sec( )(—csc?() +2sec?())sin(¢)
(1+12(9)) + 41cot(28) csc(28)7 (9))
(2kl(¢)(—SGC(1‘7‘)Sm(¢)(l + (1 +cse(9)sin(¢ )) 2(9))
+27(9)) + K (9) (sec(d )(cos(9)
(14 (1+2csc(d)sin(¢)) > (¢ ),)
+25in(0) 1+ esc(3)sin(9))7(0)7 (9))
—27" (¢ )—sec( ) (i cot? (¥ )csc( VK2 (0)
+sm(¢)(csc () sin(9) — 2sec?(¥)
(14 cse()sin(9)))72(9) + 1sec() (—2sec(d) sin(9)
17 (¢),)( (9)(sin(9) +sin(¢)7(9)
—1 cos(8)7 (9)) — k(¢)(cos(9) +cos(9)7*(9

)
+25in(9)7(9)7 (9) — 1 cos(9)7 (9)) ) 7(9) =0

(
(

Then we have one of  these conditions:

K(9) = (/)
or

K(¢) =2tan(9)K (¢)

5 Visualizations for Tubembankmentlike
Surfaces in /]

Finally, consider the Visualizations below for
Tubembankmentlike surfaces of types 3 and 4:
Application 5.1.
Let us take directrix as

V(@) = (¢,c0s(¢),0), 24)

which is an arbitrary in 7} and ¢ = /3.
Under these assumptions, the Tubembankmentlike surface
(10) is produced by

I = (¢,cos(9) +2cos(¥),2sin(D)), (25)

In figures 1 and 2, one can see the directrix (24) and
Tubembankmentlike surface (25).

A
?.;".*
,'.,. 776N
——r

Fig. 2: Tubembankmentlike surface (25)

In Figures 3 and 4 we can see the Gaussian and mean
curvatures functions’ graphics above and the variations of
Gaussian and mean curvatures on Tubembankmentlike
surface (25) below.

Fig. 3: Gaussian curvature function graphic above and the
variations of Gaussian curvature on Tubembankmentlike surface
(25)

Fig. 4: mean curvature function graphic above and the variations
mean curvature on Tubembankmentlike surface (25)
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Application 5.2.
Let’s look at the case of directrix
Y(¢) = (9/2,c0s(9/2),0), (26)

In 131 and ¢ = 1/2, this is an arbitrary value.
The Tubembankmentlike surface (10) is created with these
assumptions

I = (¢/2,COS(¢/2) + \/5/2005(19)7 \/5/2s1n(19)),
(27)
In figures 5 and 6 the directrix and Tubembankmentlike
surface (26) can be shown in (27).

Fig. 5: The directrix (26)

Fig. 6: Tubembankmentlike surface (27)

The graphics of the Gaussian and mean curvatures
functions are shown above, and the variations of Gaussian
and mean curvatures on the Tubembankmentlike surface
(27) are shown below in Figures 7 and 8.

Application 5.3.
Consider the case of directrix.

Y(d’) = (0,0,COS((]))), (28)

This is an arbitrary value in 3 and ¢ = 1.
The Tubembankmentlike surface (10) is created with these

Fig. 7: Gaussian curvature function graphic above and the
variations of Gaussian curvature on Tubembankmentlike surface
27

Fig. 8: mean curvature function graphic above and the variations
mean curvature on Tubembankmentlike surface (27)

assumptions

Lo = (0,v/2cos(8),cos(9) + v/2sin(9)), (29)

In figures 9 and 10 the directrix and Tubembankmentlike
surface (28) can be shown in (29).

Fig. 9: The directrix (28)
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Fig. 10: Tubembankmentlike surface (29)

The Gaussian and mean curvatures functions are
graphically depicted above, and changes of Gaussian and
mean curvatures on the Tubembankmentlike surface (29)
are depicted below in Figures 11 and 12.

Fig. 11: The illustrations above show the Gaussian curvature
function, as well as variation in Gaussian curvature on a
Tubembankmentlike surface (29)

We can see from figures 11 and 12 that the mean
curvature and Gaussian curvature are both equal.

Fig. 12: The illustrations above show the mean curvature
function, as well as variation in mean curvature on a
Tubembankmentlike surface (29)

6 Perspective

This section discusses some research viewpoints of the
Embankment surface in isotropic space according to
the Frenet-Serret frame explained. Also, a case of
Embankment and its differential geometric characteristics
had studied. Finally, computational applications to
establish our main results are presented and plotted. All
calculations and figures in this paper had accomplished
by using Wolfram Mathematica.
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