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Abstract: The Tubembankmentlike surfaces with adapted frames had discussed in this study. We get the parametric description of

the Isotropic Tubembankmentlike Surfaces and give a computational application to evident these surfaces by introducing them in

isotropic 3−space. Weingarten of Isotropic Tubembankmentlike Surfaces is also calculated in terms of Gaussian and mean curvatures.

Mathematica 3D visualizations are using to create these curvatures. We also present new applications for Tubembankmentlike surfaces

in Isotropic space, as well as surface characterization.
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1 Introduction

In this paper, we investigate the (x,y)−Weingarten
Tubembankmentlike surfaces in Isotropic 3−space that
satisfy that all surfaces under discussion are smooth,
regular, and topologically connected unless otherwise
stated. We clarify the fundamental concept of the Frenet
frame in Isotropic 3−space, as well as the parametric
equation of the Tubembankmentlike surface, to prepare
some fundamental facts about the first and second
fundamental forms, the Gaussian curvature and mean
curvature in the (x,y)−Weingarten according to Frenet
frame in I1

3 and (x,y)−Weingarten Tubembankmentlike
surface.
The Jacobi equation is satisfied by a Weingarten surface,
often known as a W−surface.

Ψ (K ,H ) = det

(

Kφ Kϑ

Hφ Hϑ

)

= 0 (1)

where K denotes Gaussian curvature and H denotes the
surface’s mean curvature. A Weingarten surface is a
surface with constant Gaussian curvature or constant
mean curvature [1].
Several geometers ([1],[2],[3]) have examined the
W-surface and come up with interesting results.
An embankment surface is a one-parameter family of

cones enclosure that is very important for engineers
drawing embankment construction plans (for more on
embankment constructions, see [4]).
Future structural engineers, on the other hand, will need
to be familiar with Gaussian and mean curvatures. For
example, in a uniform state of tensile prestressing, a
Tensile fabric structure (such as a membrane roof)
behaves like a soap film stretched over a wire bent in the
shape of a closed space curve. Soap film takes on a shape
that has the smallest area of all the other surfaces
stretched over the same wire; this surface is therefore
called minimal surface [5].

2 Isotropic space

Metrics and motion Isotropic geometry is based on the
following affine transformation group G6 of affine
transformations (x,y,z) −→ (x′,y′,z′) in R3

x′ = d+ xcos(ζ )− ysin(ζ ),
y′ = e+ xsin(ζ )+ ycos(ζ ),

z′ = f + c1x+ c2y+ z,
(2)

where d, e, f, c1, c2, ζ ∈ R.
Isotropic congruence transformations or isotropic motions
are examples of affine transformations.
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The distance between two points that is isotropic
P = (x1,y1,z1) and Q = (x2,y2,z2) is defined as the
Euclidean distance,

d(P,Q)i =
√

(x1 − x2)2 +(y1 − y2)2

Let X = (x1,y1,z1) and Y = (x2,y2,z2) be vectors in I1
3 .

The isotropic inner product of X and Y is defined by

〈X ,Y 〉i =

{

z1z2 i f xi = yi = 0
x1x2 + y1y2 i f otherwise

(3)

Also,consider γ : I −→ I1
3 as a regular curve with

γ
′
=

dγ

dt
(t) 6= 0. If γ has unit tangent vector field, unit

principal normal vector field, and unit bi-normal vector
field, respectively. The Frenet-Serret frame is defined by
T ,N ,B and its formulas are provided by





T
′

N
′

B
′



=





0 κ 0
−κ 0 τ
0 −τ 0









T

N

B



 (4)

where

h(T ,T ) = h(N ,N ) = h(B,B) = 1,
h(T ,N ) = h(T ,B) = h(N ,B) = 0.

(5)

Isotropic curvature and isotropic torsion of γ are
represented by κ and τ , respectively, [10].
A surface S immersed in I1

3 is called admissible if it has
no isotropic tangent planes.
A surface Γ in I1

3 by

Γtel(φ ,ϑ) = (Γtel1(φ ,ϑ),Γtel2(φ ,ϑ),Γtel3(φ ,υ)) (6)

For a surface that is always totally isotropic, the
coefficients g11,g12,g22 of the first fundamental forms for
the induced metric and the coefficients L11, L12,L22 of the
second fundamental forms for the normal vector field
found. S’s 1st and 2nd fundamental forms are defined by

I = g11 dφ2 + g12 dφdϑ + g22 dϑ 2,
Π = L11 dφ2 + L12 dφdϑ + L22 dϑ 2 (7)

where

g11 = z
(

Γφ ,Γφ

)

, g12 = z
(

Γφ ,Γϑ

)

,

g22 = z(Γϑ ,Γϑ ) , L11 =
det(Γφ ,Γϑ ,Γφφ )√

g11g22−g212

,

L12 =
det (Γφ ,Γϑ ,Γφϑ )√

g11g22−g212

, L22 =
det (Γφ ,Γϑ ,Γϑϑ )√

g11g22−g212

.

(8)

since g11g22− g212 > 0.
ϕ = (0,0,1) denotes the isotropic unit normal vector field.
The Gaussian curvature K and mean curvature H are
defined by using the classical notation above.

K =
L11L22−L212

g11g22−g212
, H =

g11L22−2g12L12+L11g22

g11g22−g212

The surface S is said to be isotropic flat if K (resp. H )
vanishes (resp. isotropic minimal) [[6]- [7]- [8]].

3 TubeEmbankmentlike surface in I1
3

If a one-parameter family of regular implicit surfaces
Ψı : g(X , ı) = 0, ı ∈ [ı1, ı2]. The intersection curve of two
neighbored surfaces Ψı and Ψı+△ı fulfills the two
equations g(X , ı) = 0 and g(X , ı+ △ ı) = 0. We calculate
the limit for △ ı −→ 0 and we get

gı(X , ı) = lim
△ı−→0

g(X , ı)− g(X , ı+△ ı)

△ ı
= 0,

The following definition is based on this.

Definition 1.[9] Let Ψı : g(X , ı) = 0, ı ∈ [ı1, ı2] be a one

parameter family of regular implicit C2− surfaces.

The surface that the two equations define

g(X , ı) = 0, gı(X , ı) = 0

is called an envelope of the given family surfaces.

Definition 2.[9] Let Γ : X = r(s) = (a(s),b(s), ı(s)) be a

regular space curve and 0< ℓ∈R with

∣

∣

∣
ℓı

′
∣

∣

∣
<
√

a
′2 + b

′2.

The envelope of the one parameter family of cones

g(X ;s) = (x− a(s))2 +(y− b(s))2 − ℓ2(z− ı(s))2 = 0

is called an embankment surface and Γ its base curve.

We’ll look at a special case of embankment surface:

Remark.Let γ : I ⊆ R −→ I1
3 be a non-zero curvature

Tubemankmentlike surface with a unit speed directrix
curve Γtel

Γtel = γ(φ)+ ı (cos(ϑ)N (φ)+ sin(ϑ)B(φ)) (9)

where ı =
√
ℓ2 + 1.

The Tubemankmentlike surface equation in I1
3 is given

by

Γtel = γ(φ)+ ı δ (φ ,ϑ) (10)

The base curve γ and the director curve δ mentioned,
where γ is a differentiable curve parametrized by its arc
length, and δ is a differentiable curve parametrized by its

arc length, i.e.,
〈

γ
′
,γ

′
〉

i
= 1 and 〈δ ,δ 〉i = 1.

The curve δ is orthogonal to the tangent vector field

T of the base curve γ , i.e.,
〈

δ
′
,Tγ

〉

. We have two types:

1.The plane curves γ and δ are non isotropic
parametrized by γ = (sin(φ),0,cos(φ)) and
δ = (0,cos(ϑ),sin(ϑ)). Then the surface S is
parameterized by

Γtel = γ(φ)+ ı δ (φ ,ϑ)
= (sin(φ), ıcos(ϑ),cos(φ)+ ı sin(ϑ)).

(11)
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2.The isotropic curve γ = (0,0,sin(φ)) and non
isotropic space curve δ parametrized by
δ = (0,cos(ϑ),sin(ϑ)), where 〈δ ,δ 〉i = 1.Then the
surface S is parametrized by

Γtel = γ(φ)+ ı δ (φ ,ϑ)
= (0, ı cos(ϑ),sin(φ)+ ı sin(ϑ)).

(12)

If we refer to the surfaces generated by (11) and (12) of
Type 3 and Type 4 in isotropic Tubemankmentlike surfaces
I1
3 , respectively ([11],[12]).

4 Tubemankmentlike surfaces Satisfying

∆Γteli = λiΓteli

4.1 Tubemankmentlike surfaces of type 3

In this section, we discussed the Tubembankmentlike
surface of Type 3 in I1

3 that fulfills the equation

∆Γteli = λiΓteli (13)

where λi ∈ R, i = 1,2,3 and

∆Γteli = (∆Γtel1 ,∆Γtel2 ,∆Γtel3 )

where

Γtel1 = sinφ , Γtel2 = ıcos(ϑ), Γtel3 = cos(φ)+ ısin(ϑ).

For the Tubembankmentlike surface given by (11), the
coefficients of the first and second fundamental forms are

g11 = (cos(φ)− (cos(φ)+ ı cos(ϑ))κ2(φ))
+(sin(φ)−κ(φ)sin(φ)+ ı sin(ϑ)τ(φ)

g12 = ı sin(ϑ)(sin(φ)−κ(φ)sin(φ)+ ı sin(ϑ)τ(φ)
,g22 = ı2 sin2(ϑ)

(14)

L11 = (−2+κ(φ))sin(φ)τ(φ)− ı sin(ϑ)τ2(φ)

+(cos(φ)+ ı cos(ϑ))τ
′
(φ)

L12 =− ı sin(ϑ)τ(φ), L22 =− ı sin(ϑ),
(15)

respectively. The Gaussian curvature K and the mean
curvature H are

K =− (−2+κ(φ))sin(φ)τ(φ)+(cos(φ)+ ı cos(ϑ ))τ
′
(φ)

ısin(ϑ )(cos(φ)− (cos(φ)+ ıcos(ϑ ))κ(φ))2

(16)

H =−((csc(ϑ)+ ( ı (2cos(φ)+ ı cos(ϑ))cot(ϑ)
+csc(ϑ))κ(φ)2 + 2 ı sin(φ)τ(φ)

−κ(φ)(2( ı cos(φ)cot(ϑ)+ csc(ϑ))+ ı sin(φ)τ(φ))

− ı (cos(φ)+ ı cos(ϑ))τ
′
(φ))/(2 ı (cos(φ)(−1+κ(φ))

+ ı cos(ϑ)κ(φ))2))
(17)

respectively.
Theorem 4.1.1 The isotropic-Tubembankmentlike

surface given by (11) are isotropic flat K = 0 under the
following condition

τ(φ) =− (cos(φ)+ ı cos(ϑ))csc(ϑ)τ
′
(φ)

−2+κ(φ)
.

Proof. A Tubembankmentlike surface satisfies the

equation K = 0 from Eq. (16), We have

(−2+κ(φ))sin(φ)τ(φ)+ (cos(φ)+ ı cos(ϑ))τ
′
(φ) = 0

By solving this equation we have that

τ(φ) =− (cos(φ)+ ı cos(ϑ))τ
′
(φ)

−2+κ(φ)
Theorem 4.1.2 The isotropic-Tubembankmentlike

surface (11) is harmonic H = 0 under the following
condition

τ(φ)=−csc(φ)csc(ϑ)− ıcos(φ)τ
′
(φ)− ı2 cos(ϑ)τ

′
(φ)

2ı
.

Proof. A Tubembankmentlike surface satisfies the

equation H = 0 from Eq. (17), We have

csc(ϑ)+ (ı(2cos(φ)+ ıcos(ϑ))cot(ϑ)+ csc(ϑ))κ2(φ)
+2ısin(φ)τ(φ)−κ(φ)(2(ıcos(φ)cot(ϑ)+ csc(ϑ))

+ısin(φ)τ(φ))− ı(cos(φ)+ ıcos(ϑ))τ
′
(φ) = 0

then,

τ(φ) =−csc(φ)csc(ϑ)− ıcos(φ)τ
′
(φ)− ı2 cos(ϑ)τ

′
(φ)

2ı
(18)

Theorem 4.1.3 The isotropic-Tubembankmentlike

surface given by (11) is Weingarten surface iff the curve
is a straight line and satisfies one of two conditions

1.τ(φ) = 0

2.τ(φ) =−( 2cos2(φ)csc(ϑ )
ı (7sin(φ)−sin(3φ))

).

Proof. Weingarten Tubembankmentlike surface satisfies
Jacobi equation

Kφ =
(

csc(ϑ)(2(−sin(φ)+κ(φ)sin(φ)

−(cos(φ)+ ı cos(ϑ))κ
′
(φ))((−2+κ(φ))sin(φ)τ(φ)

+(cos(φ)+ ı cos(ϑ))τ
′
(φ))− (cos(φ)− (cos(φ)

+ı cos(ϑ))κ(φ))(τ(φ)(−2cos(φ)+ cos(φ)κ(φ)

+sin(φ)κ
′
(φ))+ (−3+κ(φ))sin(φ)τ

′
(φ)+ τ

′′
(φ)(cos(φ)

+ı cos(ϑ)))
)

/(ı (cos(φ)− (cos(φ)+ ı cos(ϑ))κ(φ))3),

Kϑ =
(

(cos(φ)− (cos(φ)+ ı cos(ϑ))κ(φ))τ
′
(φ)+ 2κ(φ)

((−2+κ(φ))sin(φ)τ(φ)+ (cos(φ)+ ı cos(ϑ))τ
′
(φ))

+(1/ı)cot(ϑ)cos(ϑ)(cos(φ)− (cos(φ)+ ı cos(ϑ))κ(φ))
((−2+κ(φ))sin(φ)τ(φ)+ (cos(φ)

+ı cos(ϑ))τ
′
(φ))

)

/(cos(φ)− (cos(φ)+ ı cos(ϑ))κ(φ))3
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Hφ =
(

− (2(sin(φ)−κ(φ)sin(φ)+(cos(φ)

+ı cos(ϑ ))κ
′
(φ))(csc(ϑ )+(ı (2cos(φ)

+ı cos(ϑ ))cot(ϑ )+csc(ϑ ))κ2(φ)+2ı sin(φ)τ(φ)
−κ(φ)(2(ı cos(φ)cot(ϑ )+csc(ϑ ))

+ı sin(φ)τ(φ))− ı (cos(φ)+ ı cos(ϑ ))τ
′
(φ))

−cos(φ)(−1+κ(φ))
+ı cos(ϑ )κ(φ))(−2ı cot(ϑ )κ2(φ)sin(φ)+2ı cos(φ)τ(φ)

+2(ı (2cos(φ)+ ı cos(ϑ ))cot(ϑ )

+csc(ϑ ))κ(φ)κ
′
(φ)− (2(ı cos(φ)cot(ϑ )

+csc(ϑ ))+ ı sin(φ)τ(φ))κ
′
(φ)+3ı sin(φ)τ

′
(φ)

−ı κ(φ)(cos(φ)τ(φ)+ sin(φ)(−2cot(ϑ )+ τ
′
(φ)))

−ı (cos(φ)+ ı cos(ϑ ))

(τ
′′
(φ)))

)

/(2ı (cos(φ)(−1+κ(φ))+ ı cos(ϑ )κ(φ))3)

,and

Hϑ =
(

−2κ(φ)sin(ϑ )(csc(ϑ )+(ı(2cos(φ)

+ıcos(ϑ ))cot(ϑ )+csc(ϑ ))κ2(φ)+2ısin(φ)τ(φ)
−κ(φ)(2(ıcos(φ)cot(ϑ )+csc(ϑ ))+ ısin(φ)τ(φ))

−ı(cos(φ)+ ıcos(ϑ ))τ
′
(φ))+(1/ı)csc(ϑ )2

(−cos(φ)+(cos(φ)+ ıcos(ϑ ))κ(φ))
(cos(ϑ )−2(ıcos(φ)+cos(ϑ ))κ(φ)

+κ2(φ)(2ıcos(φ)+cos(ϑ )(1+ ı2 + ı2 sin2(ϑ )))− ı2 sin2(ϑ )

τ
′
(φ))

)

/(2(cos(φ)(−1+κ(φ))+ ıcos(ϑ )κ(φ))3)

By apply Kφ Hϑ = KϑHφ Since this equation leads to
one of two conditions:

1.τ(φ) = 0

2.τ(φ) =−(
2cos2(φ)csc(ϑ )

ı (7sin(φ)−sin(3φ)))

4.2 Tubemankmentlike surfaces of type 4

In this section, we discussed the Tubembankmentlike
surface of Type 4 in I1

3 that fulfills the equation

∆Γteli = λiΓteli (19)

where λi ∈R, i = 1,2,3 and

∆Γteli = (∆Γtel1 ,∆Γtel2 ,∆Γtel3 )

where

Γtel1 = 0, Γtel2 = ı cos(ϑ), Γtel3 = sin(φ)+ ı sin(ϑ).

For the Tubembankmentlike surface given by (12), the
coefficients of the first and second fundamental forms are

g11 = ı2 cos2(ϑ )κ2(φ)+(sin(φ)+ ı sin(ϑ ))2τ2(φ)

g12 = ı sin(ϑ )(sin(φ)+ ı sin(ϑ )τ(φ), g22 = ı2 sin2(ϑ )
(20)

L11 =−sin(φ)− (sin(φ)+ ı sin(ϑ))τ2(φ)+ ıcos(ϑ)τ
′
(φ),

L12 =−ısin(ϑ)τ(φ), L22 =−ı sin(ϑ),
(21)

respectively. The Gaussian curvature K and the mean
curvature H are

K = sin(φ)+sin(φ)τ2(φ)−ıcos(ϑ )τ
′
(φ)

ı3κ2(φ)sin(ϑ )cos2(ϑ )
(22)

H =−
(

ı2 csc(ϑ )κ2(φ)+ sec(ϑ )(sec(ϑ )sin(φ)(ı+csc(ϑ )

sin(φ))τ2(φ)+ ı(sec(ϑ )sin(φ)− ıτ
′
(φ)))

)

/
(

2ı3 κ2(φ)
)

(23)

respectively.
Theorem 4.2.1 The isotropic-Tubembankmentlike

surface given by (12) are developable K = 0 satisfies

τ(φ) =±
√

−1+ ıcos(ϑ)csc(φ)τ
′
(φ).

Proof. A Tubembankmentlike surface satisfies the

equation K = 0 from Eq. (22), We have

sin(φ)+ sin(φ)τ2(φ)− ıcos(ϑ)τ
′
(φ) = 0. We get

τ(φ) =±
√

−1+ ıcos(ϑ)csc(φ)τ
′
(φ).

Theorem 4.2.2 The isotropic-Tubembankmentlike surface
(12) is isotropic minimal under one of two condition.

1.κ(φ) =−
(

ℑ

√

sec(ϑ )sin(φ) tan(ϑ )
ı

)

2.κ(φ) =
(

ℑ

√

sec(ϑ )sin(φ) tan(ϑ )
ı

)

Proof. A Tubembankmentlike surface satisfies the
equation H = 0 from Eq. (23), We have

−(ı2 csc(ϑ)κ2(φ)+ sec(ϑ)(sec(ϑ)sin(φ)(ı

+csc(ϑ)sin(φ))τ2(φ)+ ı(sec(ϑ)sin(φ)− ıτ
′
(φ)))) = 0

then we have one of these conditions

1.κ(φ) =−
(

ℑ

√

sec(ϑ )sin(φ) tan(ϑ )
ı

)

2.κ(φ) =
(

ℑ

√

sec(ϑ )sin(φ) tan(ϑ )
ı

)

Theorem 4.2.3 The Weingarten isotropic
Tubembankmentlike surface given by (12) satisfies the
following conditions:

κ(φ) =±
(√

cos(φ−ϑ )−cos(φ+ϑ )
ı+ıcos(2ϑ )

)

or
κ(φ) = 2tan(φ)κ

′
(φ)

if the curve γ is the straight line.
Proof. Weingarten Tubembankmentlike surface satisfies

Jacobi equation

Kφ =−
(

1/(ı3κ3(φ))
)

csc(ϑ )sec(ϑ )2(2κ
′
(φ)(sin(φ)

+sin(φ)τ2(φ)− ı cos(ϑ )τ
′
(φ))−κ(φ)(cos(φ)+cos(φ)τ2(φ)

+2sin(φ)τ(φ)τ
′
(φ)− ı cos(ϑ )(τ

′′
(φ)))

,

Kϑ = (sec(ϑ)(−csc2(ϑ)+ 2sec2(ϑ))sin(φ)(1+ τ2(φ))

+4ı cot(2ϑ)csc(2ϑ)τ
′
(φ))/(ı3κ2(φ))

Hφ =
(

1/(2ı3κ2(φ))
)

tan(ϑ)(ı2 cot2(ϑ)csc(ϑ)κ3(φ)
+sin(φ)(sec3(ϑ)sin(φ)− 2sec2(ϑ)(ı + sec(ϑ)sin(φ)))

τ2(φ)+ ı sec(ϑ)(−2sec(ϑ)sin(φ)+ ı τ
′
(φ)))
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, and

Hϑ =−
(

1/(ı3κ3(φ))
)

csc(ϑ)sec2(ϑ)(2κ
′
(φ)(sin(φ)

+sin(φ)ı (sec(ϑ)sin(φ)− ı τ(φ)2

−ı cos(ϑ)ı (sec(ϑ)sin(φ)− ı τ
′
(φ))

−κ(φ)(cos(φ)+ cos(φ)ı (sec(ϑ)sin(φ)− ı τ2(φ)

+2sin(φ)ı (sec(ϑ)sin(φ)− ı τ
′
(φ)

−ı cos(ϑ)(ı (sec(ϑ)sin(φ)− ı τ
′′
(φ)))

By apply Kφ Hϑ = KϑHφ Since this equation leads to

sec(ϑ)
(

(sec(ϑ)(−csc2(ϑ)+ 2sec2(ϑ))sin(φ)

(1+ τ2(φ))+ 4ıcot(2ϑ)csc(2ϑ)τ
′
(φ))

(2κ
′
(φ)(−sec(ϑ)sin(φ)(ı +(ı + csc(ϑ)sin(φ))τ2(φ))

+ı2τ
′
(φ))+κ(φ)(sec(ϑ)(cos(φ)

(ı+(ı+ 2csc(ϑ)sin(φ))τ2(φ))

+2sin(φ)(ı+ csc(ϑ)sin(φ))τ(φ)τ
′
(φ))

−ı2τ
′′
(φ))− sec2(ϑ)(ı2 cot2(ϑ)csc(ϑ)κ2(φ)

+sin(φ)(csc3(ϑ)sin(φ)− 2sec2(ϑ)
(ı+ csc(ϑ)sin(φ)))τ2(φ)+ ısec(ϑ)(−2sec(ϑ)sin(φ)

+ıτ
′
(φ)))(2κ

′
(φ)(sin(φ)+ sin(φ)τ2(φ)

−ı cos(ϑ)τ
′
(φ))−κ(φ)(cos(φ)+ cos(φ)τ2(φ)

+2sin(φ)τ(φ)τ
′
(φ)− ı cos(ϑ)τ

′
(φ))

)

τ(φ) = 0

Then we have one of these conditions:

κ(φ) =±
(
√

cos(φ−ϑ )−cos(φ+ϑ )
ı+ıcos(2ϑ )

)

or
κ(φ) = 2tan(φ)κ

′
(φ)

5 Visualizations for Tubembankmentlike

Surfaces in I1
3

Finally, consider the Visualizations below for
Tubembankmentlike surfaces of types 3 and 4:

Application 5.1.
Let us take directrix as

γ(φ) = (φ ,cos(φ),0), (24)

which is an arbitrary in I1
3 and ℓ=

√
3.

Under these assumptions, the Tubembankmentlike surface
(10) is produced by

Γtel = (φ ,cos(φ)+ 2cos(ϑ),2sin(ϑ)), (25)

In figures 1 and 2, one can see the directrix (24) and
Tubembankmentlike surface (25).

Fig. 1: The directrix (24)

Fig. 2: Tubembankmentlike surface (25)

In Figures 3 and 4 we can see the Gaussian and mean
curvatures functions’ graphics above and the variations of
Gaussian and mean curvatures on Tubembankmentlike
surface (25) below.

Fig. 3: Gaussian curvature function graphic above and the

variations of Gaussian curvature on Tubembankmentlike surface

(25)

Fig. 4: mean curvature function graphic above and the variations

mean curvature on Tubembankmentlike surface (25)
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Application 5.2.
Let’s look at the case of directrix

γ(φ) = (φ/2,cos(φ/2),0), (26)

In I1
3 and ℓ= 1/2, this is an arbitrary value.

The Tubembankmentlike surface (10) is created with these
assumptions

Γtel = (φ/2,cos(φ/2)+
√

5/2cos(ϑ),
√

5/2sin(ϑ)),
(27)

In figures 5 and 6 the directrix and Tubembankmentlike
surface (26) can be shown in (27).

Fig. 5: The directrix (26)

Fig. 6: Tubembankmentlike surface (27)

The graphics of the Gaussian and mean curvatures
functions are shown above, and the variations of Gaussian
and mean curvatures on the Tubembankmentlike surface
(27) are shown below in Figures 7 and 8.

Application 5.3.
Consider the case of directrix.

γ(φ) = (0,0,cos(φ)), (28)

This is an arbitrary value in I1
3 and ℓ= 1.

The Tubembankmentlike surface (10) is created with these

Fig. 7: Gaussian curvature function graphic above and the

variations of Gaussian curvature on Tubembankmentlike surface

(27)

Fig. 8: mean curvature function graphic above and the variations

mean curvature on Tubembankmentlike surface (27)

assumptions

Γtel = (0,
√

2cos(ϑ),cos(φ)+
√

2sin(ϑ)), (29)

In figures 9 and 10 the directrix and Tubembankmentlike
surface (28) can be shown in (29).

Fig. 9: The directrix (28)
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Fig. 10: Tubembankmentlike surface (29)

The Gaussian and mean curvatures functions are
graphically depicted above, and changes of Gaussian and
mean curvatures on the Tubembankmentlike surface (29)
are depicted below in Figures 11 and 12.

Fig. 11: The illustrations above show the Gaussian curvature

function, as well as variation in Gaussian curvature on a

Tubembankmentlike surface (29)

We can see from figures 11 and 12 that the mean
curvature and Gaussian curvature are both equal.

Fig. 12: The illustrations above show the mean curvature

function, as well as variation in mean curvature on a

Tubembankmentlike surface (29)

6 Perspective

This section discusses some research viewpoints of the
Embankment surface in isotropic space according to
the Frenet-Serret frame explained. Also, a case of
Embankment and its differential geometric characteristics
had studied. Finally, computational applications to
establish our main results are presented and plotted. All
calculations and figures in this paper had accomplished
by using Wolfram Mathematica.
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