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Abstract: In this paper, we study Fritz John type optimality for noelin multiobjective programming problems under new clasées
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that the results obtained in this paper extend many prelyidumewn results in this area.
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1 Introduction with differentiable functions,g; : D C R" - R, j € K,

) . . Hanson [L3] showed that, under the invexity requirement
Conv_exny and ggnerallzed convexity pIay'a fundamer}talfor f andg;, j € K (with respect to the samg), every
role in various fields such as mathematical economicsy nn-Tucker critical point is a global minimizer of (P).

engineering, management science, and optimizatiofyariin [18] remarked that the converse is not true in
theory. This led to consider the research on convexityyeneral. and he proposed a weaker notion, called KT-

and generalized convexity as one of the most importanfyyexity, which assures that every Kuhn-Tucker critical
and attractive aspects in mathematical programmingpoint is a minimizer of problem (P) if and only if problem
Several new concepts concerning a generalized CONVep) is KT-invex.

function have been proposed in the literature. Among Later, researchers have extended these results
these, the concept of invexity, for differentiable funeso multiobjective problems. So, Ruiz-Canales and
introduced by Hanson irLf] has received a great extentof g fian-| jzana 27] have characterized weakly efficient
attent_lon.Adlﬁerent|ablefunct|on:DQR”%RBSa]d solutions in the case of nondifferentiable functions.
to beinvexat xo € D with respect ta] :DxD = R, i In the differentiable case, Osuna-Gomez et &5, [
for eachx € D, f(x) — f(x0) = [Vf(X0)'n(xX0). Craven  5g have defined new kind of vector pseudo-invex
and Glover L0] and Ben-Israel and Mond8[ stated that  f,nctions and they have characterized the weakly efficient
the class of invex functions are all those functions whosegq|tions for unconstrained and constrained multiobjecti
stationary points are global minima. Hansdi8][ noted programming problems. Arana-Jiménez et 45] have
that ther_e are simple ex_tensions of_ invex functions, theextended the study of Osuna-Gémez et &5 26 to
pseudo-invex and quasi-invex functions. Furthermore, iNorovide necessity and sufficiency results for efficient

the scalar case, Ben-Israel and Mo®il firoved that the  gqtions under new kind of functions. They called these
classes of invex and pseudo-invex functions coincide. functions pseudo-invex Il in difference to pseudo-invex

For the classical mathematical programming problem (P) ¢ 0suna-Gémez et al. which is called pseudo-invex |

defined by by Arana-Jiménez et al. Further sufficient optimality
Minimize f(x), conditions and duality results for multiobjective probem
(P) subjecttogj(x) £0, j € K={1,...,k}, have been obtained, with different approaches, under
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generalized invexity with respect to the same by 2 Preliminaries and definitions

Antczak [, 3], Batista Santos et al7], Hanson et al.14],

Kaul et al. [Lg], Mishra et al. 19,20], Niculescu R2, The following conventions for equalities and inequalities
Nobakhtian 23], Nobakhtian and PouryayevaBl4], Ruiz-  will be used. Ifx= (X1,...,Xn), Y = (Y1, .--,¥n) € R", then
Garzon et al. 28], and others. By considering the invexity x=y < x =Yy, i=1,...,n;

with respect to differen(n;); (each function occurring x<y< X <y, i=1,..,n;

in the studied problem is considered with respect to itsx<y < x <y, i=1,...,n;

own functionn; instead of a same functiom), Slimani x<y< x<yandx#y.

and Radjef 29,30,31] have obtained necessary and We also not®? (respRY orR?) the set of vectorg c RY
sufficient optimality conditions and duality results for \yith y> 0 (respy > 0 ory > 0).

nonlinear scalar and (nondifferentiable) multiobjective Invex functions were introduced to optimization theory

problems. Ahmad1] has considered a nondifferentiable py Hanson13] (and named by Crave®)]) as a very broad
multiobjective problem and by using generalized univexity generalization of convex functions.

with respect to differentn;);, he has obtained optimality
conditions and duality results. Arana-Jiménez et @). [ Definition 1.(Craven, P], Hanson, [L3]) Let D be a
have used the concept of semidirectionally differentiablenonempty open set & andn : D x D — R" be a vector
functions introduced inJ1] to derive characterizations function. A function £ D — R is said to be (def) atxe D
of solutions and duality results by means of generalizedon D with respect tay, if the function f is differentiable at
pseudoinvexity for nondifferentiable multiobjective Xo and for each x D, (cond) holds.

programming. Kharbanda et allq] have considered

a class of constrained nonsmooth multiobjective (|)((j:§fr;c|i|f1vex,

programming problem involving semi-directionally '

differentiable functions. They have obtained sufficient F(x)— f > [vf U (X xa). 1
optimality conditions and various duality theorems by () = F0x0) 2 [VF o)l 0 (% %0) @
using a new generalized class @i — p — 0)-V-type | (i)def: pseudo-invex,

univex functions with respect to differer; );. cond:

[Vi(x0)'n(x%0) 20= f(x) — f(x0) 20.  (2)

liiiydef: quasi-invex,
cond:

In parallel to all these developments and advances o
the invexity and its extensions in theory, some application
in practice begin to take place. Recently, Dinuzzo et
al. [11] have obtained some kernel function in Machine fFix)— f <0= [vf th(x <0 3
Learning which is not quasi-convex (and hence also () = T00) = 7100 n(xx0) =0 (3)

neither convex nor pseudoconvex) but itis invex. Nickischt the inequality in () (resp. second (implied) inequality in
and Seeger]l] have studied a multiple kernel learning (3)) js strict (x+ xo), we say that f is strictly invex (resp.
problem and have used the invexity to deal with thesyrictly quasi-invex) atxon D with respect ta). f is said
optimization which is non convex. Syed et aBZ {5 pe (strictly) invex (resp. pseudo-invex or (strictlypsit
have considered Minimization of Error Entropy (MEE) invex) on D with respect tg, if f is (strictly) invex (resp.

and Minimizatior) o_f Error Entropy with Fiducia} poin_ts pseudo-invex or (strictly) quasi-invex) at eaghexD on D
(MEEF) and optimization properties are given involving \yith respect to the same.

invexity. In particular, they have shown that by varying

the kernel parameter of the MEE and/or MEEF objectiveRemarkWhen the functiom (x,Xg) = X— Xo, the definition

function in general leads to an invex problem. of (strict) invexity (resp. pseudo-invexity and quasi-
invexity) reduces to the definition of (strict) convexity
(resp. pseudo-convexity and quasi-convexity).

In the present paper, we consider new concepts o
generalized invex vector functions with respect to differe
(ni)i and we extend the studies of Osuna-Gomez et al
[25,26] and Arana-Jiménez et al4,b]. We establish
relationships between these classes of vector function
and we obtain necessary and sufficient optimality
conditions for a feasible point to be weakly efficient Example IThe functionf; : D =]0,7[— R defined by
or efficient solution for a multiobjective programming f1(x) = x+ sinx is invex atxo = § on D with respect to
problem with inequality constraints. Moreover, we use ni(x,Xg) = (Sinx — sinxg)/cosxg, but f; is not invex at
a concept of Fritz John type vector critical point to Xp on D with respect taj2(Xx,Xg) = (C0SXp — COSX)/ SinXg
establish characterizations of efficient and weakly efficie (takex = ).
solutions. On the other hand, the functiofz : D — R defined by

in the following example, we give two scalar functiofis
andf; such that each functiofi is invex at a poinkgy with
respect to its owm;, i = 1,2. However, there exists no
a functionn for which the vector functiorf = (fy, f2) is
mvex atxq.
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f2(X) = cosxis invex atxg = g onD with respect ta),, but

f is not invex atxg on D with respect tay; (takex = I).
Furthermore, it is not difficult to prove that there exists no
a functionn : D x D — R for which the functionsf; and

f2 are both invex atg = § onD (takex = §).

Now, we consider the invex and weakly pseudo-invex

vector functions with respect to differefaf; )i such that
A ={1,...,N}.

Definition 2.Let D be a nonempty open set®t andn; :

D xD —R", i € .4 be vector functions. A vector function
f : D — RN is said to be invex atxxe D on D with respect
to (ni)ic.y, if the function f is differentiable atpand for
each xe D:

fi(X) — fi(x0) = [V fi(x0)]'Nni (X, o), foralli € 4. (4)

In other terms, f is invex atgxe D on D with respect to
(Ni)ie.y, If each of its components i invex at ¥ on D
with respect to its owm;, i € 4. f is said to be invex on
D with respect ta i )ic.s, if f is invex at eachxe D on
D with respect to the sam@yi )ic_4 . If the inequalities in
(4) are strict, we say that f is strictly invex ag ®n D with

respect to(ni )ic, s -
Arana-Jiménez et al4[5] have defined two classes of

X = X, we obtain equivalently, with the conditioB)(
the pseudo-invexity given by Osuna-Gomez et 2, |
26] and, with the condition®), the pseudo-invexity Il
given by Arana-Jiménez et al},p].

(ii)In Definition 3, if N = 1 then weak pseudo-invexity |
and Il are equivalent and we will say that the function
is weakly pseudo-invex a (that is the weak pseudo-
invexity of scalar function). If furthex = x, we deduce
the pseudo-invexity of Definitiof.

In the following example, we give a vector function which
is not pseudo-invex with respect to the sam@n the sense
of Osuna-Gomez et al2p,26] and in the sense of Arana-
Jiménez et al.4,5]) but it is weakly pseudo-invex | (and
II) with respect to differentn; )i (in the sense of Definition
3).

Example 2ZConsider the functiofi : R? — R? with f(x) =
(f1(x), f2(X)) = (X1 — X2 — X2, —X1 + X2 — X3). There exists
no a functiorn for which the vector functiori is pseudo-
invex (in the sense of Osuna-Gomez et ab,R6] and in
the sense of Arana-Jiménez et &.5]) at xo = (0,0) on
R? (takex = (0,2)). But f is weakly pseudo-invex | at
onR? with respect tayy (x,Xo) = (X1, —X1) andnz(x, Xo) =
(—%2,X2) (takex(x, Xo) = f(X) — f (xo) € R?). Furthermore,
f is weakly pseudo-invex Il aty onR? with respect to the

functions generalizing the class of scalar pseudo-invexsamer; andn (takex = (a,b) < 0).

functions. They call them pseudo-invex |, pseudo-invex

in the sense of Osuna-Gomez et &5,p6], and pseudo-
invex Il (with respect to the sanmg). In the same manner,
we introduce new kinds of functions which we will

designate as weak pseudo-invex | and weak pseudo-inve,

Il (with respect to differentn;)ic_s ).

Definition 3.Let D be a nonempty open set®t andn; :

D xD — R", i € .4 be vector functions. A vector function
f : D — RN is said to be (def) atge D on D with respect
to (ni)ic.y, if the function f is differentiable atpand for
each xe D, (cond) holds.

()def: weakly pseudo-invex |,
cond:

f(x)— f(x) <0=3XxeD, [Vfi(x)]'Ni(XX0) <O,

foralli € A4.(5)
(iiydef: weakly pseudo-invex Il,
cond:
f(x) — f(x0) <0=3x€D, [vfi(x)]'ni(Xx0) <O,
foralli € A4.(6)

If X=X, in the relation B) (resp. @)), we say that f is
pseudo-invex | (resp. Il) apon D with respect tdn;)ic s -

f is said to be (weakly) pseudo-invex I (resp. Il) on D with
respect to(ni)ic_v, if fis (weakly) pseudo-invex | (resp.
II) at each % € D on D with respect to the sant@;)ic_s .

Remark. (i)Note that, in Definition3, x depends omx and
Xo, 1.6.X=X(X,Xp), and it is easy to see that if the vector
functionsn;, i € .4 are equal to a same functigrand

We have seen that a vector function may be invex
or weakly pseudo-invex | (II) with respect to different
(N)ie.y without it be with respect to the samg
Examplesl and 2). However, conversely, if a vector
unction is invex or weakly pseudo-invex | (1) with respect
to a givenn, then it is invex or weakly pseudo-invex I (II)
with respect to differen{n; )ic.s .

Proposition 1Let D be a nonempty open setRf. If a
function f: D — RN is invex or weakly pseudo-invex | (1I)
at X € D on D with respect to a given, then it is invex
or weakly pseudo-invex | (Il) atgxon D with respect to

(Nier With Ni(x,X0) = N (X, X0) — V fi(Xo), 1 € A"

Remarlki-rom Propositionl, we conclude that the invex
(resp. weakly pseudo-invex | (Il)) functions set with
respect to the samgis included in the invex (resp. weakly
pseudo-invex | (1)) functions set with respect to diffetren
(ni)ie.y and from Example4 and2, we deduce that the
inclusions are strict.

3 Relationships between the classes of vector
functions

In this section, we present relationships between the
introduced classes of functions namely invex and weakly
pseudo-invex | (1) functions with respect to differént );.
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Proposition 2.

(It is clear that if a function f: D — RN is invex at x
on D with respect t@n;)ic_+, then it is pseudo-invex |
at xp on D with respect to the sanig; )ic_s .

(ii)If f is (weakly) pseudo-invex Il atpon D with respect
to (ni)ic.y, then f is (weakly) pseudo-invex | at an
D with respect to the sam@); )ics .

(iii)If f is pseudo-invex | (resp. Il) atxon D with respect
to (Ni)ic.y, then it is weakly pseudo-invex | (resp. Il)
at xp on D with respect to the sam@ji)ic.» (With
X(X,%0) = X). However, if f is weakly pseudo-invex |
(resp. 1) at % on D with respect tqni)ic.s, then f
may not be pseudo-invex | (resp. 1) at an D with
respect to the saménj)ic_» but it will be pseudo-
invex | (resp. 1) at ¥ on D with respect tqfj )ics
with /i (X, Xo) = 11i (X(X,X0), %0), Y X€ D, Vi€ 4 (see

that [V f2(x0)]n2(X, %) < 0, and in consequendeis not
weakly pseudo-invex Il aty onR.

As in Arana-Jiménez et al4], the following Example$
and7 show that the classes of invex functions and weakly
pseudo-invex Il functions w.r.{n;)ic_4 are different.

Example 6.f weakly pseudo-invex B>f invex). Consider
the function f : R — R? with f(x) = (f1(x), f2(x)) =
(x%,—x?). We have thatf, is not invex atxg = 0 on
R becausev fy(xg) = 0 and Xy is not a minimum of
this function. We conclude that is not invex atxg = 0
on R. We now prove thatf is weakly pseudo-invex Il
on R. We havef(x) — f(xg) = (x> —x5,x6 —x?) < 0 &=

{(i) X2 —x5 <0 and x5 —x? < 0;
or

(i) X¥*—x3<0andx3—x?<0.

Examples3 and4). Thus, the classes of pseudo-invex If X2 —x3 < 0 thenx3 —x? > 0 and(i) is not verified. In the
I (resp. II) functions and weakly pseudo-invex | (resp. same way we prove thdii ) is not verified. Therefore, the

I) functions coincide.

Example 3.f weakly pseudo-invex & f pseudo-invex
). Consider the functionf : R? — R? with f(x) =
(f1(x), f2(x)) = (X1 + sinxg,sinxg). f is weakly pseudo-
invex | atxp = (%, %) onR? with respect ton; (X, o) =
X—Xo andnz(x,Xo) = x (takex = f(x) — f(xo) € R?). But,

f is not pseudo-invex | aty onR? with respect to the same
(Mi)i=1,2, because fox = (3,0), f(x) — f(x) < 0 and
[V fi(%0)]'Ni(X, %) =0, Vi = 1,2. However,f is pseudo-
invex | at xo on R? with respect tofj1(x,%p) = f(x) —

f (o) — %o andfjz(x, o) = f(x) — f(Xo).

Example 4.f weakly pseudo-invex I f pseudo-invex
). Consider the functionf : R? — R? with f(x) =
(f1(X), f2(X)) = (=X2,%2). f is weakly pseudo-invex II
at xo = (1,0) on R? with respect ton;(x,xo) = Xo —
x and na(x, %) = —X (take X = go, 1) € R?). But f is
not pseudo-invex Il atxy on R< with respect to the
same(ni)i=1,2, because fox = (1,—1), f(x) — f(xp) <
0 and [V fi(x0)]'ni(x,%0) = 0, V i = 1,2. However,f is
pseudo-invex Il aty on R? with respect tofj; (X, Xo) =
(1,-1), V x€ R? andfja(x, %) = (0, —1), V x € R?,

inequality f (x) — f(xg) < 0'is not verified for alk,xp € R,
and we conclude that is weakly pseudo-invex Il ofR
with respect to any functionsj )i=1.2.

Example 7.f invex£f weakly pseudo-invex I1). Consider
the function f : R — R? with f(x) = (f1(x), f2(x)) =
(x2,0). From Example5, we know thatf is not weakly
pseudo-invex Il akg = 1 on R. However, we have that
f1 is convex and then it is invex oR with respect to
N1(X,Xg) = X—Xo, f2 is invex onR with respect to any
function nx(x,xo). Therefore, the vector functior is
invex onR with respect toni(x,xg) = X—Xp and any
functionnz(x, xo).

From Proposition2 (i), we conclude that the class of
weakly pseudo-invex | functions contains the class of
invex functions w.r.t.(ni)ic.». The converse in not true,
as it is shown in Exampl@.

Example 8.f weakly pseudo-invex#-f invex). Consider
the function f : R — R2 with f(x) = (f1(x), f2(x)) =
(X2, —x?). From Examples, we know thatf is not invex
atxp = 0 onRR. Besides, a$ is weakly pseudo-invex Il on
R with respect to any function@);)i—1 2, it follows that,
from Propositior2, f is weakly pseudo-invex | oR with

Let us continue the relationships between the concepts ofespect to any functionsy;)i—1 2.

invex and weakly pseudo-invex | (1) functions by giving
the following examples.
From Proposition2 (ii), we have the class of weakly

pseudo-invex |l functions is included in the class of weakly

pseudo-invex | functions w.r.tni)ic_,». The converse in
not true, as it is shown in Example

Example 5.f weakly pseudo-invex $-f weakly pseudo-
invex 1l). Consider the functiorf : R — R? with f(x) =
(f1(x), f2(x)) = (x?,0). f is weakly pseudo-invex | oi®
with respect to any functiongn;)i—1» becausef(x) —
f(x0) £ 0, V x,X € R. On the other hand, by choosing
x =0 andxp = 1, we havef(x) — f(xg) < 0 and since
v fa(xo) = 0, it follows that [V fa(xg)jJu=0, ¥V u € R.
Hence, there does not exist a functignandx € R such

Let

WPSI = {f : D C R
RN/ f is weakly pseudo-invex | w.r.tni)ic.s },

WPSII = {f : D C R" —

RN/ f is weakly pseudo-invex Il w.r.{ni)ic.+ },

INV = {f:DCR" RN/ fisinvex W.r.t.(n)ic.s }.
From (i) and (ii) of Proposition2, we conclude the
following result.

Theorem 1INV UWPSIICc WPSI.

The above inclusion is strict antV UW PSIl# WPSI

To show this, the following example give a weakly pseudo-
invex | function which is neither invex nor weakly pseudo-
invex Il.
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Example SConsider the functior : R — R? with f(x) =
(f1(x), f2(x)) = (x3,0). f is weakly pseudo-invex | ot
with respect to any functionsn;)i—12 becausef(x) —
f(Xo) £ 0, VX X € R. On the other hand; is not invex at
Xo = 0 onR becauser f1(xg) = 0 andxg is not a minimum
for this function. We conclude thdtis not invex atxg = 0
on R. Furthermore, by choosing=0 andX= 1, we
have f(x) — f(X) < 0 and sincev f,(X) = 0, it follows
that[Vv f2(X)]Ju= 0, ¥ u € R. Hence, there does not exist a
functionn, andx € R such thafv f(X)]n2(x,X) < 0, and
in consequencé is not weakly pseudo-invex Il at= 1
onR.

The intersection between invex functions set and weakly,

pseudo-invex Il functions set (w.r.t(niic.s) is a

nonempty set, since a linear function is invex, weakly

pseudo-invex | and weakly pseudo-invex II.

Example 10Consider the function f : R — R2
with  f(x) = (fi(x),f2(x)) = (X,—x). We have
f(x) — f(X0) = (X—Xo,X0 —X) <0< (i) “Xx—X <

Oandxg—x=<0"or (i) “X—xp < 0and xg—x < 0".

If Xx—Xp < 0 thenxg —x > 0 and(i) is not verified. In the
same way we prove théii ) is not verified. Therefore, the
inequality f (x) — f(xp) < 0 is not verified for alk, xg € X,
and we conclude that is weakly pseudo-invex Il (then
weakly pseudo-invex ) o with respect to any functions
(ni)i=1,2. On the other hand; is invex onR with respect
to N1(X,X0) = X—Xo — 1 andnz(X,Xo) = X— %o+ 1.

Consequently, the relationships between invex, weakly
pseudo-invex | and weakly pseudo-invex Il functions with

respect tdni)ic_» are as given in the following figure.

Weakly pseudo-invex |

] Invex

[Weakly pseudo-invex Il

Fig. 1: Relationships between invex, weakly pseudo-invex | and

weakly pseudo-invex Il functions

According to Remarl2 and Propositior (iii ), Figure
1 above extends Figure 1 given in Arana-Jiménez edgl. |
to the wide classes of functions.

4 Optimality conditions

We consider the following multiobjective optimization
problem

Minimize f(x) = (f1(x), ..., fn (X)),

(VP) subjecttogj(x) <0, j €K,

wherefi,gj: D =R, i€ .4, j € KandD is an open
set of R". Let X = {x e D: gj(x) £0, j € K} be the
set of all feasible solutions of (VP). Fo € D, we
denote byd(xo) the set{j € K : gj(xo) =0}, Jo = [I(Xo)]
and by J(xo) (resp.J(x)) the set{j € K : gj(xo) <
0 (respgj(xo) > 0)}. We havel(xp) UJ(Xo) UJ(Xg) = K
and ifxp € X,J(x0) = .

We recall some optimality concepts, the most often
studied in the literature, for the problem (VP). For other
notions and their connections, see 84]|

Definition 4.A point x € X is said to be a local weakly
efficient solution of the problem (VP), if there exists a
neighborhood NXp) around % such that

f(x) £ f(xo), forall x € N(xo) N X. (7
Definition 5.A point % € X is said to be a weakly efficient
(resp. an efficient) solution of the problem (VP), if there
exists no x X such that

f(x) < f(xo) (resp f(x) < f(x)). (8)

Hayashi and Komiyal5] have proved an alternative
lemma that we will use to prove Fritz John type necessary
optimality conditions and to establish characterizatiohs
efficient and weakly efficient solutions for (VP). Before
giving this lemma, we recall the definition of convexlike
vector function.

Definition 6.[12] A function f: D — RN is a convexlike
function if for any xy € D and 0 < A < 1, there exists
z e D such that

f(2) SAT()+(1—A)F(Y).

Lemma 1[15] Let S be a nonempty set R" and lety :
S— R™Mbe a convexlike function. Then either

Y (x) < 0 has a solution x S,

or

p'Y(x) = Oforallx € S, for some & RY,
but both alternatives are never true.

To prove necessary conditions for the problem (VP),
we need to prove the following lemma.

Lemma 2 Suppose that
(i)xo is a (local) weakly efficient solution for (VP);

(ii)g j is continuous atefor j € J(xo), the functionsif i €
A, 0, | € (o) are differentiable at ¥ and there
exist vector functiong; : X xD — R", i € .4, and
0, : X xD — R", j € J(xo) which satisfy at x with
respect ta] : X x D — R" the following inequalities,

[V i (%0)]'n (%, %0) < [V i (X0)]'1i (X, %0), VX E X, Vi € /‘(/é)

[vgj(%0)]'n(x%0) < [vgj(%0)]'6;(X,%0), ¥ XxE X, ¥ j € I(x),
(10)
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Then the system of inequalities

[V i (%0)]'Ni (X, X0) < 0, i € A, (11)

(Vg (%0)]'6j (x,%0) < 0, j € I(Xo), (12)

has no solution x X.

ProofLet xp € X be a local weakly efficient solution
for (VP) and suppose there existse™X such that
the inequalities 11)-(12) are true. Fori € ./, let
B (X0, %X, T) = fi(xo+ TN (X, %0)) — fi(X0). We observe that
this function vanishes at= 0 and

lim 745 (0, %, T) — ¢, (%0, %,0)] = lim 7 fi(x0 +
T—0t T—0t

(rfl()i,Xo)) — fi(x0)] = [V fi(x0)]'n (X, X0) < O using @) and
It follows that, for alli € .47, ¢ (X0,X,T) <O if T is in
some open intervdD, &1, ), 8 > 0. Thus,

fi(Xo+ TN (& X0)) < fi(Xo), T€ (0,81), Vi N

Similarly, by defininggg; (Xo0,X, T) = gj(Xo + TN (X, X0)) —
0j(Xo0), J € J(x0) and using 10) with (12), we get

9j(X0+T1N(X%0)) <gj(%0) =0, T € (0,8;), ¥V j € (%),
where for allj € J(xo), dy; > 0.

Now, since forj € J(Xo), gj(Xo) < 0 andg; is continuous
atxo, therefore, there existg > 0 such that

gj(X0+1N(X,%0)) <0, T€(0,9), V] € I(Xo).

Letd = min{dy, i € 47, &y;, | €I(X0), &, | €I(X0)}
Then

(X0 +T1N(%%0)) € Ngy(X0), T€ (0,%),  (13)
whereNg (Xo) is a neighborhood ofy depending ordy.
Now, for all T € (0, &) we have

fi(xo+ TN (X %)) < fi(X0), 1 € A, (14)

gj(X0+1n(%x0)) <0, jeK. (15)

By (13) and (L5), we get(xo+ 11 (X,%0)) € Ng (o) N X,
for all T € (0,d). Hence (4) is a contradiction to the
assumption thaty is a (local) weakly efficient solution for
(VP). Thus, there exists np € X satisfying the system
(11)-(12), and the lemma is proved.

In the next theorem, we obtain Fritz John type

(ig; is continuous at xfor j € J(Xo), the functions if
i€ AN, 0 ] €I(x) are differentiable at xand there
exist vector functiong)i : X xD — R", i € .4, 6; :
XxD—=R" jeJ(X) which satisfy at xwith respect
ton : X x D — R" the inequalities9) and (L0);

6L = ([VHi(xo) mi(xX), i e
A, [Vgi(%0)]'6j(x.X0), | € I(x0)) € RN is a
convexlike function of x on X.

Then there existgu,A) € RN such that (xo, i1, A)
satisfies the following generalized Fritz John condition

N
DX (xo)'Mi(xx0)+ 5 Aj[vgj(%)]'6j(x,%0) = 0, V x € X.

j€30)
(16)

Prooflf the conditions(i) and (ii) are satisfied, then, by
Lemma?2 the system 11)-(12) has no solutiorx € X.
Since, by hypothesidii ), L(x) = ([V fi(%0)]'ni (X, %), i €
A, VY (%0)]'6(%,X0), | € (X)) is a convexlike
function of x on X, therefore, by Lemma4, there exists
(u,A) € RY™ such that the relatiorl6) is satisfied.

Now, using the generalized Fritz John conditid®){ we
establish sufficient conditions for a feasible point to be
weakly efficient or efficient for (VP) under weak invexity
with respect to differentn; )ic_s .

Theorem 3Let x € X and suppose that:

1.f is weakly pseudo-invex | ag wn X with respect to
Ni:XxX—=R"ie s,

2.g is differentiable at x and for all j € J(xo),
there exists a functior®; : X x X — R" such that
[Vgj (%0)]'6j(Xx,%0) <0, ¥ X € X.

If there exists a vector(p,A) € ngo such that
(X0, M,A,(ni)i» (6))) satisfies the generalized Fritz John
condition (L6), then x is a weakly efficient solution for
(VP).

ProoflLet us suppose thaty is not a weakly efficient
solution of (VP). Then there exists a feasible poistuch

that f (x) — f(xg) <O.

Sincef is weakly pseudo-invex | af on X with respect
to (Ni)ie.v, it follows that

IXeX, [Vhi(xo)'ni(x) <0, Vies.  (17)
By hypothesis, we have
[Vg;(%0)]'6; (X, X0) <0, ¥ j € I(Xp). (18)

necessary optimality conditions with different functions as (. 1) e Rgﬂo and from (7) and @8), it follows that

(ni)i and(6;); associated to the objective and constraint

functions of (VP).

_ o ZHi[Vfi(m
Theorem 2(Fritz John type necessary optimality i=

conditions) Suppose that

(i)xo is a weakly efficient solution for (VP);

N

N'ni(xx0)+ > Aj[vgj(x0)]'6j(X %) <O,
jeJ(xo)

which contradicts 16), and thereforexy is a weakly

efficient solution of (VP).
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Proceeding in the same way as in the proof of the abovéefinition 9.Let i : X x X = R", i€ A, 6 : X x X —
result, we can prove the following theorem by using theRR", j € K be vector functions. The problem (VP) is said to

weak pseudo-invexity II. be weakly FJ-pseudo-invex | a§ € X on X with respect
to (Ni)ie.r and (6j)jcy(x,), if the functions f and g are
Theorem 4Let X € X and suppose that: differentiable at ¥ and for each xc X,

1.f is weakly pseudo-invex Il agxn X with respect to
Ni:XxX—=R"ie A,

2.g is differentiable at ¢ and for all j € J(xo), _ ] ) i
there exists a functior; : X x X — R" such that !fx:x, inthe relat|qn 21), we say that (VP) is FJ-pseudo-
[V (%0)]16; (X,X0) < 0, ¥ X € X. invex I at x on X with respect t@n; )ic.» and(6;)jeyxy)-

The problem (VP) is said to be (weakly) FJ-pseudo-invex
If there exists a vector(u,A) € RY™ such that 1on X with respect tgni)i and());, if it is (weakly) FJ-
(%0, 1,7, (Ni)i, (8));) satisfies the generalized Fritz John PSeudo-invex | at eachpx X on X with respect to the
condition (L6), then x is an efficient solution for (VP). same(Ni)ie.r and(6)jcix)-

Now, we establish a characterization of the weakly

efficient solutions of (VP) by using the weak FJ-pseudo-
5 Characterization of weakly efficient and ngfex'%a't E’r‘]’ghfoﬁfjpi‘g rtgs (i't'ff_zrepf;g’?ie)& ar:‘gegei ) i or

- : Wi ult i ved u w
efficient solutions hypotheses than Theorem 3.3.12 given3fi]] The result
o o t al26,26] and A Jimé ¢ al] remains true by using the concept of convexlikeness
suna-Gomez et al2p,26] and Arana-Jiménez et a4, i i i i i

5] characterized the weakly efficient and efficient soIutionsltgsﬁgeeot[rt,gerggﬂﬁev?: stlemt/ﬁgltgl'?enr?\aﬁir\?em\(iﬂ%;hus,
of (VP) by using the concepts of Kuhn-Tucker (Fritz Hayashi and Komiyal[5] instead of the one given by Weir
John) vector critical points under generalized invexity. 3nq Mond B3, Theorem 2.1].
In this section, we characterize the weakly efficient and .
efficient solutions of (VP) by means of a new concept of 1 '€0rém SSuppose that the functions  f a,?d g are
generalized Fritz John vector critical point and classes 01d|fferent|ablt.a on X andn letn; : X x X — R, i €
generalized invex functions (with respect to differem); /" and §; : X x X — R", | € K be functions such

[V fi(%0)]'ni(X.%0) < 0, Vi€ AN,

f(x)— f(x) <0=3Ixe X'{[vgj(xo)]t 6(X:%0) <0,V j € J(o)-

and(6;);) which we present below. that for all x € X, L(xx0) = ([7fi(x0)]'ni(x.%0), i €
81 P N, Vg (x0)]16j(x, %), | € I(%)) € R'S“O is a
Definition 7.Let % be a feasible point ofVP) and n; : convexlike function of x on X. Then, every generalized

XxX =RV ie s, 6 :XxX =R je Ix) be Fritz John vector critical point with respect t@);); and
vector functions. xis said to be a generalized Fritz John (8;); of problem (VP) is a weakly efficient solution if and
(resp. Kuhn-Tucker) vector critical point with respect to only if (VP) is weakly FJ-pseudo-invex | on X with respect
(Ni)ie.y and (6))jeyx,). if the functions f and g are o (ni)i and(6;);.

differentiable at ¥ and there exists a vectofu,A) € Proof(1) (Sufficient condition) Letx, € X be a
RE*J" (resp. there exist vectopse Rg andA € RJZO), such  generalized Fritz John vector critical point with respect t
that (Xo, 1, A, (Mi)ic.r, (8))jcix)) Satisfies the relation  (Mi)ic.r @nd (6))jes) for (VP). If (VP) is weakly FJ-
(16) of Theoren?. pseudo-invex | akg on X with respect to(n;)ic.» and

) . (6))jeapo)» then, in the same manner as in Theoi&mwe
Osuna-Gomez et al2p, 26] have characterized the weakly obtain thaix, is a weakly efficient solution for (VP).
efficient solutions for (VP) by using the concept of KT- (2) (Necessary condition) For the converse, suppose that
pseudo-invexity (with respect to the samg defined in  every generalized Fritz John vector critical point with
the following way. respect to(n;)i and (8;); of problem (VP) is a weakly

efficient solution.

Definition 8.Letn : X x X — R" be a vector function. The L : ; ;
X . X - Let us suppose that there exist two feasible poirstsds
problem (VP) is said to be KT-pseudo-invex on X with such thatpp b %0

respect ton, if the functions f and g are differentiable on N
X and for each xxg € X, ) .f(x) f(0) <O o ) (22)
This means thatg is not a weakly efficient solution, and
f(x)— f(x0) < 0= [Vfi(x0)]'n(x,x0) <0, Vie .~ by using the initial hypothesis we deduce thatis not
(19) a generalized Fritz John vector critical point with respect
to (Ni)ic.r and (6j)jeyx,) for (VP), i.e. the condition
. t < ; N
Tabelneoo) S0, VIS0 ) s pmhomice + 3 Alvgbolei) 2
For the study of weakly efficient solutions and the = j€dx0)
generalized Fritz John vector critical points, we need anewd, vV x € X" is not satisfied for all(u,A) € Rﬁ”".
kind of function which we define as follows. Therefore, by Lemma, the system -
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) i
{ [gf'.(xo)]tne'.(x’xo) < 06 Vv'g ’/’3’ Arana-Jiménez et al5] have given characterizations of
[V9;(x0)] 8 (x,x0) <0, ¥ j € J(x0)- efficient solutions of (VP) by using the concepts of KT-

has a solutionx = x € X. In consequence, (VP) is weakly pseudo-invexity Il and FJ-pseudo-invexity Il (with respec
FJ-pseudo-invex | oX with respect tqn;); and(;);. to the sama)). They defined these concepts by effecting

o light modifications on the KT-pseudo-invexity introduced
RemarkiNote that the hypothesis “for alh € X, L(X,%g) = slg , psel yin
([7 i (x0) ] 1 (X, Xo), i gpﬂ (Vg (Xoa)‘i)tej (x Xo() XOJ-) c by Osuna-Gomez et aR§,26]. Similarly, we consider the

J(x0)) € RN*% s a convexlike function ok on X" is following definition.

_r;ﬁeeg?g#;st to prove the necessary optimality condition OfDefinition 10Letn i XxX SR i€ .4, 6 XxX

R" j € K be vector functions. The problem (VP) is said to
Remarkn Definition 9, it is easy to see that if the vector be weakly FJ-pseudo-invex Il a§ & X on X with respect
functionsn;, i € 4" and6j, j € J(xo) are equal to asame to (ni)ic.4 and (6;)jcx) if the functions f and g are
functionnn andX = x, we obtain kind of functions which differentiable at y and %or each e X:

are contained in the KT-pseudo-invexity class given by

Osuna-Gomez et al2p,26]. On the other hand, the set [V i (%0)]'Ni (% %0) < 0, Vie A,

of generalized Fritz John vector critical points is wider [vgj(%0)]' 8;(X;%) < 0, ¥ j € I(%).

than the set of usual Kuhn-Tucker vector critical points.  _ ) ) ) (24)
Thus, in this sense, Theoresncan be considered as an T X=X, inthe relation g4), we say that (VP) is FJ-pseudo-

extension of Theorem 3.7 (resp. Theorem 2.3) given bylnvex Il atx on X with respect tdni)ic.» and (6;)jey(xy)-
Osuna-Gomez et al2f] (resp. R6)). The problem (VP) is said to be (weakly) FJ-pseudo-invex

) ) [l on X with respect tqn;); and(6;)j, if it is (weakly) FJ-
In the foI|0W|ng example, we show that there exist Weakly pseudo-invex Il at eachgxe X on X with respect to the
efficient solutions which are not characterized by Theoremsame(n; )ic s and (6}) jcix)-
3.7 (resp. Theorem 2.3) given by Osuna-Gémez ef8). |

(resp. P6)) but they are characterized by Theorém Remarkn Definition 10, it is easy to see that if the vector
Example 1Me consider the following multiobjective functionsni, i € .4 and 6;, j € J(Xo) are equal to a

optimization problem same functiom andx = x, we obtain equivalently the FJ-
pseudo-invexity Il given by Arana-Jiménez et &. [

f(x)ff(xo)§0¢3)?e><,{

Minimize f(x) = (— (X1 +1)% — Xz, —X2 + X3 + X1%p — X1),
subject togy (x) = x5 —x2 £ 0,

02(X) =% £ 0, The relationship between this class of functions and those
O3(X) = —x1—2=0, (23) given in Definition9 is as follows.
23
where f : R* — R®> and g = (91,02,93) : R* = R®  Proposition 3f (VP) is (weakly) FJ-pseudo-invex Il ag x
The set ofzall geasuble solutions of problemXs= {x = on X with respect t¢n; )ic.» and(6;);cy,). then (VP) is
(X1, %) ER“ X7 =% =0, 2 =0and—x; — 2= 0}. (weakly) FJ-pseudo-invex | agxn X with respect to the

We have xp = (0,0) € X is not a Kuhn-Tucker same(n;):.. » and(0:); .

vector critical pE)int) of problem 23), because the Miie.s (Oi)icaco)

condition of Kuhn-Tucker atxp takes the form Following the same lines as the demonstration of Theorem
M1V f1(Xo) + M2V f2(Xo) + A1V01(Xo) + A2VO2(X0) = 5 and using Theoren#, we can prove the following
(—2u1 — p2,—H1 — A1+ Az) # (0,0), V (u1,M2) >  characterization of efficient solutions of (VP) under weak
0, V (A1,A2) = 0. Thus, the poinky does not belong to the  FJ-pseudo-invexity Il with respect to differefw;); and

set of weakly efficient solutions characterized by Theorem(;);, and the concept of convexlikeness.

3.7 (resp. Theorem 2.3) given by Osuna-Gémez ef8&). |

(resp. R6]). Theorem 6Suppose that the functions f and g are
However, the problem2@) is weakly FJ-pseudo-invex | differentiable on X and letn : X x X — R", i €
on X with respect ton; (x,X) = (0,n1(X,X)), N2(x%X) = .4 and 6; : X x X — R", j € K be functions such

(Ov —Xz), el(X,)?) = (Ov Gi(x,)”()), 92()(’)?) — (07 eé(X,)h(‘)) that for all x € X, L(X,Xo) = ([V fi (XO)]tni|SX7X0), (S

and 63(x,X) = (63(x,X),0) such thatny, 6; and6 (resp. .4, [vgj(%0)]'6j(x, %), | € (X)) € RN*h is a

8;) can be any positive (resp. negative) functions onconvexlike function of x on X. Then, every generalized
X x X (take x(x,X) = (a,a) € X, with a € [-8,0]).  Fritz John vector critical point with respect t@};); and
Furthermore,xo is a generalized Fritz John vector (6;); of problem (VP) is an efficient solution if and only
critical point with respect t@n;)i—12 and(8;);j-1> (take if (VP) is weakly FJ-pseudo-invex Il on X with respect to
H1 =0, pz =1 andA; = A, = 0), it follows that, by using  (n;); and(6;);.

the sufficient condition of Theorerh, Xy is a weakly

efficient solution of problem23). In the following example, we show that there exist efficient
Note thatxg is not an efficient solution of problem solutions which are not characterized by Theorems 5 and
(23) because there exists = (—2,0) € X such that 6 of Arana-Jiménez et al5] but they are characterized by
f(x) — f(x0) <O. Theoremt above.

(@© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 3, 949-959 (2016)www.naturalspublishing.com/Journals.asp

N SS ¥

957

Example 12Ve consider the following multiobjective

optimization problem

Minimize f(x
subject togs (
g2(
03

= (—X%-FX%,X]_Xz),

) =—X1+X2 <0,

) = Iog(1+x1) — X2 g 0,
X) = X1+ %5 < 0,

N2

X

(25)

X

—~

wheref = (fy, f) : R? = R? andg = (g1,02,03) : R —
R3. The set of all feasible solutions of problemXs=
{Xx= (x1,X2) €ER?: —x1+% <0, log(1l+x1) — % <
0 andx + x5 = O}.

We havexg = (0,0) € X is a Kuhn-Tucker and then

a Fritz John vector critical point of problen2%) (take
U1 = U2 = A1 = A2 = 1 and A3 = 0), but there exists
no a functionn : X x X — R? for which the problem

(25) is KT-pseudo-invex Il or FJ-pseudo-invex Il in the

sense of Arana-Jiménez et af] [(take X = (—3,—3)

andx” = (—%,—3) € X). Thus, even if the poinko is

We have xg = (0,0,0) € X is not a Kuhn-Tucker
vector critical point of problem 26), because the
condition of Kuhn-Tucker atxy takes the form
H1V fi(x0) + M2V Ta(Xo) + A1VO1(X0) + A2VQ2(Xo) +
A3V03(%0) = (—H2 + A3,A1 — A, —pp — M) #
(07070)7 v (ulal-'lZ) > Oa v ()\17)\27)\3) z 0. Thus;
the pointxg does not belong to the set of weakly efficient
solutions characterized by Theorem 3.7 (resp. Theorem
2.3) given by Osuna-Gomez et al2g (resp. R6]).
Furthermore xg does not belong to the set of efficient
solutions characterized by Theorem 5 given by Arana-
Jiménez et al.g]. On the other hand, there exists no a
function n : X x X — R2 for which the problem26) is
FJ-pseudo-invex Il in the sense of Arana-Jiménez et al.
[5] (take X = (—3,—35,—%) andx’ = (—1,0,0) € X).

It follows that, also,xp does not belong to the set of
efficient solutions characterized by Theorem 6 given by
Arana-Jiménez et al5].

However, the problem2g) is weakly FJ-pseudo-invex Il

a Kuhn-Tucker and a Fritz John vector critical point of 0n X with respect tans (X,X) = (X1, —x1,0), N2(X,X) =

problem @5), it does not belong to the set of efficient (n§(>/<,>?),~0,0),
solutions characterized by Theorems 5 and 6 given by(0; 63(x.X),0)

Arana-Jiménez et al5].

However, the problem26) is weakly FJ-pseudo-invex Il

on X with respect ta;(x,X) = (—x1%X1,x1%2), N2(x,X) =
(Xo%o,%2%1), OL(X,X) = (61(x,X),0{(x,X)), O(x,X) =
(0,05(x,X)) and B5(x,X) = (65(x,X),0) such thatf; and

el(xai) = (07 ejl_(xai)ao)a GZ(Xai) =
and 63(x,X) = (653(x,X),0,0) such
that n, and 6, (resp. 6 and 65) can be any
positive (resp. negative) functions oX x X (take
X(x,%) = (324[fi(x) — i(X)],0,0) € X or X = (a,0,0)
with a < 0). Furthermore,xy is a generalized Fritz
John vector critical point with respect 107;)i=12 and

6, (resp.8y and8}) can be any positive (resp. negative) (6))j=123 (takep; =1, o =0 andA; = A2 = A3 =0), it

functions onX x X (takex = X(x,X) = (X1(X, X),%2(X, X))

with )?1 _ )?2 _ mln{ fl(x) _ fl()?)a fZ(X) _ fZ()’Z)} or X =

_ SEalfi(®) —fi0)+1 _
(a,a) with a € | — 1,0[. Furthermoreyo is a generalized
Fritz John vector critical point with respect (g )i—1.» and
(9])];17273 (takepy = 2 =1 andA; = A = A3 =0), it

follows that, by using the sufficient condition of Theorem
6, X is an efficient solution of problen26).
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In the following example, we present a problem which is
not FJ-pseudo-invex Il in the sense of Arana-Jiménez e
al. [5] and which admits efficient solutions which are not
Kuhn-Tucker vector critical points. Thus, we show that
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