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1 Introduction

The notion of Dislocated quasi-metric space has been
introduced by F.M. Zeyada et al and proved a version of
Banach Contraction principle in such spaces(see [5]). In
[4] C.T. Aage and J. N. Salunke proved dislocated
quasi-metric version of Kannan mapping theorem. In this
paper we present some interesting properties of dislocated
quasi-metric spaces. Using these properties some fixed
point theorem for contractions and Kannan mappings are
derived dropping continuity condition imposed by F.M.
Zeyada and C.T. Aage.
In what followsN, R, Q denote the sets of natural, real
and rational numbers respectively.

Definition 1.[5] Let X be a nonempty set and d: X×X →
[0,∞) satisfy the following conditions:
(d1) d(x,y) = d(y,x) = 0 implies x= y,
(d2) d(x,y)≤ d(x,z)+d(z,y) for all x,y,z∈ X.
Then the function d is called dislocated quasi-metric on
X and the pair(X,d) is called a dislocated quasi-metric
space(in short dq-metric space).
In addition, if d satisfies
(d3) d(x,y) = d(y,x) for all x,y∈ X,
then (X,d) is called a dislocated metric space (d-metric
space in short).

Throughout this paper(X,d) will denote a dq-metric
space.

Definition 2.[5] A sequence (xn) dislocated
quasi-converges (for short dq-converges) to x in X if

lim d(xn,x) = lim d(x,xn) = 0. (1.1)

In this case x is called a dq-limit of(xn) and we write
lim xn = x in (X,d).

Remark.dq-limits of a dq-convergent sequence in
dq-metric space are unique.

Definition 3.[5] A sequence(xn) in X is called Cauchy
(resp. Bicauchy) if for eachε > 0 there exists a positive
integer Nε such that for all m,n ≥ Nε , d(xm,xn) < ε or
d(xn,xm) < ε (resp. max{d(xn,xm),d(xm,xn)} < ε).
(X,d) is called complete dq-metric space if every Cauchy
sequence in X is a dq-convergent in X.

Definition 4.[5] Let (X,d1) and (Y,d2) be a dq-metric
spaces. Then f: X →Y is continuous if for each sequence
(xn) which is d1q-convergent to x0 in X, the sequence
( f (xn)) is d2q-convergent to f(x0) in Y .

Definition 5.A mapping T: X → X is called a contraction
if

d(Tx,Ty)≤ αd(x,y) (1.2)

for all x,y ∈ X and0 ≤ α < 1. α is called a contracting
constant.
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Definition 6.[4] A mapping T: X → X is called a Kannan
mapping if

d(Tx,Ty)≤ α{d(x,Tx)+d(y,Ty)} (1.3)

for all x,y∈ X and0≤ α <
1
2.

The following proposition is a natural generalization
of result in metric space(See [3]) to dq-metric space.

Proposition 1.If T is a contraction on a dq-metric space
(X,d) with contracting constantα, then

d(Tnx,Tny)+d(Tny,Tnx)
2 ≤ αn

1−αn{
d(x,Tnx)+d(Tnx,x)

2 + d(y,Tny)+d(Tny,y)
2 }

(1.4)
and 0 ≤ αn

1−αn <
1
2 for some positive integer n. Further,

if d(x,y) = d(y,x) for all x,y ∈ X, then Tn is a Kannan
mapping on X for some n∈ N.

Examples 1It is clear that metric spaces and d-metric
spaces are dq-metric spaces.

1.Define d onQ × Q by d(x,y) = |x|. Then d is a
complete dq-metric but not a metric on X and the
sequence(1

n)n∈N dq-converges to 0.
2.Let X=N and d(x,y) = x for all x,y inN. Then(X,d)

is a complete dq-metric space.

2 Main Results

In this sectionA will denote the set{x∈ X : d(x,x) = 0}.

Example 1.The setA in (X,d) of Example1(1) is {0}
whereas in Example1(2) it is empty.

Result 2If (xn) is a dq-convergent sequence in X with a
dq-limit x, then x∈ A.

Proof.Letx be a dq-limit of a sequence(xn) in X. Letε > 0.
Then there exists a positive integerNε such that for all
n≥ Nε 0≤ d(x,x)≤ d(x,xn)+d(xn,x)< ε. Sinceε > 0 is
arbitrary,d(x,x) = 0.

Result 3If A is a nonempty subset of complete dq-metric
space X, then(A,d) is complete subspace of X.

Proof.Let (xn) be a Cauchy sequence inA. SinceX is a
complete, there existsu ∈ X such that(xn) dq-converges
to u in X. By Result2, u∈ A. ThereforeA is complete.

Lemma 1.If we define D on X× X by
D(x,y) = d(x,y)+d(y,x)

2 , then

1.D is a d-metric on X,
2.lim D(xn,x) = 0 if and only if lim xn = x in (X,d),
3.If A is a nonempty set, then D is a metric on A,
4.If (X,d) is a complete dq-metric space, then(X,D) is

a complete d-metric space.

Proof.The proof of (1),(2) and (3) are clear.
Let (xn) be a Cauchy sequence in(X,D) and letε > 0.
Then there exists a positive integerNε such that
D(xn,xm) <

ε
2 whenevern,m ≥ Nε . Thus for n,m >

Nε ,min{d(xn,xm),d(xm,xn)} ≤ d(xn,xm) + d(xm,xn) < ε
and hence(xn) is a Cauchy sequence in(X,d). Since
(X,d) is complete, there existsx in X such that(xn)
dq-converges tox. By (2), limD(xn,x) = 0 and hence
(X,D) is a complete d-metric space.

Lemma 2.Let f be a contraction on X with a contracting
constantλ . Then for each x∈ X the sequence( f nx) is a
Cauchy sequence in X.

Proof.Let x∈ X andxn = f nx. Then
d(xn,xn+1) = d( f nx, f n+1x) ≤ λd( f n−1x, f nx) ≤ ... ≤
λ nd(x, f x). Now

d(xn,xn+k)≤ d(xn,xn+1)+d(xn+1,xn+2)+ .....+d(xn+k−1,xn+k)

≤ (λ n+λ n+1+ ...+λ n+k−1)d(x, f x)

<
λ n

1−λ
d(x, f x).

(2.1)
Assume thatd(x, f x)> 0. Lettingn→ ∞, (xn) is a Cauchy
sequence. Also, ifd(x, f x) = 0, thend(xn,xn+p) = 0 for all
n, p> 0 and hence(xn) is a Cauchy sequence inX.

Theorem 4.Let f be a contraction on a complete
dq-metric space X with contracting constantλ . Then f
has a unique fixed point in X.

Proof.Let x∈ X andxn = f nx. By Lemma2, the sequence
( f nx) is a Cauchy sequence inX. SinceX is complete,
there existsu∈X such that limf nx= u. By Result2, u∈A
and henceA is nonempty. DefineD(x,y) = d(x,y)+d(y,x)

2 for
all x,y ∈ X, then by Lemma1 and Result3, (A,D) is a
complete metric space. Letx ∈ A. Thend( f (x), f (x)) ≤
λd(x,x) = 0 and hencef (A)⊆ A. Also,

D( f x, f y) = d( f x, f y)+d( f y, f x)
2 ≤ λ d(x,y)+d(y,x)

2 = λD(x,y).
(2.2)

Thereforef is a contraction on(A,D). Hence by Banach
contraction principle for metric spaces,f has a unique
fixed pointx in A.
If y is a fixed point of f in X, then
d(x,y) = d( f x, f y) ≤ λd(x,y). Since 0≤ λ < 1,
d(x,y) = 0. By symmetry,d(y,x) = 0. Thereforex = y
and f has a unique fixed point inX.

In [4] C.T. Aage and J. N. Salunke, proved that every
continuous Kannan mappingT on a complete dq-metric
space has a unique fixed point. The following result shows
that the assumption of continuity can be dropped to obtain
the theorem under a less restrictive contractive condition

Theorem 5.If T is mapping on a complete dq-metric space
(X,d) into itself and if there is a constantα such that0≤
α <

1
2 and

d(Tx,Ty)≤ α{d(x,Tx)+d(y,Ty)}, (2.3)

for all x,y∈ X, then T has a unique fixed point in X.
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Proof.Let x ∈ X and write xn = Tnx. Then
d(x1,x2) = d(Tx,Tx1)≤ α{d(x,Tx)+d(x1,Tx1)}
⇒ (1−α)d(x1,x2)≤ αd(x,x1)
⇒ d(x1,x2)≤

α
(1−α)d(x,x1)

An inductive argument yields the inequality

d(xn,xn+1)≤ λ nd(x,x1) (2.4)

whereλ = α
(1−α) .

Now

d(xn,xn+k)≤ d(xn,xn+1)+d(xn+1,xn+2)+ .....+d(xn+k−1,xn+k)

≤ (λ n+λ n+1+ ...+λ n+k−1)d(x,x1)

<
λ n

1−λ
d(x,x1).

(2.5)
Since 0≤ λ < 1, (xn) is a Cauchy sequence and sinceX is
complete there exists au∈ X such that limn→∞ d(xn,u) =
limn→∞ d(u,xn) = 0.
Now we show thatu is a fixed point ofT.

d(u,Tu)≤ d(u,xn)+d(xn,Tu)

= d(u,xn)+d(Txn−1,Tu)

≤ d(u,xn)+α{d(xn−1,xn)+d(u,Tu)}

≤ d(u,xn)+αd(u,Tu)+αλ n−1d(x,x1)

(2.6)

⇒ 0 ≤ d(u,Tu) ≤ 1
1−α d(u,xn)+λ nd(x,x1). Letting n →

∞, we getd(u,Tu) = 0. Now

d(Tu,u)≤ d(Tu,xn)+d(xn,u)

= d(Tu,Txn−1)+d(xn,u)

≤ α{d(u,Tu)+d(xn−1,xn)}+d(xn,u)

(2.7)

d(Tu,u) ≤ αd(xn−1,xn) + d(xn,u) since d(u,Tu) = 0.
Letting n → ∞, we get d(Tu,u) = 0. Therefore,
d(Tu,u) = d(u,Tu) = 0 and henceTu= u.

Uniqueness: If a is a fixed point of T, then
d(a,a) = d(Ta,Ta) ≤ α{d(a,Ta) + d(a,Ta)} =
α{d(a,a) + d(a,a)} which implies that
(1−2α)d(a,a)≤ 0. Since 0≤ α <

1
2, d(a,a) = 0. If a, b

are fixed points of T, then d(a,b) = d(Ta,Tb) ≤
α{d(a,Ta) + d(b,Tb)} = α{d(a,a) + d(b,b)} = 0.
Therefored(a,b) = 0. By symmetry,d(b,a) = 0. Hence
a= b.
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