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Abstract: Friction fault diagnosis of rotating machinery based on acoustic emission (AE) technique is a research hotspot in recent
years. The rotating machinery will produce multi-source noise during theoperation process, so how to correctly identify the friction
acoustic emission signals has become a key factor for accurate diagnosis of the fault. In this paper, it proposes a Gaussian mixed model
(GMM) based on an embedded time delay neural network (TDNN) to identify friction acoustic emission signals. It comprehensively
utilizes the advantages of the learning ability of time delay neural network about data structure and data distribution presentation
capability of Gaussian mixture model. Time delay neural network fully exploits the time-ordered of eigenvector set, makes the
maximum likelihood probability more reasonable which needs to assume thatthe variables are independent of each other through
the transformation of the time delay network and uses them for the training asa whole with the criteria of maximum likelihood
(ML) probability. During the training process, the parameters of Gaussian mixture model and neural network update alternately. The
average amplitude, maximum amplitude, amplitude dynamic range, the Hurst exponent and approximate entropy (ApEn) of friction
acoustic emission signals are selected as the characteristic parameters offault recognition and these five parameters constitutes the
input parameters vector of the identification model. Through the verification the AE signals of different friction states collected on the
rotor test bed, the experimental results show that the identification method of rotor friction acoustic emission signals of Gaussian mixed
model based on embedded time delay neural network is an effective mean of identification with high recognition efficiency.

Keywords: Acoustic Emission; Signal Recognition; Time Delay Neural Network ;Gaussian Mixture Model

1 Introduction

Acoustic emission(AE) technique with its high sensitivity
provides a new method for the diagnosis of rotating
machinery friction fault. However, due to the prominent
noise problem faced by the AE, especially the relatively
poor working environment of rotating machinery and the
multi-source noise produced by the device during the
operation process coupled with the attenuation and
frequency dispersion distortion during the structure-borne
process of AE signals, the identification of useful friction
AE signals becomes very difficult [1,2,3,4]. Therefore,
the research of more effective AE identification methods
has important practical significance to the promotion of
AE friction fault diagnosis.

Among the pattern recognition methods, the method
based on Gaussian mixture background model (GMM)
has achieved an increasing attention of people [5,6,7]
with advantages such as high recognition rate, simple
training, low training data quantity requirement and it has
become a mainstream recognition method. Support vector
machines (SVM) and the factor analysis method [8,9]
based on GMM super-vector represents the latest
achievements of GMM method. GMM can approach to
any distribution model owing to its good capability of
data distribution representation ability as long as there are
enough items and enough training data. But, GMM can
only approach to the data distribution, it can do nothing to
the changes of underlying data distribution and can not
make any transformation to the data i.e. it can not change
the data distribution; moreover, because we usually take
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each variance matrix of Gaussian distribution as the
diagonal matrix when we select a GMM model, this
assumption is not that reasonable for it requires sufficient
Gaussian mixture items. Neural network also occupies an
important position in pattern recognition such as
multi-layer perceptron (MLP), radial basis network and
time delay neural network, and all of them have achieved
very good identification effect [10,11] . Neural network
transforms the eigenvector and makes the eigenvector got
from transformation approach to the target vector in some
way through the study especially in the case that TDNN is
widely used in signal processing and pattern recognition
[12,13,14] which takes full advantage of timing
information of eigenvector sequence.

It puts forward a kind of friction acoustic emission
signal recognition method combining GMM and TDNN
after giving full consideration to the respective
advantages of GMM and TDNN in this paper. This
method embeds TDNN to GMM, takes the maximum
likelihood probability as the common principle of training
TDNN and GMM so that TDNN can learn the time
information of eigenvector, maps the eigenvector sets to
the subspace which can increase the likelihood
probability of target friction acoustic emission signal and
reduces the impact of the unreasonable assumption of
eigenvector independence. We propose a two-stage
learning method to update the parameters of GMM and
TDNN alternately. Experimental results show that the
recognition rate of our proposed method exceeds the
Gaussian mixture background model, which verifies
validity of our proposed identification method.

2 Use GMM with TDNN to identify the
friction acoustic emission signals

GMM can be regarded as a kind of Hidden Markov
Model (HMM) with status number of 1. An M-order
GMM probability density function is the weighted sum of
M Gaussian probability density functions which can be
expressed by the following form [5,6] :

p(xt |λ ) =
M

∑
i=1

pibi(xt) (1)

The xt here is a D-dimensional random vector which
is usually able to characterize every eigenvector of
characteristic parameters of all kinds of AE signals in the
recognition of friction acoustic emission signals;
bi(xt),i = 1,2, ...,M stands for member density function;
pt ,i = 1,2, ...,M stands for mixed weights. Every member
density function is a Gaussian function with
D-dimensional variable, the mean vectorut and the
covariance matrix∑i , and its form is as follows:

bi(xt) =
exp

{

−1
2(xt −ui)

T ∑−1
i (xt −ui)

}

(2π)D/2 |∑i|
1/2

(2)

Thereinto the mixed weights satisfy the condition

that:
M
∑

i=1
pi = 1.

The complete Gaussian mixture model is composed of
all the member density function mean vectors, covariance
matrix and mixed weight parameters. These parameters
are gathered together and expressed as follows:

M

∑
i=1

pi = 1, i = 1,2, ...,M (3)

Generally speaking, the training and identification
data of AE signal is relatively less, therefore, we usually
assume that each Gaussian mixture density covariance
matrix is diagonal during the actual use of GMM, and we
train the parameters through the Expectation
Maximization (EM) criteria which is as follows:

Firstly, select the initial values ofpi,ui,∑i in formula
(3), calculate the class posterior probability:

p(i|xt ,λ ) =
pibi(xt)

∑M
k=1 pkbk(xt)

(4)

Then, calculate the weight coefficient, mean value and
variance estimate value according to the following
formula. Weight coefficient:

pi =
1
N

N

∑
t=1

p(i|xt ,λ ) (5)

Mean value:

ui =
∑N

t=1 p(i|xt ,λ )xt

∑N
t=1 p(i|xt ,λ )

(6)

Variance

∑
2

i =
∑N

t=1 p(i|xt ,λ )x2
t

∑N
t=1 p(i|xt ,λ )

−ui
2 (7)

Substitutingpi,ui,∑i to formula (1) and (2), we can
get a new parameter value in formula (3), and repeat this
operation, we can work out the model parameterλi.

When it goes to the identification of rotor friction
acoustic emission signal, each type of rotor friction
acoustic emission signal is expressed by a GMM and its
model parameterλi.

For sequences with T testing vectors
X = X1,X2, ...,XT , its GMM probability can be written as:

P(X |λ ) =
T

∏
t=1

p(Xt |λ ) (8)

In logarithmic domain, it can be expressed as:

L(X |λ ) = logP(X |λ ) =
T

∑
t=1

logp(Xt |λ ) (9)
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Use Bayes’ theorem in the identification process,
among the N unknown rotor friction acoustic emission
signal models, the maximum likelihood model’s
corresponding rotor friction acoustic emission signal is
the very identification result:

i∗ = argmax
1≤i≤N

L(X |λi) (10)

Time delay network has been widely used in pattern
recognition, TDNN network has the ability to associate
and compare the current input and the previous inputs.
Thus, the network inputs must be in chronological order,
both TDNN networks with feedback and without
feedback are acceptable, and in this paper, TDNN
network without feedback is mainly used as is shown in
Figure 1. The time delayed eigenvector, as the input of
neural network, shall be nonlinearly transformed by it and
then linearly weighted to form the output which will be
compared with the eigenvector, and the commonly used
criteria is MMSE. TDNN is a multilayer perceptron
network, so the method of training multi perceptron
networks can be also applied to training TDNN network.

Fig. 1: Time delay neural network model without feedback

TDNN has the ability of excavating the time
information of eigenvector sequences, so on the basis of
synthesizing the respective advantages of GMM and the
TDNN network, we propose a scheme with the TDNN
network embedded in GMM. It comprehensively utilizes
TDNN’s learning ability about data structure and GMM’s
capability of data distribution presentation capability.
They are trained as a whole that they jointly use the
maximum likelihood probability criteria so that the neural
network can learn the time information of eigenvector
sequence, thus the learning results will proceed toward
the direction of increasing the target likelihood
probability. Next we will instruct the proposed
identification method in several aspects such as training
and recognizing models, training methods and TDNN
convergence etc.

During the training, after the time delayed eigenvector
enters the TDNN network, the TDNN network learns the
structure of the eigenvector set and extracts the time
information of the eigenvector sequence. And then

provides the study results to GMM in the form of residual
eigenvectors (i.e. the difference between the input vector
and the output of TDNN network), trains GMM model
with EM criteria and makes use of Back Propagation
algorithm (BP) to update the weight coefficient of TDNN
network. The criteria of TDNN network and the studying
and training of GMM model are both maximum
likelihood probability. In this way, through learning, the
residual distribution is likely proceeding towards the
direction of enhancing the likelihood probability.

During the recognition, the eigenvector enters the
TDNN network after the delay. Because the TDNN
network has studied the structure and timing information
of the feature space, it will makes appropriate
transformation of the eigenvector after its entrance, and
then provides it to GMM model. Owing to the study,
TDNN network transformation will play a role of
enhancing the target model likelihood probability and
reducing that of the non-target model.

We shall train this general purpose background model
and the rotor friction acoustic emission signal model by a
two-stage method, and the training process of TDNN
network and that of GMM model will be proceeded
alternately. We usually use EM method to train the
general purpose background model GMM. TDNN is a
multi-layer Perceptron, so we adopt the BP method with
momentum to train the TDNN. The training process is
described as follows:

1. Determine the GMM model and TDNN network
structure;

2. Given the convergence condition and maximum
iterating times;

3. Randomly choose the initial parameters of the
TDNN network and GMM models;

4. Fix TDNN network parameters, input the
eigenvector to TDNN network, get all of the residual
vectors;

5. Amend the weight coefficients, mean vectors and
variances of each Gaussian distribution of GMM model
by EM method [5] ;

6. Utilize the amendatory weight coefficients, mean
vectors and variances of each Gaussian distribution of
GMM model, input the residual to get a likelihood
probability, amend TDNN network parameters by the BP
method with momentum;

7. Determine whether it meets the training stop
condition, if so, stop the training, if not, turn to step 4. We
adopt a two-step iteration method to get the model
parameters, so the GMM weight coefficient, mean vector
and covariance matrix need to be fixed when we iterate
the neural network parameters. Neural network iteration
generally seeks a minimum value, and during the
computations, addition is more convenient than
multiplication, so we take the negative logarithm of
neural network parameters and we can get that:

ω∗
i j = argmin

ωi j

(−
N

∑
t=1

ln p((xt −ot)|λ )) (11)
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The p((xt −ot)|λ ) here please refer to formula (1),ot
stands for Neural network output and N stands for the
number of training samples. The BP method with
momentum [15] is able to accelerate the iterative
convergence process and deal with local minimum
problems more efficiently.

∆ωk
i j(m+1) = γ∆ωk

i j(m)− (1− γ)α
∂F(x)

∂ωk
i j

|ωk
i j=ωk

i j(m)

(12)
Thereinto,∆ωk

i j(m+1) = ωk
i j(m+1)−ωk

i j(m), m
stands for the number of iterations which can be selected
according to the actual situation; k stands for the serial
number of the neural network layer,γ stands for the
inertia coefficient and hereα stands for the iteration
step.F(x) =− ln p((x−o)|λ ), the subscript t is omitted
for convenience.

Next we will calculate :∂F(x)
∂ωk

i j
.

∂F(x)

∂ωk
i j

=
∂F(x)

∂yk
i

∂yk
i

∂ωk
i j

(13)

∂yk
i

∂ωk
i j

= ok−1
j (14)

Calculate the output layer∂F(x)
∂yk

i
:

∂F(x)
∂yk

i
=− 1

p((x−o)|λ )
∂ p((x−o)|λ )

∂ok
i

∂ok
i

yk
i

=− f
′(yk

i )

p((x−o)|λ )∂ (
M
∑

n=1
pncne−

1
2 (x−o−un)

T ∑−1
n (x−o−un))/∂ok

i

=− f
′(yk

i )

p((x−o)|λ )

M
∑

n=1
pncn(

an(x−o−un)

σ2
n,i

(xi −oi −un,i))

(15)
Thereinto:
an(x−o−un) = e−

1
2 (x−o−un)

T ∑−1
n (x−o−un)

cn =
1

(2π)D/2|Σn|
1/2

Calculate for the hidden layer∂F(x)
∂yk

i
:

∂F(x)
∂yk

i
= ∑

j

∂F(x)

∂yk+1
j

∂yk+1
j

∂yk
i

= ∑
j

∂F(x)

∂yk+1
j

∂ (∑
n

ωk+1
jn ok

n)

∂yk
i

= ∑
j

∂F(x)

∂yk+1
j

∂ok
i

∂yk
i
ωk+1

ji = f
′(yk

i ) ∑
j

∂F(x)

∂yk+1
i

ωk+1
ji

(16)

Due to the backward inversion, before the calculation
process for∂F(x)

∂yk
i

, ∂F(x)

∂yk+1
i

has been known, and substitute

∂F(x)

∂yk+1
i

into formula (16) then we can get∂F(x)
∂yk

i
.

At last, we shall simply prove that this training
method can obtain a local maximum point of the model.
Because during the EM training process, each obtained
likelihood probability is monotone non-descending, if we
select the step size factor as well in the training of TDNN
network to make the likelihood probability after each

iteration monotonous non-decreasing, the monotone
non-decreasing sequence must have limit. Therefore, this
can explain that the training process can converge to a
local maximum point.

Of course, in order to avoid the premature convergence
to local maximum point, at the beginning of step selection,
we can choose a bigger one, and at this time, there are
certain advantages to the oscillation of the training process
instead. But the followed iterative step size must be well
controlled, or the training process may be too long or even
diverging.

The results got from the above method are the local
maximum points in theory either it is GMM or TDNN
network. Therefore, we need to start the training with
many initial values and step mechanism in order to
achieve better model parameters.

3 Rotor friction acoustic emission signal
characteristic extraction

After the design of the recognition model, acoustic
emission characteristic parameters which can characterize
different friction conditions must also be determined.
Next, we will explain the selection basis of the
characteristic parameters through theory and experiments.

This experiment adopts 3-bearing 2-cross-rotor
system, 3 bearings are plain bearings which can
effectively simulate rotor imbalance, axis misalignment,
rub-impact and other faults as is shown in Figure 2. The
friction of static and dynamic components of the rotor
system can be simulated through rubbing bracket fixed on
the base of the rotor bed, as is shown in Figure 3.
Rubbing stent is installed between bearing 1 and 2, and
we can simulate different levels of rubbing faults by
adjusting the rub screw which is located in the flank of the
disc and faces the shaft center along the shaft radial. The
AE signals generated by the rubbing source transmit to
both sides of the AE sensor through the wave guide plate.
Set the sampling frequency of 1MHz and rotational speed
of 1480r/min in the experiment. AE waveforms and
spectra of several friction states are shown as Figure 4.

3.1 Time domain characteristic parameters

It can be seen from Figure 4 that the waveform is the
noise signal and its amplitude is very small in no friction
state. After the occurrence of the friction, the signal
amplitude changes significantly and increases apparently
with the increasing magnitude of the friction. In the
frequency domain, noise energy is concentrated near
3kHz, the friction AE signal frequency is above 5kHz,
and the more serious the friction is, the richer the high
frequency component appears. We can intuitively
distinguish the friction state by the energy amplitude of
AE signal, and according to this characteristic, we choose
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Fig. 2: Rotor rubbing test bed

Fig. 3: Rubbing bracket

the average amplitude, maximum amplitude, amplitude
dynamic range these three time domain parameters as the
identification characteristic parameters of AE signal.

3.2 Hurst index

Owing to its reliable characterization of the extent of long
memory, the Hurst index has been applied in machinery,
equipment condition monitoring and fault diagnosis field.
Studies have shown that the Hurst index can reflect the
characteristics of acoustic emission signals under
different frictional strength and it can be used as the basis
of distinguishing the occurrence of the friction and its
intensity changing trend [16] .

For the original time sequence{xt}
T
t=1, select the

scale length n, divide the entire time series into M
sub-sequences of length n, and the tth sample element of
the mth sub-sequence is recorded as
xi,m(t = 1,2, · · · ,n;m= 1,2, · · · ,M), then the rescaled
range statistic of the mth sub-sequence is as follows:

(R/S)n,m =
Rn,m

Sn,m
(17)

(a)No friction

(b)Slight friction

(c)Strong friction

Fig. 4: AE waveforms and spectra of different friction
states
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In the formula,Rn,m stands for the range of the mth
sub-sequence;Sn,m stands for the standard deviation of the
mth sub-sequence:

Rn,m = max
1≤k≤n

k

∑
t=1

(xt,m − xn,m)− min
1≤k≤n

k

∑
t=1

(xt,m − xn,m)

(18)

Sn,m =

√

1
n

n

∑
t=1

(xt,m − xn,m)2 (19)

The xn,m in the formula stands for the mean value of
the mth sub-sequence:

xn,m =
1
n

n

∑
t=1

xt,m (20)

Then the rescaled range of the time series{xt}
T
t=1

corresponding to the scale length n is as follows:

(R/S)n =
1
M

M

∑
m=1

(R/S)n,m (21)

We can get a series of corresponding rescaled ranges
by choosing several n with different length. There is a
relationship between the rescaled range sequence(R/S)n
and its corresponding scale length n as follows:

(R/S)n= CH
n (22)

In the formula: C is a constant; H stands for the Hurst
index. Through taking double logarithm:

lg(R/S) = lgC+Hlgn (23)

Adopt the least square fitting to formula (23), and we
can reckon up the Hurst index.

If 0 ≤ H < 0.5, the time series signals show an
anti-continuing act i.e. if the system appears a growth
trend in a given period then it may shows a declining
trend in the next period. If 0.5< H < 1, the time series
signals show a continued stability i.e. the present change
has a lasting impact on the following changes. If the
system shows a growth trend in a period, then it will
continue to maintain this trend. If H= 0.5, the time series
signal is a signal generated by an independent free
process i.e. the present change has no impact on the
following changes and the time series is random. If
H = 1, the future condition can be completely predicted
by the current situation and the time series is a straight
line.

It is can be seen from Figure 5 that the Hurst index
under the condition of no friction and slight friction is
less than 0.5 which indicates that the friction acoustic
emission signals have an anti-sustained behavior. This is
because most signal consists of the background
mechanical noise generated by the motor vibration under

Fig. 5: The Hurst indexes under different friction states

no friction condition, and the signal appears an inversion
recovery phenomenon showing anti-persistence as is
shown in Figure 3(a); under light friction condition, the
stability of periodic friction is not sufficient enough to
cover up the anti-persistent of background mechanical
noise, so that the entirety shows an anti-persistence, but at
this moment, the signal has an intrinsic potential of
tending to be persistent, thus the Hurst index of the signal
at this moment is bigger than that in the no friction state;
in a strong friction state, the regular friction makes the
overall signal show a kind of stable trend, and the Hurst
index is greater than 0.5 which illustrates such a stable
trend. We can see that the Hurst index can commendably
distinguish the different state of friction.

3.3 Approximate entropy (ApEn)

Approximate entropy measures the probability of the new
model generated in the signal mainly from the point of
view of measuring the complexity of the time series and it
has also been widely used in the field of fault diagnosis in
recent years. Approximate entropy has a better noise
immunity whose size is proportional to the complexity of
the sequence, and it is a suitable characteristic parameter
to characterize the intensity and complexity of AE signal
whom with a nonlinear characteristic and is susceptible to
noise interference, and it measures the complexity of time
series only from the statistical aspect, the advantages that
it only needs a shorter data and a shorter period of time to
obtain the computing result makes it easier to meet the
requirements of real-time analysis of AE signals [16] .

Assume that the collected original data is
{u(i), i = 0,1, · · · ,N}, the approximate entropy can be
calculated by the following steps with the given model
dimension m and similar tolerance r.

1) Constitute the m-dimensional vector X(i) orderly
with the sequence{u(i)} i.e.:

X(i) = [u(i),u(i +1), · · · ,u(i +m−1)], i = 1, · · · ,N−m+1
(24)
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2) Calculate the distance between vector X(i) and its
coversed sine X(j) for each value of i:

d[X(i),X( j)] =
m−1
max
k=0

|u(i+ k)−u( j+ k)| (25)

3) Calculate the number of d[X(i),X(j)]< r and the
ratio of it and the total number vector N−m+1, and the
result can be recorded as Cm

i (r) i.e.:

Cm
i (r) = {TheSumofd[X(i),X(j)]< r}/(N−m+1)

(26)
4) First take the logarithm of Cmi (r), and then calculate

its average value for all i, and the result can be recorded as
Φm(r) i.e.:

Φm(r) =
1

N −m+1

N−m+1

∑
i=1

lnCm
i (r) (27)

5) Then repeat the process in formula (24) to (27) on
m+1, and we can getΦm+1(r).

6) In theory, the approximate entropy of this sequence
is as follows:

ApEn(m,r) = lim
N→∞

[Φm(r)−Φm+1(r)] (28)

N can not be∞ in actual projects, when N is a finite
value, the result obtained by the above steps is the
estimated value of approximate entropy (ApEn) while the
sequence length is N. and the result can be recorded as
follows:

ApEn(m, r,N) =Φm(r)−Φm+1(r) (29)

The value ofApEn is clearly related to that of m and r
which are usually made that m= 2 and r= 0.1≈ 0.25SD
(SD is the standard deviation of sequence{u(i)}).

The application of the approximate entropy in the
analysis of the friction AE signal has the following
advantages:

1) Approximate entropy has a better noise immunity,
especially the better ability to withstand the randomly
generated transient strong interference. Its noise
immunity is very helpful for the characteristic extraction
of the AE signal which is susceptible to strong noise
interference.

2) The approximate entropy is proportional to the
complexity of the sequence, the more complex the
sequence is, the greater the corresponding approximate
entropy becomes. When it goes to the friction AE signals,
the greater the friction strength is, the worse the regularity
of the signal appears, the higher the complexity shows,
and the greater the corresponding approximate entropy
becomes.

3) Approximate entropy algorithm consists of a
greater amount of information than the mean, variance
and other general statistical parameters do because it just

contains the information of the time signal sequence in
the distribution pattern while the mean, variance and
other statistical parameters missed them, thus it can more
effectively extract the characteristics in the friction
signals.

4) Approximate entropy measures the complexity of
time series only from the statistical point of view, thus it
only need a shorter data and a short period of time to
obtain the right result and it easy to meet the real-time
requirements of AE signals. Figure6 shows the different
approximate entropy curves under different friction
strength shown in Figure 3.

Fig. 6: Approximate entropy of different friction states

We can see from Figure 6 that the approximate
entropy gradually becomes larger with the improvement
of the frictional strength, and its distribution of each
friction state is homogeneous. Under no friction state, the
signal is the background mechanical noise with low
complexity and the minimum corresponding approximate
entropy; under slight friction state, even though the
friction strength is small, the signal complexity of
incentive AE signals is bigger than that in no friction
state, the approximate entropy increases and it can be
distinguished from no friction state; In the state of strong
friction, the friction source produces large amounts of
high-strength friction AE signals with substantially
increasing signal complexity and the largest
corresponding approximate entropy which is far outweigh
that of the slight friction state.

4 Experimental analysis

According to the above analysis, the average amplitude,
the maximum amplitude, the amplitude dynamic range,
the Hurst exponent and approximate entropy (ApEn) of
the AE signals are selected as its identification
characteristic parameters in this paper. In order to avoid
the influence of noise, we only consider the average of the
amplitude absolute value of the signal amplitude which
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exceeds a certain threshold when we analyze the
characteristics such as the average amplitude and
dynamic range etc.

During the test, separately select three groups of AE
signals with the time length 3000ms from each of the
three states of no friction, slight friction and strong
friction state when the rotor speed is respectively 500
rpm, 1200 rpm and 2150 rpm, and there are totally 27 sets
of data, extract AE characteristic parameters from each
set of data to form a parameter vectorU = {xi

1,x
i
2, ...,x

i
J},

and identify the friction state by making use of the
Gaussian mixture model based on embedded
self-associative neural network. In order to compare the
effectiveness of the proposed identification method in this
paper, here we have compared it with the friction state
identification result of the baseline-based Gaussian
mixture background model. Make the no friction equals
0, slight friction equals 1 and strong friction equals 2,
then the identification result is as shown in Table 1.

Table 1: The friction state identification results of the two
models

Data set
Rotational

speed(r/min)
The actual

state
GMM

GMM
+TDNN

1 500 0 0 0
2 500 0 0 0
3 500 0 0 0
4 500 1 1 1
5 500 1 1 1
6 500 1 0 1
7 500 2 2 2
8 500 2 2 2
9 500 2 2 2
10 1200 0 0 0
11 1200 0 1 0
12 1200 0 0 0
13 1200 1 1 1
14 1200 1 1 1
15 1200 1 1 1
16 1200 2 2 2
17 1200 2 2 2
18 1200 2 2 2
19 2150 0 0 0
20 2150 0 1 1
21 2150 0 0 0
22 2150 1 2 2
23 2150 1 1 1
24 2150 1 1 1
25 2150 2 2 2
26 2150 2 2 2
27 2150 2 2 2

Friction existence identification rate 96% 100%
Friction state recognition rate 85% 93%

As can be seen from Table 1, both models have very
good identification results when determine whether there
is friction or not, and during the identification of the

specific state of friction, the identification method of the
time delay embedded Gaussian mixture model network
has achieved a certain improvement on the identification
efficiency over the Gaussian mixture model identification
method, and it indicates that it can improve the
identification efficiency of the AE signal by adding the
time delay network. The main reason of the decreased
efficiency of friction state identification is that with the
increasing rotating speed, the noise generated by the test
bed itself is enhanced, and the energy level in slight
friction state is also increased, as a result, the
identification deviation of time-domain characteristic
parameters occurs.

5 Conclusion

This paper makes it possible to learn time information of
feature vectors, increase the acoustic emission signal
likelihood probability of target rotor friction and balance
the requirements of the maximum likelihood probability
criteria by embedding a TDNN network in GMM which
is equivalent to transforming the feature domain and
model domain of GMM simultaneously and also plays a
better role in eliminating the noise effect in noisy
environments. We have solved the model learning method
by using a two-stage iterative method. When the weight
coefficient of neural network output layer is 0, the model
degenerates into GMM. We have chosen the average
amplitude, maximum amplitude, amplitude dynamic
range, the Hurst index and approximate entropy of the
friction acoustic emission signals to constitute the
parameter vector after experimental and theoretical
analysis. The experimental results show that this method
has a high friction fault recognition rate, and its
recognition effect is higher than that of the conventional
GMM.
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