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Abstract: In this paper, we study the sampling distribution of order statistics of the quadratic hazard rate distribution 

(QHRD). We consider the single and product moment of order statistics from QHRD and establish some recurrence 

relations for single and product moments of order statistics. These expressions are used to calculate the mean and variances. 
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1 Introduction 

Order statistics have been used in wide range of problems, including robust statistical estimation and detection of outliers, 

characterization of probability distributions, goodness of fit-tests, quality control, and analysis of censored sample. The 

subject of order statistics deals with the properties and applications of these ordered random variable and of functions 

involving them (see David and Nagaraja [5], Tahir et al [15]). Asymptotic theory of extremes and related developments of 

order statistics are well described in an applausive work of Galambos [7] and the references therein 

The use of recurrence relations for the moments of order statistics is quite well known in statistical literature (see 

for example Arnold et al., [2], Malik et al. [12]). For improved form of these results, Samuel and Thomes [13], Arnold et 

al. [2] have reviewed many recurrence relations and identities for the moments of order statistics arising from several 

specific continuous distributions such as normal, Cauchy, logistic, gamma and exponential. Recurrence relations for the 

expected values of certain functions of two order statistics have been considered by Ali and Khan [1]. More recently, Dar 

and Abdullah [4] study the sampling distribution of order statistics of the two parametric Lomax distribution and derived 

the exact analytical expressions of entropy, residual entropy and past residual entropy for order statistics of Lomax 

distribution. 

The quadratic hazard rate distribution (QHRD) was introduced by Bain [3]. This distribution generalizes several 

well-known distributions. Among these distributions are the linear failure (hazard) rate, exponential and Rayleigh 

distributions. Also, the may have an increasing (decreasing) hazard function or a bathtub shaped hazard function or an 

upside-down bathtub shaped hazard function. This property enables this distribution to be used in many applications in 

several areas, such as reliability, life testing, survival analysis and others. Sarhan [14] and Elbatal [06] introduced a 

generalization of the quadratic hazard rate distribution called the generalized quadratic hazard rate distribution (GQHRD). 

           A random variable 𝑋 with range of values (0, ∞) is said to have the Quadric hazard rate distribution (QHRD) with 

three parameters 𝛼, 𝜃, 𝛽if its pdf is given by 

              𝑓(𝑥) = (𝛼 + 𝜃𝑥 + 𝛽𝑥2)𝑒−(𝛼𝑥+
𝜃

2
𝑥2+

𝛽

3
𝑥3) , 𝑥 > 0,                                                             (1) 

Where   and this restriction on the parameter space is made to be insure that the 

hazard function with the following form is positive, see Bain [3].  
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The cumulative distribution function (cdf) and survival function (sf) associated with (1) is given by 

         𝐹(𝑥) = 1 − 𝑒−(𝛼𝑥+
𝜃

2
𝑥2+

𝛽

3
𝑥3)                                                                                      (2) 

�̅�(𝑥) = 𝑒−(𝛼𝑥+
𝜃

2
𝑥2+

𝛽

3
𝑥3),                                                                                             (3) 

Respectively, it is easy to see that 

          𝑓(𝑥) = (𝛼 + 𝜃𝑥 + 𝛽𝑥2)(1 − 𝐹(𝑥))                                                                        (4) 

2 Distribution of Order Statistics 

Let  be a random sample of size  from the QHRD and let  denotes the 

corresponding order statistics. Then the pdf of  is given by [see Arnold et al. and David and Nagaraja 

[2], [5]] 

𝑓𝑟:𝑛(𝑥) = 𝐶𝑟:𝑛{[𝐹(𝑥)]𝑟−1[1 − 𝐹(𝑥)]𝑛−𝑟𝑓(𝑥)}, 0 < 𝑥 < ∞,                                 (5)    

Where  . 

Using (1), (2) and taking  in (5), yields the pdf of the minimum order statistics for the QHRD 

 

Where  and  

 Similarly using (1), (2) and taking   in (5), yields the pdf of the largest order statistics for the QHRD 

 
The joint pdf of  and  for  is given by [see Arnold et al. [2]] 

𝑓𝑟,𝑠:𝑛(𝑥, 𝑦) = 𝐶𝑟,𝑠:𝑛{[𝐹(𝑥)]𝑟−1[𝐹(𝑦) − 𝐹(𝑥)]𝑠−𝑟−1[1 − 𝐹(𝑦)]𝑛−𝑠𝑓(𝑥)𝑓(𝑦)}           (6) 

For  and  

Theorem 2.1: Let  and  be the cdf and pdf of the QHRD distribution. Then the density function of the  

order statistics say  is given by: 

𝑓𝑟:𝑛(𝑥) = 𝐶𝑟:𝑛𝐴(𝑥) ∑ (
𝑛 − 𝑟 + 1

𝑖
) (−1)𝑖(1 − 𝑒−𝐵(𝑥))

𝑟+1−𝑖
𝑛−𝑟+1

𝑖=0

                           (7) 

Proof:  Using (4) in (5), we have 

𝑓𝑟:𝑛(𝑥) = 𝐶𝑟:𝑛𝐴(𝑥)(1 − 𝐹(𝑥))𝑛−𝑟+1(𝐹(𝑥))𝑟+1                                                           (8) 

  The proof follows by expanding the terms   using the binomial expansion. 

Theorem 2.2: Let  and  for  be the  and  order statistics from QHRD. Then the joint 

pdf of  and  is given by   

 

 
Proof:  Equation (6) can be written as  
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𝑓𝑟;𝑠:𝑛(𝑥) = 𝐶𝑟,𝑠:𝑛 ∑ (
𝑠 − 𝑟 − 1

𝑖
)

𝑠−𝑟−1

𝑖=0

(−1)𝑖(𝐹(𝑥))
𝑟−1+𝑖

(𝐹(𝑦))
𝑠−𝑟−1−𝑖

× (1 − 𝐹(𝑦))
𝑛−𝑠

𝑓(𝑥)𝑓(𝑦)            (9) 

The proof can be easily obtained by using (4) into (9) 

3 Single and Product Moments 

In this section, we derive explicit expressions for both of the single and product moments of order statistics from the 

QHRD. 

Theorem 3.1: Let  be a random sample of size  from the QHRD.In addition, let 

 denote the corresponding order statistics. Then the   moments of the  order 

statistics for  denoted by  is given by 

 
Where, 

 

 
Proof: We know that 

𝜇𝑟:𝑛
(𝑘)

= 𝐸(𝑋𝑟:𝑛
𝑘 ) = ∫ 𝑥𝑘

∞

0

𝑓𝑟:𝑛(𝑥)𝑑𝑥                                                                                    (10) 

 
 Using (4), one gets 

      𝜇𝑟:𝑛
(𝑘)

= 𝐶𝑟:𝑛 ∑ ∑ (
𝑛 − 𝑟 + 1

𝑖
)

𝑟−1+𝑖

𝑗=0

𝑛−𝑟+1

𝑖=0

(
𝑟 − 1 + 𝑖

𝑗
) (−1)𝑖+𝑗 ∫ 𝐴(𝑥)𝑥𝑘

∞

0

𝑒−𝑗𝐵(𝑥)𝑑𝑥          (11) 

Now,  

 
Using this value in (11), we get the desired result. 

The applications of above theorem can be explained as: 

For  we obtain the mean of the  order statistic as: 

 

Now for , one can get the second order moment of the  order statistic as 

 

Therefore, the variance of the  order statistic can be obtained as: 
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Similarly, the third and fourth order moments of the  order statistic can be obtained as: 

 

 

The mean, variance and other statistical measure of the extreme order statistics are always of great interest. Taking  

one can obtain the mean of smallest order statistics: 

 

Where  

In addition, second order moment of the smallest order statistic can be obtained as: 

 
Therefore 

 

  Similarly one can obtain the mean, second order moment and hence variance of the largest order statistics  

Theorem 3.2: Let  be a random sample of size  from the QHRD and let  

denote the corresponding order statistics. Then for , we have the following moment relation: 

 

Proof: 

 

 



 J. Stat. Appl. Pro. 5, No. 2, 371-376 (2016) / http://www.naturalspublishing.com/Journals.asp                                                      375 
  

 

 

         © 2016 NSP 

           Natural Sciences Publishing Cor. 
 

Using (4), one gets 

 

By using integration by parts, we obtain the desired result. 

Theorem 3.3: For we have 

𝜇𝑟;𝑠:𝑛
(𝑘1,𝑘2)

= (𝑛 − 𝑠 + 1) {
𝛼

𝑘2 + 1
(𝜇𝑟,𝑠:𝑛

𝑘1,𝑘2+1
− 𝜇𝑟,𝑠−1:𝑛

𝑘1,𝑘2+1
) +

𝜃

𝑘2 + 1
(𝜇𝑟,𝑠:𝑛

𝑘1,𝑘2+2
− 𝜇𝑟,𝑠−1:𝑛

𝑘1,𝑘2+2
)           

+
𝛽

𝑘2 + 3
((𝜇𝑟,𝑠:𝑛

𝑘1,𝑘2+3
− 𝜇𝑟,𝑠−1:𝑛

𝑘1,𝑘2+3
))}                                                                                                                       (12) 

Proof: Using (6), we have 

 
Or 

𝜇𝑟;𝑠:𝑛
(𝑘1,𝑘2)

= 𝐶𝑟:𝑠;𝑛 ∫ 𝑥𝑘1

∞

0

[𝐹(𝑥)]𝑟−1𝑓(𝑥)𝐼𝑋𝑑𝑥                                                             (13) 

Where, 

 
Using (4), we get 

 
Now integrating by parts and then substituting   in (13), we get the desired result. 

4 Conclusion 

In this paper, we study the sampling distribution from the order statistics of quadratic hazard rate distribution. In addition, 

we consider the single and product moment of order statistics from QHRD. We establish recurrence relation for single and 

product moments of order statistics.  
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