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Abstract: In this work, a new lifetime model called transmuted exponentiated U-quadratic distribution is proposed. Various properties

are computed and studied such as moments, moment generating function and Shannon entropy. It is shown that the usual maximum

likelihood estimate fail to exist for the transmuted exponentiated U-quadratic distribution due to some irregularities, and suggested an

alternative method for their parameter estimation called alternative maximum likelihood method and assessed by simulation studies. A

real data application is provided for illustration.
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1 Introduction

In distribution theory, demands to solve problems in
practical applications encountered practitioners and
applied researchers to propose so many models so that
lifetime data can be assessed and investigated in a better
way. In another word, there is a high need to introduce
useful models to explore the real-life phenomenon.

One objective for proposing, extending or
generalizing probability models is to point out how the
lifetime phenomenon arises in various fields of studies
such as physics, medical science, computer science,
Economics, communication, biology, engineering,
life-science among others. For example, the well-known
classical distributions such as exponential, BurrXII, and
Weibull are not able to show broad flexibility in modeling
data with U-shaped density (or bimodal density), in this
work, the new model has the ability to accommodate
U-shape and bimodal density.

Extending distributions by the transmutation method
is one of the popular methods in literature and were
considered by many authors in recent years. For example,
Transmuted Weibull [1], Transmuted log-logistic [12],
Transmuted exponentiated-exponential [3], Transmuted
Frechet [10], Transmuted quasi-Lindley [14], Transmuted
modified inverse Weibull [7], Transmuted
exponentiated-modified Weibull [24], Transmuted
generalized linear exponential [6], Transmuted additive
Weibull [4], Transmuted generalized Rayleigh (GR) [23],

Transmuted exponentiated-gamma [22],Transmuted
exponentiated-Frechet [21], Transmuted Gompertz [20],
Transmuted Marshall-Olkin Fréchet [16], Transmuted
Weibull Power Function [17], Transmuted New
Weibull-Pareto [18] among others.

The transmuted family of distributions has been
receiving attention over the last few years, and defined
according to [28] as follows

Definition 1 Let G(x) be a baseline cumulative

distribution function, g(x) be the density function of G(x),
let λ ≤ |1|, then according to the Quadratic Rank

Transmutation Map (QRTM), the cumulative distribution

function (cdf) and density function of the transmuted -G

family satisfy the relationship

F(x) = (1+λ )G(x)−λ G(x)2 x ∈ R (1)

and

f (x) = g(x)[(1+λ )− 2λ G(x)] x ∈ R (2)

respectively.

Here, we let G(x) to be the cdf of the exponentiated
U-quadratic (EUq) distribution studied by [29], given by

G(x) =
(α

3
((x−β )3 +(β − a)3)

)θ
, x ∈ [a,b] (3)
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where θ > 0, a ∈ (−∞,∞), b ∈ (a,∞), α = 12
(b−a)3 and

β = a+b
2

. The corresponding pdf of (3) is

g(x) = θαθ 31−θ (x−β )2((x−β )3 +(β − a)3)θ−1 (4)

The paper is organized as follows. In section 2 we
provide the transmuted exponentiated U-quadratic
distribution (TEUq) and some essential properties. In
section 3 the maximum likelihood estimation and
alternative maximum likelihood estimation are discussed,
the performance of the AMLE method is assessed by
simulation studies. Section 4 provides the application of
TEUq to real data. Conclusions in section 5.

2 The TEUq and Properties

In this section, we study the TEUq distribution and some
of its important properties such as quantile, moments and
Shannon entropy. By using equation (3) in (1) we have the
cdf of the TEUq as

F(x) =(1+λ )(
α

3
((x−β )3 +(β − a)3))θ

−λ
(α

3
((x−β )3 +(β − a)3)

)2θ
, x ∈ [a,b], (5)

where θ > 0, λ ≤ |1|, a ∈ R, b > a, α = 12/(b− a)3 and
β = (a+ b)/2. The corresponding density function f (x)
and hazard rate function h(x) are given respectively by

f (x) = θαθ 31−θ (x−β )2
(

(x−β )3 +(β −a)3
)θ−1

.

[

(1+λ )−2λ
(α

3
((x−β )3 +(β −a)3)

)θ
]

x ∈ [a,b] (6)

h(x) =

θ αθ 31−θ (x−β )2
(

(x−β )3 +(β −a)3
)θ−1

[

(1+λ )−2λ
(

α
3
((x−β )3 +(β −a)3)

)θ
]

[

1−
[

(1+λ )
(

α
3
((x−β )3 +(β −a)3)

)θ
−λ

(

α
3
((x−β )3 +(β −a)3)

)2θ
]] x ∈ (a,b)

(7)

Observe that when λ = 0, then T EUq become the
exponentiated U-quadratic (EUq) distribution [29]; if
λ = 0 and θ = 1, T EUq become the U-quadratic (Uq)
distribution; if θ = 1, T EUq become transmuted
U-quadratic (TUq) distribution [47]. Figure 1 show the
plots of the f (x) given by (6) and figure 2 show the plots
of h(x) given by (7) of the T EUq for some values of λ
and θ . We can see from figure 1 and 2 that the density of
the TEUq distribution can have U-shape, decreasing then
increasing, unimodal then increasing , and bimodal
shapes. The hazard function can accommodate data with
bathtub failure rate and unimodal then increasing failure
rate.
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Fig. 1: Plots of the density ( f (x)) of the T EUq for some values

of λ , θ , a and b.
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Fig. 2: Plots of the hazard function (h(x)) of the T EUq for some

values of λ , θ , a and b.

2.1 Quantile function

The quantile function of transmuted exponentiated
U-quadratic distribution can be obtained by inverting (5)
as

Q(u) = (φ(λ ,u)1/θ − (β − a)3)1/3 +β , u ∈ (0,1)
(8)

where

φ(λ ,u) =−(1+λ )+

√

(1+λ )2 + 4λU

2λ
, (9)

thus, the median of X ∼ T EUq is obtain as

M = (φ(λ ,1/2)1/θ − (β − a)3)1/3 +β .

Proposition 2.1 Let P ∼ U(0,1), then

X = (φ(λ , p)1/θ − (β − a)3)1/3 + β is the random

variable with TEUq(θ ,λ ,a,b), where (9) provide

φ(λ , p) and U(0,1) is the uniform distribution.

Moreover, we can use the quantile function in (8) to study
the nature of the skewness and kurtosis of the TEUq with
respect to the parameters θ and λ by the use of Bowley
skewness (B) and Moores kurtosis (M) measures, defined
by
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B =
Q(3/4)+Q(1/4)− 2Q(2/4)

Q(3/4)−Q(1/4)

and

M =
Q(3/8)−Q(1/8)+Q(7/8)−Q(5/8)

Q(6/8)−Q(2/8)

respectively, where Q(.) is given by (8).
Figure 3 demonstrated the behavior of the skewness

and kurtosis of the T EUq as the parameter θ > 0
increases and for λ ≤ |1|. The skewness is decreasing –−
increasing −– decreasing –− increasing −– decreasing in
both θ and λ , while the kurtosis is decreasing –−
increasing −– decreasing –− increasing −– decreasing in
θ and increasing –− decreasing –− increasing −–
decreasing in λ .
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Fig. 3: Plots of the Bowley skewness (B) and Moores kurtosis

(M) of the T EUq distribution.

2.2 Moments

Here, we discuss the rth moment, moment generating
function of the TEUq distribution. The following lemma
is very useful in computations of most of the properties of
the TEUq distribution.

Lemma 2.2 Let c1, c2, c3 ∈ R, let

A(c1, c2, c3) =

∫ b

a
xc1(x−β )c2((x−β )3 +(β − a)3)c3dx,

(10)
then

A(c1, c2, c3) =
∞

∑
i=0

∞

∑
k=0

ψc2,c3
(β )

bc1+k+1 − ac1+k+1

c1 + k+ 1
, (11)

where, ψc2,c3
(β ) = (β − a)3c3−3i(−β )c2+3i−k

(

c3
i

)(

c2+3i
k

)

,

and x ∈ (−β , β )∩ (a, 2β − a).

Proof:

By the generalized binomial expansion in (10),

((x − β )3 + (β − a)3)c3 = (β − a)3c3 ∑∞
i=0

(

c3
i

)

(

x−β
β−a

)3i

and x ∈ (a,2β − a), substituting back to (10) and apply
the expansion again we get

(x − β )c2+3i = (−β )c2+3i−k ∑∞
k=0

(

c2+3i
k

)

xk for

x ∈ (−β ,β ). Therefore

A(c1, c2, c3) =
∞

∑
i=0

∞

∑
k=0

(β −a)3c3−3i(−β )c2+3i−k
(

c3
i

)(

c2+3i

k

)

∫ b

a
xc1+kdx

=
∞

∑
i=0

∞

∑
k=0

(β −a)3c3−3i(−β )c2+3i−k
(

c3
i

)(

c2+3i

k

) bc1+k+1 −ac1+k+1

c1 + k+1
dx,

and x ∈ (−β , β )∩ (a, 2β − a).

The rth moment (E(X r) or µr) and moment generating
function (MX(t)) of X are provided as follows using (11).

Theorem 2.3 Let X ∼ T EUq(θ , λ , a, b), then the rth

moment of X (µr) can be expressed as

µr = θαθ 31−θ (1+λ )A(r,2,θ − 1)

− 2λ θαθ 31−θ A(r,2,2θ − 1). (12)

where A(., ., .) can be computed from equation (11).

Theorem 2.4 Let X ∼ TEUq(θ , λ , a, b), then the

moment generating function of X (MX(t)) can be

expressed as

MX(t) = θαθ 31−θ (1+λ )
∞

∑
r=0

tr

r!
A(r,2,θ − 1)

−2λ θαθ 31−θ
∞

∑
r=0

tr

r!
A(r,2,2θ − 1).

where A(., ., .) can be computed from equation (11).

Proof: By considering (12) and

MX(t) = E(etX ) = ∑∞
r=0

tr

r!
E(X r).

2.3 Shanon entropy

Entropy is a measure of variation of the uncertainty of a
random variable X . The Shannon entropy measure is
defined by E(− log f (x)). We provide some lemmas
which are essential for the computation of the Shannon
entropy of the T EUq.

Lemma 2.5 Let X be a random variable with TEUq
distribution, then

E[log((x−β )3 +(β −a)3)]

= θαθ 31−θ

(

(1+λ )
∂

∂ t
A(0,2,θ + t −1)|t=0 −2λ

∂

∂ t
A(0,2,2θ + t −1)|t=0

)

,

E[log(x−β )] = (1+λ )θαθ31−θ ∂

∂ t
A(0,2+ t,2θ − 1)|t=0

−2λ θαθ 31−θ ∂

∂ t
A(0,2+ t,2θ − 1)|t=0.

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


22 M. Muhammad, M.I. Suleiman: The transmuted exponentiated U-quadratic...

Lemma 2.6 Let X be a random variable with TEUq
distribution, then

E[log((1+λ )−2λ
(α

3
((x−β )3 +(β −a)3)

)θ

]

= (1+λ )θ31−θ
∞

∑
w=0

(−1)2w+12wαθ (w+1)λ w

w3θ w(1+λ )w
A(0,2,θ(w+1)−1)

−2θ31−θ
∞

∑
w=0

(−1)2w+1αθ (w+1)2wλ w+1

w3θ w(1+λ )w
A(0,2,θ(w+1))

+ log(1+λ ),

for | 2λ( α
3 ((x−β )3+(β−a)3))

θ

(1+λ ) |< 1.

Proof: we can expand

E

[

log

[

(1+λ )− 2λ
(α

3
((x−β )3 +(β − a)3)

)θ
]]

= E

[

log

((

1− 2λ ((x−β )3 +(β − a)3)θ

(1+λ )

)

(1+λ )

)]

,

for | 2λ( α
3 ((x−β )3+(β−a)3))

θ

(1+λ )
|< 1, thus,

E

[

log

((

(1− 2λ ((x−β )3 +(β − a)3)θ

(1+λ )

)

(1+λ )

)]

=
∞

∑
w=0

(−1)2w+1αθw2wλ w+1

w3θw(1+λ )w
E
[

(

(x−β )3 +(β − a)3
)θw

]

+E[log(1+λ )],

hence, by considering (10),

E[log((1+λ )−2λ
(α

3
((x−β )3 +(β −a)3)

)θ

]

= (1+λ )θ31−θ
∞

∑
w=0

(−1)2w+12wαθ (w+1)λ w

w3θ w(1+λ )w
A(0,2,θ(w+1)−1)

−2θ31−θ
∞

∑
w=0

(−1)2w+1αθ (w+1)2wλ w+1

w3θ w(1+λ )w
A(0,2,θ(w+1))

+ log(1+λ ).

Theorem 2.7 Let X ∼ TEUq(θ , λ , a, b), then the
Shannon entropy of X can be expressed as

E[− log f (x)] =− log
(

θαθ 31−θ
)

−2(1+λ )θαθ 31−θ ∂

∂ t
A(0,2+ t,2θ −1)|t=0

+4λθαθ 31−θ ∂

∂ t
A(0,2+ t,2θ −1)|t=0

−(θ −1)(1+λ )θαθ 31−θ ∂

∂ t
A(0,2,θ + t −1)|t=0

+2λθαθ 31−θ (θ −1)
∂

∂ t
A(0,2,2θ + t −1)|t=0

−(1+λ )θ31−θ
∞

∑
w=0

(−1)2w+12wαθ (w+1)λ w

w3θ w(1+λ )w
A(0,2,θ(w+1)−1)

+2θ31−θ
∞

∑
w=0

(−1)2w+1αθ (w+1)2wλ w+1

w3θ w(1+λ )w
A(0,2,θ(w+1))− log(1+λ ).

Proof: From the definition of the Shannon entropy we
have the following

E(− log f (x)) =− log
(

θαθ 31−θ
)

−2 [log(x−β )]

− (θ −1)E
[

log((x−β )3 +(β −a)3)
]

−E

[

log

(

(1+λ )−2λ
(α

3
((x−β )3 +(β −a)3)

)θ
)]

,

therefore, by using lemma 2.3 and 2.3 we obtain the result.

3 Estimation

In this section, we discussed the failure of the maximum
likelihood estimation (MLE) for the TEUq distribution
and proposed the use of alternative maximum likelihood
estimation (AMLE) for the TEUq distribution.

3.1 Maximum likelihood estimation

In this subsection, we established the fact that the
log-likelihood function for the TEUq is unbounded for
any sample size n ≥ 1, and thus the maximum likelihood
estimates always fail to exist. The log-likelihood function
of the TEUq distribution is

logℓ(Θ) = n logθ + nθ logα + n(1−θ )log3

+ 2log(xi −β )+ (θ − 1) log((xi −β )3 +(β − a)3)

+ log

[

1+λ − 2λ
(α

3
((xi −β )3 +(β − a)3)

)θ
]

(13)

where Θ = (θ , λ , a, b)T . The first partial derivative of the
log likelihood function with respect to the parameter θ and
λ are given respectively by

∂ logℓ(Θ )

∂ θ
=

n

θ
+n log (α/3)+

n

∑
i=1

log((xi −β )3 +(β −a)3)

−2λ
n

∑
i=1

(

α
3
((xi −β )3 +(β −a)3)

)θ
log

((

α
3
((xi −β )3 +(β −a)3)

))

1+λ −2λ
(

α
3
((xi −β )3 +(β −a)3)

)θ

(14)

∂ logℓ(Θ )

∂ λ
=

n

∑
i=1

1−2
(

α
3
((xi −β )3 +(β −a)3)

)θ

1+λ −2λ
(

α
3
((xi −β )3 +(β −a)3)

)θ
. (15)

Proposition 3.1 Let ℓ(Θ |x) denote the likelihood

function for an independent and identically distributed

(i.i.d) random sample of size n ≥ 1 say x1,x2, · · · ,xn,

drawn from TEUq (θ , λ , a, b) distribution, then (i)

logℓ(Θ |x)→ ∞ for θ > 1 and (ii) logℓ(Θ |x)→−∞ for

θ < 1.

Proof: Let ℓ(Θ |x) denote the likelihood function given by
(13), let X1 ≤ X2 · · · ≤ Xn be the order statistics for an
independent and identically distributed random sample
from TEUq (θ ,λ ,a,b), then, for n = 1 (or xi = x j) or for
xi 6= x j, there always exist at least one xi corresponding to
the minimum order statistics X1, in this case a = x1, and
(x1 − β )3 + (β − a)3 = 0, therefore,
log((xi −β )3 +(β − a)3)|x1

→−∞, hence the proof.

The following propositions provide another fact that
maximum likelihood estimates of TEUq fail to exist.

Proposition 3.2 Let ℓ(Θ |x) denote the likelihood

function for an independent and identically distributed

(i.i.d) random sample of size n ≥ 1 say x1,x2, · · · ,xn,

drawn from TEUq (θ , λ , a, b) distribution, then,
∂

∂θ logℓ(Θ |x) is unbounded ∀θ > 0.
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Proof: Consider (14) and Proposition 3.1

Proposition 3.3 Let ℓ(Θ |x) denote the likelihood

function for an independent and identically distributed

(i.i.d) random sample of size n ≥ 1 say x1,x2, · · · ,xn,

drawn from TEUq (θ , λ , a, b) distribution, then,
∂

∂λ logℓ(Θ |x)|xn &λ=1 → ∞.

Proof: Consider (15).

The following corollary shows that the maximum
likelihood estimates fail to exist for generalizations of the
TEUq distributions.

Corollary 3.4 If ω = { f (x|ξ ) : ξ ∈ Λ} is a family of

distributions that contains the TEUqs as a subfamily, then

the maximum likelihood estimate of the parameter vector

ξ based on an i.i.d. sample of size n ≥ 1 drawn from

f (x|ξ ) does not exist.

Proof: The fact that ω contains the TEUqs as a subfamily
guarantees the existence of Λ∗ ⊂ Λ such that
ω0 = { f (x|ξ ) : ξ ∈ Λ∗} is the family of TEUqs. Let
ℓ(ξ |x) denote the likelihood function for f (x|ξ ), ξ ∈ Λ .
The fact that the log likelihood function for the TEUq is
unbounded guarantees that logℓ(ξ |x) is unbounded on
Λ∗.

Several authors have considered the problem of non
existence of maximum likelihood estimation for
probability distributions. [38] discussed the non-existence
of maximum likelihood estimates for the extended
exponential power distribution and showed that the result
holds for its generalization and re-parametrization. [32]
discussed that the maximum likelihood of the
Weibull-Pareto distribution does not exist when the shape
parameter of the Weibull is less than one. [36] prove that
the finite maximum likelihood estimates for the
three-parameter Burr XII distribution do not always exist
because the distribution tends towards non-degenerated
limiting forms as parameters tend to their boundaries.

3.2 Alternative maximum likelihood estimation

Here, we proposed the alternative maximum likelihood
estimation method discussed by [37] as the suitable
method of estimating the parameters of TEUq
distribution. in this method we set a = x1, then we
excluded all the data points correspond to x1 and use the
usual maximum likelihood method to estimate the other
parameters by the numerical solutions of the nonlinear
equations given by (16) and (17). These equations cannot
be solved analytically, and statistical software (nlminb,

nlm, maxBFGS or optimx in R-software) can be used to
solve them numerically via iterative methods.

∂ logℓ(Θ)

∂θ
=

n

θ
+ n log(α/3)

+ ∑
xi 6=x1

log((xi −β )3 +(β − a)3)

− 2λ ∑
xi 6=x1

(

α
3
((xi −β )3 +(β − a)3)

)θ
wi(x)

1+λ − 2λ
(

α
3
((xi −β )3 +(β − a)3)

)θ
, (16)

∂ logℓ(Θ)

∂λ
= ∑xi 6=x1

1−2( α
3 ((xi−β )3+(β−a)3))

θ

1+λ−2λ(α
3 ((xi−β )3+(β−a)3))

θ ,

where wi(x) = log
((

α
3
((xi −β )3 +(β − a)3)

))

.

For the asymptotic interval estimation and hypothesis
tests of the parameters θ and λ , we need 2 × 2 Fisher
information matrix denoted by (J(Θ)), under the usual
condition that are fulfilled for the parameters θ and λ in
the interior of the parameter space but not on the

boundary. The asymptotic distribution of
√

n(Θ̂ −Θ) is
N2(0, I

−1(Θ)), which is a Normal 2−variate with zero
mean and variance covariance I(Θ). This condition is
also applicable if I(Θ) is substitute by the information

matrix evaluated at Θ̂ , that is J(Θ̂). The Normal
2−variate distribution N2(0,J

−1(Θ)) can be used to
establish an approximate confidence interval and region
for the model parameters θ and λ . The 2× 2 information
matrix is defined by J(Θ) =−[∂ 2ℓ/∂Θ∂Θ T ].

In the following theorem, we provide the existence of
the roots of AMLE of θ for the TEUq distribution. It has
been considered for the MLEs of several distributions by
many authors, for example, exponential Poisson (EP)
distribution [33], exponential geometric (EG) [31],
generalized BurrXII Poisson (GBXIIP) [34],
Mustapha-type II (MuII) distribution [45] and the
complementary exponentiated BurrXII-Poisson
(CEBXIIP) [35], recently the generalized Half-logistic
Poisson (GHLP) [44] among others.

Theorem 3.5 Let gθ (θ ; λ , a, b, xi) denote the

function on the right-hand side of the equation (16),

where λ is the true values of the parameter and λ 6= 1,

then, gθ (θ ; λ , a, b, xi) = 0 has at least one root and the

root lie in the interval (t1, t2) , where

t1 =
−n

n log α
3
+∑xi 6=x1

log((xi −β )3 +(β −a)3)+
∑xi 6=x1

log( α
3
((xi−β )3+(β−a)3))
1−λ

and

t2 =
−n

n log α
3
+∑xi 6=x1

log((xi −β )3 +(β − a)3)

Proof:

Let ζθ = n log(α/3)+∑xi 6=x1
log((xi −β )3 +(β − a)3)+

∑xi 6=x1

( α
3 ((xi−β )3+(β−a)3))

θ
log( α

3 ((xi−β )3+(β−a)3))
1+λ−2λ(α

3 ((xi−β )3+(β−a)3))
θ ,
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Table 1: AMLEs, standard deviations, Bias and MSE for some various values of parameters for the TEUq.

Sample size Actual values Estimated values Standard deviations Bias Mean square error

n a b λ θ λ̂ θ̂ sd(λ̂ ) sd(θ̂) Bias
λ̂

Biasθ̂ MSE
λ̂

MSEθ̂

20 -3.0 4.0 -0.5 0.1 -0.1233 0.1685 0.1825 0.0535 0.3767 0.0685 0.1752 0.0076

-3.0 4.0 0.1 2.5 0.1367 2.5563 0.2175 0.8427 0.0367 0.0563 0.0486 0.7133

-3.0 4.0 0.9 1.2 0.4039 1.0623 0.2537 0.2349 -0.4961 -0.1378 0.3105 0.0741

0.0 5.0 0.5 1.5 0.2144 1.3715 0.2395 0.3672 -0.2856 -0.1285 0.1389 0.1513

0.0 5.0 0.2 0.5 0.2806 0.6161 0.2507 0.1479 0.0801 0.1161 0.0693 0.0353

30 -3.0 4.0 -0.5 0.1 -0.1173 0.1555 0.1781 0.0488 0.3827 0.0555 0.1752 0.0055

-3.0 4.0 0.1 2.5 0.1121 2.4340 0.1975 0.6722 0.0121 -0.0655 0.0391 0.4561

-3.0 4.0 0.9 1.2 0.4960 1.0758 0.2403 0.1934 -0.4040 -0.1242 0.2210 0.0528

0.0 5.0 0.5 1.5 0.2425 1.3542 0.2479 0.2982 -0.2575 -0.1457 0.1278 0.1101

0.0 5.0 0.2 0.5 0.2841 0.5846 0.2454 0.1158 0.0841 0.0846 0.0673 0.0206

50 -3.0 4.0 -0.5 0.1 -0.1171 0.1442 0.1687 0.0244 0.3829 0.0442 0.1751 0.0025

-3.0 4.0 0.1 2.5 0.0879 2.3173 0.1723 0.4937 -0.0121 -0.1827 0.0298 0.2772

-3.0 4.0 0.9 1.2 0.5967 1.0971 0.2054 0.1533 -0.3033 -0.1030 0.1342 0.0341

0.0 5.0 0.5 1.5 0.2824 1.3503 0.2460 0.2434 -0.2177 -0.1496 0.1079 0.0817

0.0 5.0 0.2 0.5 0.2808 0.5606 0.2297 0.0919 0.0807 0.0606 0.0593 0.0120

100 -3.0 4.0 -0.5 0.1 -0.1176 0.1380 0.1519 0.0174 0.3824 0.0379 0.1693 0.0017

-3.0 4.0 0.1 2.5 0.0615 2.2669 0.1307 0.3356 -0.0384 -0.2316 0.0186 0.1689

-3.0 4.0 0.9 1.2 0.7089 1.1283 0.1437 0.1079 -0.1911 -0.0717 0.0572 0.0168

0.0 5.0 0.5 1.5 0.3409 1.3744 0.2221 0.1881 -0.1591 -0.1256 0.0746 0.0512

0.0 5.0 0.2 0.5 0.2620 0.5374 0.1940 0.0668 0.0622 0.0374 0.0415 0.0059

200 -3.0 4.0 -0.5 0.1 -0.1039 0.1362 0.1224 0.0138 0.3960 0.0362 0.1628 0.0015

-3.0 4.0 0.1 2.5 0.0450 2.2669 0.0970 0.2429 -0.0550 -0.2331 0.0125 0.1133

-3.0 4.0 0.9 1.2 0.7856 1.1563 0.0956 0.0758 -0.1144 -0.0437 0.0222 0.0077

0.0 5.0 0.5 1.5 0.3951 1.4104 0.1768 0.1431 -0.1048 -0.0896 0.0422 0.0285

0.0 5.0 0.2 0.5 0.2380 0.5212 0.1586 0.0497 0.0387 0.0212 0.0267 0.0029

then, limθ →0+ ζθ = n log(α/3) + ∑xi 6=x1
log((xi −

β )3 +(β − a)3)+∑xi 6=x1

log( α
3 ((xi−β )3+(β−a)3))

1−λ

therefore,

gθ (θ ; λ , a, b, xi)>
n

θ
+ lim

θ →0+
ζθ =

n

θ
+ n log(α/3)

+ ∑
xi 6=x1

log((xi −β )3 +(β − a)3)

+ ∑
xi 6=x1

log
(

α
3
((xi −β )3 +(β − a)3)

)

1−λ
> 0

if

θ >
−n

n log α
3
+∑xi 6=x1

log((xi −β )3 +(β −a)3)+
∑xi 6=x1

log( α
3
((xi−β )3+(β−a)3))
1−λ

.

on the other hand, limθ →∞ ζθ =
n log(α/3)+∑xi 6=x1

log((xi −β )3 +(β − a)3), therefore,

gθ (θ ;λ ,a,b,xi) < n
θ + limθ →∞ ζθ =

n
θ + n log(α/3)+∑xi 6=x1

log((xi − β )3 +(β − a)3) < 0 if

θ < −n
n log α

3 +∑xi 6=x1
log((xi−β )3+(β−a)3)

, hence,

gθ (θ ;λ ,a,b,xi) = 0 for θ ∈ (t1, t2) ,

where

t1 =
−n

n log α
3
+∑xi 6=x1

log((xi −β )3 +(β −a)3)+
∑xi 6=x1

log( α
3
((xi−β )3+(β−a)3))
1−λ

and

t2 =
−n

n log α
3
+∑xi 6=x1

log((xi −β )3 +(β − a)3)

3.3 Simulation study

In this subsection, we assessed the proposed AMLEs by
simulation studies. We generate 10,000 samples of size
n = (20,30,50,100,200), the estimated values, standard
deviations (sd), bias and mean square error (MSE) of the
estimates are computed using R-software. The results
presented in Table 1 is the estimated values, standard
deviation (sd), bias, and mean square error (MSE). From
table 1 it is clear that the estimated values of the
parameters converge to their actual values in most cases,
also the standard deviations and the mean square error
decrease as the sample size increases.
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Table 2: MLEs, ℓ(Θ), KS and P-value for the given data set.

Model α β λ a b γ θ δ ℓ(Θ) KS P-value

TEUq − − −0.1900 0.100 86.000 − 0.9262 − −212.86 0.1219 0.414

TUq − − −0.1136 0.100 86.000 − − − −223.18 0.1263 0.371

EUq − − − 0.100 86.000 − 0.9692 − −219.93 0.4072 7.3e-08

KwEUq − − 0.8977 0.100 86.000 − 0.8977 0.8081 −212.43 0.1473 0.207

GU 0.267 51.942 − 0.090 86.713 − − − −207.33 0.1520 0.198

EGLE − − − 3.3e-3 1.7e-4 4.564 0.112 − −224.34 0.1475 0.206

GLE − − − 9.6e-3 4.5e-4 0.730 − − −235.93 0.1598 0.139

GLFR − − − 3.8e-3 3.1e-4 − 0.533 − −233.15 0.1620 0.129
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Fig. 4: Plots of the histogram with estimated density and empirical cdf with estimated cdf of the competing distribution for the given

data set

4 Illustration

Here, we fitted the TEUq distribution using AMLEs. The
AMLEs are computed by the solution of the (16) and (17)
using R-software. The data set used is the lifetimes of fifty
devices provided in [30] and recently studied by [43]. The
data set are: .1, .2, 1, 1, 1, 1, 1, 2, 3, 6, 7, 11, 12, 18, 18,
18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55, 60, 63, 63,
67, 67, 67, 67, 72, 75, 79, 82, 82, 83, 84, 84, 84, 85, 85,
85, 85, 85, 86, 86.

We also compare the fit of the TEUq using the
Kolmogorov Smirnov (KS) test statistics with its sub
models and some other popular models such as
gamma-uniform (GU) [42], generalized linear
exponential (GLE) [39], exponentiated generalized linear
exponential (EGLE) [40], generalized linear failure rate
(GLFR) [41], exponentiated generalized linear
exponential (EGLE) [40], transmuted U-quadratic (TUq)
distribution [47], and Kumaraswamy exponentiated
U-quadratic (KwEUq) [46].

The numerical results are provided in table 2 showing
that TEUq fit the data better than the other models. Figure
4 provides the plots of the histogram and cumulative
distribution function of the empirical and estimated TEUq
distribution.

5 Conclusions

We have proposed a new lifetime model called
transmuted exponentiated U-quadratic (TEUq)
distribution. Various properties of the TEUq are derived
and studied such as the explicit form of the moments,
moment generating function and Shannon entropy.
Moreover, it is shown that the usual maximum likelihood
estimates does not hold for the TEUq and suggested the
use of the alternative maximum likelihood estimation
method, the alternative maximum likelihood estimators
was assessed by simulation studies. The effectiveness of
the TEUq was demonstrated by an application to a real
data set showing that TEUq fit the data better than some
other existing distributions as measured by the
Kolmogorov Smirnov test.
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