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Abstract: In this work, a new lifetime model called transmuted exponentiated U-quadratic distribution is proposed. Various properties
are computed and studied such as moments, moment generating function and Shannon entropy. It is shown that the usual maximum
likelihood estimate fail to exist for the transmuted exponentiated U-quadratic distribution due to some irregularities, and suggested an
alternative method for their parameter estimation called alternative maximum likelihood method and assessed by simulation studies. A
real data application is provided for illustration.
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1 Introduction Transmuted  exponentiated-gamma  [22],Transmuted

In distribution theory, demands to solve problems in
practical applications encountered practitioners and
applied researchers to propose so many models so that
lifetime data can be assessed and investigated in a better
way. In another word, there is a high need to introduce
useful models to explore the real-life phenomenon.

One objective for proposing, extending or
generalizing probability models is to point out how the
lifetime phenomenon arises in various fields of studies
such as physics, medical science, computer science,
Economics, communication, biology, engineering,
life-science among others. For example, the well-known
classical distributions such as exponential, BurrXII, and
Weibull are not able to show broad flexibility in modeling
data with U-shaped density (or bimodal density), in this
work, the new model has the ability to accommodate
U-shape and bimodal density.

Extending distributions by the transmutation method
is one of the popular methods in literature and were
considered by many authors in recent years. For example,
Transmuted Weibull [1], Transmuted log-logistic [12],
Transmuted exponentiated-exponential [3], Transmuted
Frechet [10], Transmuted quasi-Lindley [14], Transmuted
modified inverse Weibull [71, Transmuted
exponentiated-modified Weibull ~[24], Transmuted
generalized linear exponential [6], Transmuted additive

exponentiated-Frechet [21], Transmuted Gompertz [20],
Transmuted Marshall-Olkin Fréchet [16], Transmuted
Weibull Power Function [17], Transmuted New
Weibull-Pareto [18] among others.

The transmuted family of distributions has been
receiving attention over the last few years, and defined
according to [28] as follows

Definition1 Ler G(x) be a baseline cumulative
distribution function, g(x) be the density function of G(x),
let A < |1), then according to the Quadratic Rank
Transmutation Map (QRTM), the cumulative distribution
function (cdf) and density function of the transmuted -G
family satisfy the relationship

F(x)=(1+A)G(x) —AG(x)> x€eR (1)
and

f) =g@[(1+4)-2AG(x)] xeR ()
respectively.

Here, we let G(x) to be the cdf of the exponentiated
U-quadratic (EUq) distribution studied by [29], given by

o
Weibull [4], Transmuted generalized Rayleigh (GR) [23], G(x) = (g((xf B)+(B- a)3)) ;. x€la,b] ()
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12 and

where 6 > 0, a € (—o0,00), b € (a,00), 00 = E

B= “T*b. The corresponding pdf of (3) is

g() = 0030 (x— B)X((x— B+ (B—a))*~ (4)

The paper is organized as follows. In section 2 we
provide the transmuted exponentiated U-quadratic
distribution (TEUq) and some essential properties. In
section 3 the maximum likelihood estimation and
alternative maximum likelihood estimation are discussed,
the performance of the AMLE method is assessed by
simulation studies. Section 4 provides the application of
TEU(q to real data. Conclusions in section 5.

2 The TEUq and Properties

In this section, we study the TEUq distribution and some
of its important properties such as quantile, moments and
Shannon entropy. By using equation (3) in (1) we have the
cdf of the TEUq as

Fx)=(1 +7L)(%((xfﬁ)3 +(B—a)})’

A (H P B-a) et ©

where 8 > 0,1 <|[1|,a € R, b>a, a =12/(h—a)’ and
B = (a+b)/2. The corresponding density function f(x)
and hazard rate function h(x) are given respectively by

£0) = 030 (x— B (s~ B)* + (B—)®)
Jorn-22 (g e B-a)] velwn ©

003102 (- + (-a?) ' [(+2)-20 ($ (- PP +5-0)°

h(x) =

x€(a,b)
1= [0em) (§@-p3+5-0)” -2 (§ (@3 +(3-0) ™|
(@)

Observe that when A = 0, then TEUg become the
exponentiated U-quadratic (EUq) distribution [29]; if
A =0 and 6 = 1, TEUq become the U-quadratic (Uq)
distribution; if 6 = 1, TEUqg become transmuted
U-quadratic (TUq) distribution [47]. Figure 1 show the
plots of the f(x) given by (6) and figure 2 show the plots
of h(x) given by (7) of the TEUq for some values of A4
and 6. We can see from figure 1 and 2 that the density of
the TEUq distribution can have U-shape, decreasing then
increasing, unimodal then increasing , and bimodal
shapes. The hazard function can accommodate data with
bathtub failure rate and unimodal then increasing failure
rate.

Fig. 1: Plots of the density (f(x)) of the TEU g for some values
of A, 0, a and b.

Fig. 2: Plots of the hazard function (/(x)) of the TEU g for some
values of A, 6, a and b.

2.1 Quantile function
The quantile function of transmuted exponentiated

U-quadratic distribution can be obtained by inverting (5)
as

O(u) = (p(A,u)"/® — (B —a)*)'/* + B,

where

ue (0,1)
(®)

(1+A)2+4AU

o(hou) =—(1+2)+ TS o)

thus, the median of X ~ TEUq is obtain as
M=(p(A,1/2)"/% = (B—a)*)'* +B.

Proposition 2.1 Let P ~ U(0,1), then

X = (0(A,p)"? — (B —a)®)'3 + B is the random
variable with TEUq(0,A,a,b), where (9) provide
(A, p) and U(0,1) is the uniform distribution.

Moreover, we can use the quantile function in (8) to study
the nature of the skewness and kurtosis of the TEUq with
respect to the parameters 6 and A by the use of Bowley
skewness (B) and Moores kurtosis (M) measures, defined
by
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g 26/4)+001/4) -20(2/4)
0(3/4)—0(1/4)
and
v = 26/8)—0(1/8) +0(7/8) — Q(5/8)
0(6/8) —0(2/8)

respectively, where Q(.) is given by (8).

Figure 3 demonstrated the behavior of the skewness
and kurtosis of the TEUgq as the parameter 6 > 0
increases and for A < |1|. The skewness is decreasing ——
increasing —— decreasing —— increasing —— decreasing in
both 6 and A, while the kurtosis is decreasing ——
increasing —— decreasing —— increasing —— decreasing in
0 and increasing —— decreasing —— increasing —-—
decreasing in A.

Fig. 3: Plots of the Bowley skewness (B) and Moores kurtosis
(M) of the TEU g distribution.

2.2 Moments
Here, we discuss the " moment, moment generating
function of the TEUq distribution. The following lemma

is very useful in computations of most of the properties of
the TEUq distribution.

Lemma 2.2 Let ¢y, ¢y, c3 €R, let

_ b cl ) 3 3\c3
Aler o) = [ 4 (6= B)2((x—B) + (B—a)’)d.

(10
then
bcl+k+l o acl+k+l
11
C];C2763 IZOkZWL'zcg C1+k+] 7( )
—3i j— 3i
@ (=B (),

where, W, »(B) = (B —
andx € (=, B)N(a,

Proof:

2B —a).

By the generalized binomial expansion in (10),
3i

(x =B+ (B —a))* = (B—a)3EZo(?) (,3 [i)

and x € (a,2p — a), substituting back to (10) and apply
the expansion again we get
(x _ ﬁ)cz+3i (7ﬁ)02+3i7k):2°:0 (sz3l)xk for

e (—B,B). Ther;fore

) ) b
(ﬁ70)3(-373l<7ﬁ)(-2+3kk(c?)(czkﬂ‘)/ 1 gy

a

Il
™
[ agki

Il
o
=
Il
=)

Aley, e, ¢3)

Bk oy ke

3ea—3i Cy+3i—k (€3 (e +3i
(B—a) s =By () () e

I
™
[ agl

Il
<3
=
Il
S

andx € (—fB,B)N(a,2B —a).
The " moment (E(X") or p,) and moment generating
function (My (¢)) of X are provided as follows using (11).

Theorem 2.3 Let X ~ TEUq(6,A,a,b), then the r'"
moment of X () can be expressed as

=003+ 1)A(r,2,0 - 1)
—2200%3'7%A(r,2,260 - 1). (12)

where A(.,.,.) can be computed from equation (11).
Theorem 2.4 Let X ~ TEUq(0,A,a,b), then the
moment generating function of X (Mx(t)) can be
expressed as

0,1-6 o 1
60’37 0(1+2)) —A

Mx (1) = .
r=0""

(}",2,9*1)

ot
—210a°3! GgﬁA(r,Z,ZG—l).

where A(.,.,.) can be computed from equation (11).
Proof: By considering (12) and
Mx (1) = E(e) = L2 GE(X).

2.3 Shanon entropy

Entropy is a measure of variation of the uncertainty of a
random variable X. The Shannon entropy measure is
defined by E(—logf(x)). We provide some lemmas
which are essential for the computation of the Shannon
entropy of the TEUq.

Lemma 2.5 Let X be a random variable with TEUq
distribution, then

Eflog((x—B)* + (B —a)*)]
=0af3!? ((1 +l)%A(0,2,9+t— 1)]i=0 —24 %A(0,2,29+t7 1)|,:0> ,

Ellog(x—B)] = (1+ )03 J

57A0.24,20— 1)y

—2200°%3'-° J

57A0.241,20 1),
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Lemma 2.6 Let X be a random variable with TEUq
distribution, then

Ellog((1+2) 22 (£((e— ) + (B -a)") ]

<71>2w+| 2Wae(w+|)xw

=(14+21)63'"° i A0,2,0(w+1)—1)

°>+| O(w+1)9w 3 w1
~203'~ "Z Wgef” Hﬁf A(0,2,0(w+1))
+log(1+A),
(4 (=B +(B-0))’
for | (% iE) ) | <1.

Proof: we can expand
E |log (1+l)—21(%((x—ﬁ)3+(ﬁ—a)3))
)
£ foe((1- 282 B0 )]

(1+2)
for |2A(%((x7(ﬁ]iz)(ﬁfa)3))e | <1, thus,
2A((x—=B)*+(B—a)’)°
E[l"g((“ )0 )

2w+l a@wzwlwﬂ

; W39w 1+)L)W

E[((x=B)+(B—a)?)"]

+E[log(1+1)],
hence, by considering (10),
Eltog((1+2) 22 ($((e— ) + (B -)) ]

-1 )2w+l 2wae(“»+1)xw

=(14+21)63'"° i ( A0,2,0(w+1)—1)

’;6»«( +}()w
°>+| B(w+1)pw ) wtl
-6 o
—203 Z erv (E A(0,2,0(w+1))
+log(1+2).

Theorem 2.7 Let X ~ TEUq(0,A,a,b), then the

Shannon entropy of X can be expressed as

E[~log f(x)] = —log (8?3' %) —2(1+2)0a’3"~ "g A(0,241,20 — 1)

+4160093!~ egA(O 241,20 —1)|,—¢
1-6 4
—(6-1)(1+1)0a3 > A(0,2,04+1—1)]—0

+240a%3'7 (6 — 1)%/4(02»29“* Dle=o

(71>2>¢‘+|2wa6(w+l)lw

_ 10y , _
(1+21)63 ;} ST A A(0,2,8(w+1)—1)
o ()2 80wk gw g wt
+20310 Y e A(0,2,0(w+1)) —log(1 +A).

L (A

Proof: From the definition of the Shannon entropy we
have the following

E(~log f(x)) = ~log (6a°3'~%) —2log(x— B)]
— (6 E [log((x—B)* + (B—a)")]

—5 o ((1+2)-22 (S (=B +8-0)°)]

therefore, by using lemma 2.3 and 2.3 we obtain the result.

3 Estimation

In this section, we discussed the failure of the maximum
likelihood estimation (MLE) for the TEUq distribution
and proposed the use of alternative maximum likelihood
estimation (AMLE) for the TEUq distribution.

3.1 Maximum likelihood estimation

In this subsection, we established the fact that the
log-likelihood function for the TEUq is unbounded for
any sample size n > 1, and thus the maximum likelihood
estimates always fail to exist. The log-likelihood function
of the TEUq distribution is

logl(®) =nlog6 +nbloga+n(1—0)log3
+2log(xi — B) + (6 — 1)log((xi — B)* + (B~ a)’)
o | 14222 (§ (=B +(B-a)) |
(13)

where ® = (0, A, a, b)". The first partial derivative of the
log likelihood function with respect to the parameter 6 and
A are given respectively by

P lLO) & ntoe(@/3)+ Y lon((5— )"+ (B0l
g BB +(B—a))” log ((%((x—B)* +(B—a)")))
= T+ =22 (2 ((xi— B+ (B—a)?)
(14)
dlogl(®) & 1-2(L((x—PP+(B-a)?)°
A (S Br e B-a) "

Proposition 3.1 Let ((®|x) denote the likelihood

function for an independent and identically distributed
(i.i.d) random sample of size n > 1 say x1,x2,-- ,Xp,
drawn from TEUq (0, A,a,b) distribution, then (i)
logl(®|x) — o for 6 > 1 and (ii) logf(®O|x) — —oo for
0 <1

Proof: Let £(®|x) denote the likelihood function given by
(13), let X; < X,--- < X,, be the order statistics for an
independent and identically distributed random sample
from TEUq (6,A,a,b), then, for n =1 (or x; = x;) or for
X; # xj, there always exist at least one x; corresponding to
the minimum order statistics X, in this case a = x;, and
(xi — B)° B — a? = o0 therefore,
log ((x; — B)*+ (B —a)*)|x, — —oo, hence the proof.

The following propositions provide another fact that
maximum likelihood estimates of TEUq fail to exist.

Proposition 3.2 Let ((®|x) denote the likelihood
function for an independent and identically distributed
(i.i.d) random sample of size n > 1 say x1,x2,--+ ,Xp,
drawn from TEUq (0,A,a,b) distribution, then,
25 log(O|x) is unbounded /6 > 0.
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Proof: Consider (14) and Proposition 3.1

Proposition 3.3 Letr ((Olx) denote the likelihood
function for an independent and identically distributed
(i.i.d) random sample of size n > 1 say xi,x2,- ,Xp,
drawn from TEUq (0,A,a,b) distribution, then,
S 10gL(Ox)|g, g =1 — .

Proof: Consider (15).

The following corollary shows that the maximum
likelihood estimates fail to exist for generalizations of the
TEUq distributions.

Corollary 3.4 If o = {f(x|§) : & € A} is a family of
distributions that contains the TEUgs as a subfamily, then
the maximum likelihood estimate of the parameter vector
& based on an i.i.d. sample of size n > 1 drawn from
f(x|E) does not exist.

Proof: The fact that @ contains the TEUQqs as a subfamily
guarantees the existence of A* C A such that
wy = {f(x|€) : £ € A*} is the family of TEUgs. Let
£(€|x) denote the likelihood function for f(x|&), &€ € A.
The fact that the log likelihood function for the TEUq is
unbounded guarantees that log/(&|x) is unbounded on
A%,

Several authors have considered the problem of non
existence of maximum likelihood estimation for
probability distributions. [38] discussed the non-existence
of maximum likelihood estimates for the extended
exponential power distribution and showed that the result
holds for its generalization and re-parametrization. [32]
discussed that the maximum likelihood of the
Weibull-Pareto distribution does not exist when the shape
parameter of the Weibull is less than one. [36] prove that
the finite maximum likelihood estimates for the
three-parameter Burr XII distribution do not always exist
because the distribution tends towards non-degenerated
limiting forms as parameters tend to their boundaries.

3.2 Alternative maximum likelihood estimation

Here, we proposed the alternative maximum likelihood
estimation method discussed by [37] as the suitable
method of estimating the parameters of TEUq
distribution. in this method we set a = x;, then we
excluded all the data points correspond to x; and use the
usual maximum likelihood method to estimate the other
parameters by the numerical solutions of the nonlinear
equations given by (16) and (17). These equations cannot
be solved analytically, and statistical software (nlminb,
nim, maxBFGS or optimx in R-software) can be used to
solve them numerically via iterative methods.

% — g+nlog(a/3)
# X toa(lr B+ (50

(%((x—B1+(B-a)?)® wilx)
g 142 =22 (2((xi— B)3+ (B —a)?))

—21

5. (16)

where wi(x) =log ((4((xi—B)*+ (B —a)?))).

For the asymptotic interval estimation and hypothesis
tests of the parameters 6 and A, we need 2 x 2 Fisher
information matrix denoted by (J(®)), under the usual
condition that are fulfilled for the parameters 6 and A in
the interior of the parameter space but not on the
boundary. The asymptotic distribution of \/n(@ — @) is
N>(0,I71(®)), which is a Normal 2—variate with zero
mean and variance covariance /(®). This condition is
also applicable if /(@) is substitute by the information
matrix evaluated at @, that is J(@). The Normal
2—variate distribution N>(0,/7'(@)) can be used to
establish an approximate confidence interval and region
for the model parameters 6 and A. The 2 x 2 information
matrix is defined by J(@) = —[9%¢/00007].

In the following theorem, we provide the existence of
the roots of AMLE of 6 for the TEUq distribution. It has
been considered for the MLEs of several distributions by
many authors, for example, exponential Poisson (EP)
distribution [33], exponential geometric (EG) [31],
generalized  BurrXII  Poisson (GBXIIP) [34],
Mustapha-type II (Mull) distribution [45] and the
complementary exponentiated BurrXII-Poisson
(CEBXIIP) [35], recently the generalized Half-logistic
Poisson (GHLP) [44] among others.

Theorem 3.5  Let go(0;A,a,b,x;) denote the
function on the right-hand side of the equation (16),
where A is the true values of the parameter and A # 1,
then, g¢(0; A, a, b, x;) = 0 has at least one root and the
root lie in the interval (t),ty), where

—n

=
‘ Lty 02($ (=B +(B=0)®))

nlog § + ¥, 2 log((xi— B)* + (B —a)*) + =
and
—n
2= nlog § + Yz log((xi— )’ + (B —a)?)
Proof:

Let §g = nlog (a/3) + Ly x, log((xi = B)* + (B —a)?) +
(2((i—B)*+(B—a)))® log( £ ((xi—B)>+(B—a)?))
14222 (% ((i—B)*+(B—a)?))°

>

Lo
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Table 1: AMLE:s, standard deviations, Bias and MSE for some various values of parameters for the TEUq.

Sample size Actual values Estimated values ~ Standard deviations Bias Mean square error
n a b A 6 A 6 sd(L) sd(0) Bias;  Biasy; ~ MSE;  MSE,

20 30 40 -05 0.1 -0.1233 0.1685 0.1825  0.0535 0.3767  0.0685 0.1752  0.0076
3.0 4.0 0.1 25 0.1367 25563 0.2175 0.8427 0.0367  0.0563 0.0486  0.7133

3.0 40 09 1.2 04039 1.0623 0.2537 0.2349 -0.4961 -0.1378 0.3105  0.0741

00 50 05 15 02144 13715 02395 03672  -0.2856 -0.1285 0.1389  0.1513

00 50 02 05 02806 06161 0.2507 0.1479 0.0801 0.1161  0.0693  0.0353

30 30 40 -05 0.1 -0.1173 0.1555 0.1781 0.0488 0.3827  0.0555 0.1752  0.0055
30 40 0.1 25 01121 24340 0.1975  0.6722 0.0121  -0.0655 0.0391  0.4561

30 40 09 1.2 04960 1.0758 0.2403  0.1934  -0.4040 -0.1242 0.2210  0.0528

0.0 50 05 1.5 02425 1.3542 0.2479 0.2982 -0.2575  -0.1457 0.1278  0.1101

00 50 02 05 02841 0.5846 02454  0.1158 0.0841  0.0846  0.0673  0.0206

50 3.0 40 -05 0.1 -0.1171 0.1442 0.1687  0.0244 0.3829  0.0442 0.1751  0.0025
3.0 40 01 25 0.0879 23173 0.1723 0.4937 -0.0121  -0.1827 0.0298  0.2772

3.0 40 09 1.2 0597 1.0971 0.2054 0.1533 -0.3033  -0.1030 0.1342  0.0341

00 50 05 15 02824 13503 02460 02434  -0.2177 -0.1496 0.1079  0.0817

0.0 50 02 05 02808 05606 0.2297 0.0919 0.0807  0.0606  0.0593  0.0120

100 -3.0 40 -05 0.1 -0.1176 0.1380 0.1519 0.0174 0.3824  0.0379 0.1693  0.0017
3.0 40 01 25 0.0615 22669 0.1307 03356  -0.0384 -0.2316 0.0186  0.1689

30 40 09 1.2 0.708 1.1283 0.1437  0.1079  -0.1911 -0.0717 0.0572  0.0168

0.0 50 05 15 03409 1.3744 0.2221 0.1881 -0.1591  -0.1256 0.0746  0.0512

00 50 02 05 02620 05374 0.1940  0.0668 0.0622  0.0374  0.0415  0.0059

200 3.0 40 -05 0.1 -0.1039 0.1362 0.1224  0.0138 0.3960  0.0362  0.1628  0.0015
3.0 4.0 01 25 0.0450 22669 0.0970 0.2429 -0.0550 -0.2331 0.0125  0.1133

3.0 40 09 1.2 0.7856 1.1563 0.0956 0.0758 -0.1144  -0.0437 0.0222  0.0077

00 50 05 15 03951 14104 0.1768  0.1431 -0.1048  -0.0896 0.0422  0.0285

00 50 02 05 02380 05212 0.1586 0.0497 0.0387  0.0212  0.0267  0.0029

then, limg o+ §g = nlog(a/3) + Y4y, log((xi — where
log(§ ((xi—B)*+(B—a)’)
B)3 + (ﬁ —a)3) +in¢x1 (3 1-1 ) Hh= — Ty 02( (=B +(B—a)?))
c;£x 10 x;—B)°+(B—a)’
nlog § + X4, log((x; = B)? + (B —a)?) + 2y
therefore,
and

g0(6:2,a,b,3) > 5+ 1im L= & +nlog(a/3)

+ Y log((xi—B)*+ (B —a)’)

XiFX]
log (%((xi—B)*+ (B —a)?
Ly B B a)
1-A

XX
if
0> - Yo ey 108( E (G PP+ Ba)

nlog & 4+, 1, Tog((xi— B + (B —a)?) + iz (S

on the other hand, limg ,lg =

nlog(0/3) + Yy2v, log((xi— B)* + (B —a)?), therefore,
go(0:4,a,b,x;) < 5+ limg .Gy
§ +nlog(t/3) + Ly sy log((xi = B)° + (B —a)’) < 0 if

n
o < nlog §+Y,, 4, log((xi—B)*+(B—a))’ hence,

go(0;A,a,b,x;) =0for 0 € (t1,1),

—n

h= nlog§ + ¥, 2 log((xi—B)3+ (B —a)’)

3.3 Simulation study

In this subsection, we assessed the proposed AMLEs by
simulation studies. We generate 10,000 samples of size
n = (20,30,50,100,200), the estimated values, standard
deviations (sd), bias and mean square error (MSE) of the
estimates are computed using R-software. The results
presented in Table 1 is the estimated values, standard
deviation (sd), bias, and mean square error (MSE). From
table 1 it is clear that the estimated values of the
parameters converge to their actual values in most cases,
also the standard deviations and the mean square error
decrease as the sample size increases.
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Table 2: MLEs, £(©), KS and P-value for the given data set.

Model o B A a b Y 0 0 (®) KS P-value
TEUq — — —0.1900 0.100  86.000 — 0.9262 — —212.86 0.1219 0.414
TUq — - —0.1136  0.100  86.000 — — — —223.18 0.1263 0.371
EUq — — — 0.100  86.000 - 0.9692 - —219.93  0.4072  7.3e-08
KwEUq — — 0.8977 0.100  86.000 — 0.8977 0.8081 —212.43 0.1473 0.207
GU 0.267 51.942 - 0.090 86.713 — — - —207.33  0.1520 0.198
EGLE - — — 3.3e-3  1.7e-4 4564 0.112 — —224.34  0.1475 0.206
GLE — - - 9.6e-3  4.5e-4 0.730 — — —23593  0.1598 0.139
GLFR — — — 3.8e-3  3.le4 - 0.533 — —233.15 0.1620 0.129
o \ — TE — TEUq

Y. B B

?} o — Ei:frical ‘:g - 7 — Empirical

S & | N s
§ i T T T 1 = T T T T \

0 20 40 60 80 0 20 40 60 80

X

(i) (ii)
Fig. 4: Plots of the histogram with estimated density and empirical cdf with estimated cdf of the competing distribution for the given

data set

4 Tllustration

Here, we fitted the TEUq distribution using AMLEs. The
AMLEs are computed by the solution of the (16) and (17)
using R-software. The data set used is the lifetimes of fifty
devices provided in [30] and recently studied by [43]. The
data setare: .1, .2,1,1,1,1,1,2,3,6,7, 11, 12, 18, 18,
18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55, 60, 63, 63,
67, 67, 67,67, 72,75, 79, 82, 82, 83, 84, 84, 84, 85, 85,
85, 85, 85, 86, 86.

We also compare the fit of the TEUq using the
Kolmogorov Smirnov (KS) test statistics with its sub
models and some other popular models such as
gamma-uniform (GU) [42], generalized linear
exponential (GLE) [39], exponentiated generalized linear
exponential (EGLE) [40], generalized linear failure rate
(GLFR) [41], exponentiated generalized linear
exponential (EGLE) [40], transmuted U-quadratic (TUq)
distribution [47], and Kumaraswamy exponentiated
U-quadratic (KwEUQq) [46].

The numerical results are provided in table 2 showing
that TEU(q fit the data better than the other models. Figure
4 provides the plots of the histogram and cumulative
distribution function of the empirical and estimated TEUq
distribution.

5 Conclusions

We have proposed a new lifetime model called
transmuted  exponentiated = U-quadratic (TEUq)
distribution. Various properties of the TEUq are derived
and studied such as the explicit form of the moments,
moment generating function and Shannon entropy.
Moreover, it is shown that the usual maximum likelihood
estimates does not hold for the TEUq and suggested the
use of the alternative maximum likelihood estimation
method, the alternative maximum likelihood estimators
was assessed by simulation studies. The effectiveness of
the TEUq was demonstrated by an application to a real
data set showing that TEUq fit the data better than some
other existing distributions as measured by the
Kolmogorov Smirnov test.
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