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Abstract: This paper implements nonlinear robust control for the asynchronous motor with iron loss, derives and establishes the
efficiency model for asynchronous motor with controllable power loss, and put forward to realize the accurate linearization of model
with controllable power loss and high-precision tracking and control of speed and flux linkage of rotor through the statefeedback
precise linearization algorithm of MIMO system.The outputof affine nonlinear system is tracked and controlled throughthe design of
nonlinear robust controller. The simulation results show that with this control method energy saving control of asynchronous motor can
be realized indirectly, so that the average power loss of theasynchronous motor significantly increases from 47.63% to 72.89%. This
provides a reference for the design of controller of multiple input multiple output nonlinear mechanical and electrical system in the
engineering.
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1 Introduction

In the engineering for model selection of the
asynchronous motor, it is required to meet the maximum
load demand, but actually most of the electric motors are
in the state of light load operation. In the currently widely
used variable frequency speed regulation system, the
asynchronous motor generally runs within the scope of
rated flux. The rated working point and efficiency of
operation are obviously low. Therefore, for the
asynchronous motor with long-term light load operation
or a wide load change scope, there is still a great energy
saving space. Motor efficiency optimization draws the
wide attention of engineers and scholars. Vector control
variable frequency speed regulation system has the
advantages of fast response and precise control [1]. In
recent years it has gradually become the mainstream
control strategy of high-performance variable frequency
speed regulation system [2,3]. However, for the currently
booming electric power, transportation, space electric
device and other application fields, high control precision
and fast dynamic response are required [4,5,6]. It is also

required to further improve the efficiency of the motor.
This paper aims at the motor efficiency for the first time,
and uses the feedback linearization method based on the
differential geometric principle for control of energy
consumption model of motor and designing the robust
controller for the linearized system, in order to realize the
goal of high-efficiency and energy-saving control of
asynchronous motor.

2 Asynchronous motor controllable power
loss model

The dynamic model of the asynchronous motor
consists of flux-linkage equation, voltage equation, torque
equation and equation of motion[7]. According to the
following hypothesis:

(1)The space harmonics are ignored and three-phase
winding is symmetrical. The magnetomotive force
produced is distributed along the air gap according to the
sine rule.
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(2)The magnetic circuit saturation is ignored. The
self-inductance and mutual inductance of the windings
are constant.

From equivalent circuit of motor, as shown in Figure
(1), asynchronous motor loss model is deduced.

(a)

(b)

Note: v-voltage; i-current; R-resistance;ψ-flux linkage;
subscript d, q-indicates variable of Axis d and Axis q
respectively; subscript s, r- indicates stator and rotor
variable respectively;ω1 ,ωs- synchronous rotation

electrical angular frequency and slip angle frequency.

Figure 1 Steady-state equivalent circult for asynchronous
motor

In rotating d-q coordinate system, the loss of the
motor is as shown in Figure (1) (a). When the
asynchronous motor is in the state of steady operation, the
current in the direction of d-q axis is equivalent to that of
stator and rotor of the direct current motor [8]. Therefore,
the induced voltage on both ends of the mutual
inductance is zero. In order to simplify the analysis, the
influence of the leakage inductance of the stator and rotor
can be ignored. In the rotary motor model usually iron
loss resistance is in parallel beside the excitation branch
[9]. The leakage inductance of the rotating motor is very
small, so the simplified analysis will not cause large error
to the model or ignore the leakage inductance of the stator
and rotor. The iron loss of the stator is represented by the
loss of RFe, equivalent resistance. The magnetic chain
equation is as follows:

{

iqFeRFe = ω1ψds = ω1ψr
iqrRFe =−ωsψdr =−ωsψr

(1)

Because the synchronous speedω1 =ωs+ωr andirq =
iqFe − isq, the slip angle frequency can be represented as:

ωs =
RrRFe

Rr +RFe

(

isq

ψr
−

ωr

RFe

)

(2)

∑ p = pCus + pCur + pFe+ pmech + ps (3)

In which, pCus is the stator loss;pCur is the rotor copper
loss;pFe is the iron loss;pmech is the mechanical loss; and
ps is the stray loss.

In which, the loss controlled by adjusting the voltage
is copper loss and iron loss of stator and rotor (Rotor’s iron
loss relative to the stator is extremely low, so the iron loss
mainly refers to the iron loss of stator). After considering
the oriented vector transformation in the rotor field (ψrq =
ψsq = 0), the controllable loss studied in this paper is as
follows:

pctrl = pCus + pCur + pFe (4)

In Formula (4): Copper loss of the rotor:

pCur = i2rqRr = (isqRFe −ωrψr)
Rr

(Rr +RFe)2

The copper loss of the stator:pCus = Rs(i2sq + i2sd)

Iron Loss: pFe = i2qFeRFe =
ω2

1ψ2
r

RFe
Substitute Formula

(2) into iron loss expression of the motor, we can get:

pFe =

(

iqsRr +ωrψr

Rr +RFe

)2

RFe

Electromagnetic torque of asynchronous motor is as
follows:

Te =
npLm

Lr
[(isq − iqFe)ψrd − (isd − idFe)ψrq] (5)

After summarizing Formula (2) and (3), we can get the
expression of loss, including electromagnetic torque:

pctrl =
(

Rs +
RrRFe

Rr+RFe

)(

LrTe
npLmψr

)2

+
(

Rs
L2

m
+ Rrω2

r
Rr+RFe

)

ψ2
r

(6)

Formula (6) shows that assuming that the motor
parameters are unchanged, when the rotor angular
frequency is a fixed value, the controllable loss of
asynchronous motor is associated with the flux linkage of
the rotor. It means under the condition of the stable motor
output power, optimization of power consumption
efficiency of the motor can be achieved by controlling the
flux linkage of the rotor. The mechanical loss and stray
loss are ignored there. Then we can get the energy
consumption efficiency expression of asynchronous
motor:

η = pout
pin

= pout
pout+pctrl

= ωrTe
ωrTe+pctrl

= ωrTe
(

Rs+
RrRFe

Rr+RFe

)(

LrTe
npLmψr

)2
+

(

Rs
L2

m
+

Rrω2
r

Rr+RFe

)

ψ2
r +ωrTe

(7)
When the motor has load, the motion equation is as

follows:
J
np

dωr

dt
= Te −TL (8)

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 2, 681-689 (2015) /www.naturalspublishing.com/Journals.asp 683

Obviously, the efficiency of the asynchronous motor is a
function of speed and flux linkage of rotor.

Voltage equation of asynchronous motor is as follows:


















dψsd
dt =−Rsisd +ω1ψsq + usd

dψsq
dt =−Rsisq −ω1ψsd + usq

dψrd
dt =−Rrird +(ω1−ωr)ψrq

dψrq
dt =−Rrirq − (ω1−ωr)ψrd

Based on Figure (1) Equivalent Circuit of Motor, loop
current relationship is deducted and obtained.

{

idFe = isd + ird
iqFe = isq + irq

(9)

Considering the magnetic chain relationship in the
Formula (1) under steady state operation, we can get
idFe =−ωrψsd/RFe.

In conclusion, we deduce and get the complete state
equation of asynchronous motor with loss factor:



























































dωr
dt =

n2
pLm

JLr
[(isq − iqFe)ψrd − (isd − idFe)ψrq]−

np
J TL

dψrd
dt =− RrRFe

Lm(Rr+RFe)
ψrd +(ω1−ωr)

RFe
Rr+RFe

ψrq +
RrRFe

Rr+RFe
isd

dψrq
dt =− RrRFe

Lm(Rr+RFe)
ψrq − (ω1−ωr)

RFe
Rr+RFe

ψrd +
RrRFe

Rr+RFe
isq

disd
dt = RrRFe

σLsLm(Rr+RFe)
ψrd +

RFe
σLs(Rr+RFe)

ωrψrq

−
(

Rs
σLs

+ RrRFe
σLs(Rr+RFe)

)

isd +ω1isq +
usd
σLs

disq
dt = RrRFe

σLsLm(Rr+RFe)
ψrq −

RFe
σLs(Rr+RFe)

ωrψrd

−
(

Rs
σLs

+ RrRFe
σLs(Rr+RFe)

)

isq −ω1isd +
usq
σLs

(10)
In which, J is the rotational inertia of the motor; the

magnetic flux leakage coefficient of motorσ = 1− L2
m

LsLr
.

Selection state variable

X =
[

x1 x2 x3 x4
]T

=
[

ωr ψrd isd isq
]T

, input variable U =
[

usd usq
]T

, and output

variableY =
[

ψr ωr
]T

,This paper mainly studies the
steady state of motor and the rotor of cage asynchronous
motor has short circuit inside, sourd = urq = 0. The
torque equation of the system is as shown in Formula (5).
Formula (10) is converted into a four-order nonlinear
system [10]:















ẋ1 = A(x2x4−Bx2
2)−C

ẋ2 =
−D
Lm

x2+Dx3

ẋ3 = Ex2−Gx3+ω1x4+
usd
σLs

ẋ4 =−Fx1x3−Gx4−ω1x3+
usq
σLs

(11)

In Formula(11),

A =
n2

pLm

JLr
;B = ω1

RFe
;C =

np
J TL;

D = RrRFe
Rr+RFe

;E = RrRFe
σLsLm(Rr+RFe)

;F = RFe
σLs(Rr+RFe)

;

G = Rs
σLs

+ RrRFe
σLs(Rr+RFe)

;H = 1
σLs

Output function of the selection system:

y = [ h1(x) h2(x)]
T = [ψr ωr ]

T = [ x2 x1 ]
T

Then we get the affine model of AC asynchronous
motor with loss as follows:

{

ẋ = f (x)+ g(x)u
y = h(x) (12)

In which,

f (x) =









A(x2x4−Bx2
2)−C

−D
Lm

x2+Dx3

Ex2−Gx3+ω1x4
−Fx1x3−Gx4−ω1x3









g(x) =







0 0
0 0
H 0
0 H







3 MIMO system state feedback exact
linearization

First, calculate the sub relation degree corresponding
to each output function in the system[11].

Definition 1: For the single input and single output
system

{

ẋ = f (x)+ g(x)u
y = h(x)

the value of k-order Lie derivative to vector field f and
Lie derivative to vector field g of the output function h is
zero in the field ofx = x0; and the value of r-1 order Lie
derivative to f and Lie derivative to g of h is not zero in the
field of x = x0. Then the relation degree of affine nonlinear
system in the field ofx0is r.

Definition 2: The relation degree of multiple input
multiple output affine nonlinear system is a set. It means
each output functionhiis has a sub relation degreeri. The
set of system relation degree with m output functions is
donated byr = {r1,r2, · · · ,rm} , i = 1,2, · · · ,m. The sub
relation degreeri must meet the following conditions:ri
corresponds to Lie derivative set of p inputs of the
system: In

{

Lg1Lri−1
f hi(x),Lg2Lri−1

f hi(x), · · · ,Lgp Lri−1
f hi(x)

}

,not

all the factors are zero. For the set of positive integer

k < ri,in
{

Lg1Lk
f hi(x),Lg2Lk

f hi(x), · · · ,LgpLk
f hi(x)

}

all the

factors are zero.
According to Definition 1, Lie derivative of the system

is calculated, in order to get each sub relation degree of
System (5):

{

Lg1L0
f h1(x) = 0

Lg2L0
f h1(x) = 0
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{

Lg1L1
f h1(x) = DH

Lg2L1
f h1(x) = 0

Whenr1−1= 1, h1(x) is not all 0 relative to the Lie
derivative input, sor1 = 2.

{

Lg1L0
f h2(x) = 0

Lg2L0
f h2(x) = 0

{

Lg1L1
f h2(x) = 0

Lg2L1
f h2(x) = AHx2

Whenψr 6= 0 andr2−1= 1, is not all 0 relative to the
Lie derivative input, sor2 = 2.

From Definition 2, we can get the relation degree set
of the system:r = {r1,r2}= {2,2}.

Theorem 1: Assume that matrixg(x0) has rank m, then
the state space exact linearization problem has a solution.
When and only when field U ofx0 and m real functions
of h1(x), · · · ,hm(x) defined on U exist, the n-order affine
nonlinear system

{

ẋ = f (x)+ g(x)u
y = h(x)

has relation degreer = {r1,r2, · · · ,rm} , i = 1,2, · · · ,m

at x0 and
m
∑

i=1
ri = n.

According to Theorem 1,r1 + r2 = 4 = n,so the
original system (0000) can be accurately linearized[12].

In conclusion, whenisd 6= 0andL2
m 6= LsLr, B(x)=

[

Lg1Lr1−1
f h1(x)

Lg2Lr2−1
f h2(x)

Lg2Lr1−1
f h1(x)

Lg2Lr2−1
f h2(x)

]

is singular matrix.
System order number n=4. The input number of

controlled variables m=2. According to the index number

election criteriam ≥ n1 ≥ n2 · · · ≥ nN ,
N
∑

i=1
ni = n, select

appropriate index number:n1 = m = 2 andn2 = 2, i.e.
N=2.

Step1: Form n vector field sets:











D1 = {g1}
D2 = Dm = {g1,g2}
D3 = Dm+1 =

{

g1,g2,ad f g1
}

D4 = Dm+n2 =
{

g1,g2,ad f g1,ad f g2
}

Definition 3: If for k n-dimensional vector fields








g11 g21 · · · gk1
g12 g22 · · · gk2
...

...
...

g1n g2n · · · gkn









rank at Pointx = x0is k, for each pair of integer I and
j1 ≤ i, j ≤ k, and rank of the augmented matrix
[

g1 g2 · · · gk

[

gi,gj

] ]

at Pointx = x0is still k, then the

vector field set is involutory. Spacespan
{

g1 g2 · · · gk

}

is known as involutory distribution.
After the calculation,D1 · · ·D4 are involutory.
Theorem 2: For MIMO affine nonlinear

system˙x = f (x) +
m
∑

i=1
gi(x)ui , choose the index number

m = n1 ≥ n2 ≥ ·· ·nN ,
N
∑

i=1
ni = n. n is the system

dimension. If the following two points are meet, the
system can be transformed into fully controllable
Brunovsky standard on an open set ofx = x0 through state
feedback:

Dn = [g1 · · ·gn1,ad f g1 · · ·ad f gn2,adN−1
f g1 · · ·adN−1

f gnN ]

is non-singular in the domain of definition;
In the vector field set:











































D1 = {g1}· · ·Dn1 = {g1 · · ·gn1}
...
Dn1+1 =

{

Dn1;ad f g1
}

· · ·Dn1+n2

=
{

Dn1;ad f g1 · · ·ad f gn2

}

...

Dn =
{

Dn−nN ;adN−1
f g1 · · ·adN−1

f gnN

}

Every vector field is involutory.
On the basis of Theorem 2, examine Matrix D:

Dn×n = [g1,g2,ad f g1,ad f g2]

=







0 0 0 −AHx2
0 0 −DH 0
H 0 GH −Hω1
0 H H(ω1+Fx1) GH







After elementary transformation:Dn×n → I4, i.e.Dn×n
has full rank.

So we can determine for the original affine nonlinear
system exact linearization can be achieved via state
feedback.

Step2: Select n linear independent vector fields
D̄i ∈ Di(x) and i=1. . . n .D̄i shall be as simple as

possible, so we choose unit matrix:
According to the formula:

D̄n +
m
∑
j=1

k(n)j (x)g j(x)+
n2

∑
j=1

k(n)m+ j(x)ad f g j(x)

+ · · ·+
nN

∑
j=1

k(n)m+···nN−1+ j(x)adN−1
f

g j(x) = 0
(13)

Make k(2)1 = x1; k(1)1 = x1,k
(1)
2 = x2; and

k(4)1 = x1,k
(4)
2 = x2,k

(4)
3 = x3, solve the function by

recurrence:
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k(2)1 =−D̄1/g1

k(2)2 =−(D̄2+ k(2)1 g1)/g2

k(3)3 =−(D̄3+ k(3)1 g1+ k(3)2 g2)/ad f g1

k(4)4 =−(D̄4+ k(4)3 ad f g1+ k(4)1 g1+ k(4)2 g2)/ad f g2

Step3: Deduce the mapping relationship between
different coordinate systems.

From the integral curve obtained of vector field
D̄1 · · · D̄n, deduce the mapping relationship between state
space Rn indicated with the new coordinate w and the
state space originally with x as the coordinate:

F(w1, · · · ,wn) = Φ D̄1
ω1 ◦ · · · ◦ΦD̄n

ωn
(x) (14)

Beginning fromD̄n, by the recursive relation:

d
dwn−1

[x1, · · ·xn]
T = D̄n−1 , x(0) = ΦD̄n

ωn
(15)

Solve the differential equations one by one to get the
desired mappingx = F(ω):











x1 = w1
x2 = w2+1
x3 = w3
x4 = w4

Accordingly, the inverse mapping of Fw = F−1(x) is











w1 = x1
w2 = x2−1
w3 = x3
w4 = x4

Step4: Obtain the induced mapping.
Definition 4: For a differential homeomorphism

coordinate mappingΦ : z = Φ(x) and a vector fieldf (x)
in space,JΦ indicates Jacobian matrix ofΦ(x). The
induced mapping off (x) under space mappingΦ(x) is
Φ∗( f ) = JΦ(x) f (x)|x=Φ−1(z).

According to Definition 4, the inverse mapping
w = F−1(x) obtained is considered as a space mapping to
get induced mappingF−1

∗ (x) = JF−1 f (x) of the original
system function f (x). Substitute x = F(w) into the
induced mapping to get the new mapping. It is denoted by
f (0)(w). In which,JF−1 is the Jacobian matrix ofF−1(x).

f (0)(w)=







Aw4(w2+1)−AB(w2+1)2−C
Dw3−D(w2+1)/Lm
ω1w4−Gw3+E(w2+1)
−Gw4−ω1w3−Fw1w3






(16)

To obtain coordinate transformation and state
feedback, define the intermediate transformation

R jj=1,. . . ,N-1. The relational expression ofR j; , j = 1,... ,
N - 1.

z( j)
i =

{

f ( j−1)
n j+i (w) i = 1, · · · ,n− n j

z( j−1)
i = ωi i = n− n j +1, · · · ,n

(17)

In Formula (10) f ( j)(w) = JR j(w) f ( j−1)(w)

From Formulaf (0)(w), we can get:

R1=







ω1w4−Gw3+E(w2+1)
−Gw4−ω1w3−Fw1w3
w3
w4






(18)

Because the system studied in this paper has N=2,
transforming ofR1 is to ultimately get the coordinate
transformation from Space w to Space z. From Definition

4, compound transformation isT
∆
= RN−1F−1

∣

∣

∣w=F−1(x) .

Under the effect of the compound coordinate
transformation, the vector field of the original system is
transformed intof̃ (x) andg̃(x), i.e. f̃ (x) = JT (x) f (x) and
g̃(x) = JT (x)g(x).

Step5: Induce Brunovsky standard and calculate
the control law[13].

According to the above, obtain the coordinate
transformation and makez = f̃ (x):











z1 = w3(x)
z2 = w4(x)
z3 = f̃4(x)
z4 = f̃3(x)

(19)

The original radiation nonlinear system can be
transformed into Brunovsky standard:











ż1 = z3
ż2 = z4
ż3 = v1
ż4 = v2

(20)

By inverse mappingx = f̃−1(z), we can get the state
feedback control law of the original nonlinear system [14]:

u =−b−1(x)a(x)+ b−1(x)v (21)

In which,v = [v1,v2, · · · ,vm]
T

a(x) = [ f̃1, · · · , f̃m]
T

=







E(Dx3−Dx2)/Lm−
G(Ex2−Gx3+ω1x4)−ω1(Gx4+ω1x3+Fx1x3)

G(Gx4+ω1x3+Fx1x3)−
(ω1+Fx1)(Ex2−Gx3+ omg1x4)+Fx3(ABx2

2−Ax4x2+C)







(22)
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b(x) =









g̃11 g̃21 · · · g̃m1
g̃12 g̃22 · · · g̃m2
...

...
...

g̃1m g̃2m · · · g̃mm









=

[

−GH Hω1
−H(ω1+Fx1) −GH

]

(23)

4 Design of nonlinear robust controller

As described earlier, through the state nonlinear
robust control method we have got the linearization
system of the nonlinear system in the new coordinate
space z [15]. Define disturbance vector s for the linear
system. It means the Brunovsky standard with
interference factors is as follows:

{

ż = Az+B1s+B2v
z =Cz (24)

Az =







0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0






Bz1 =







1 0
0 1
0 0
0 0







Bz2 =







0 0
0 0
1 0
0 1






Cz =

[

1 0 0 0
0 1 0 0

]

The linear system after decoupling is as shown in the
figure below:

Figure 2 Decoupled linear system of the Brunovsky
standard form

After system linearization, the nonlinear factors have
been mapped to the input signal u. If we investigate the
dynamic performance of system input and output from
the outside of system, we need to complete the design of
tracking and control. Whether the output signal of the
system is able to more quickly meet the set reference
trajectory is an important index to control the system. For
example, to track the reference trajectory zre f of a second
order independent part in the system, the stable pole of
linear system is required to meet the Hurwitz criterion.
Input the calculation formula v:

v =z̈re f + k1(żre f − ż)+ k2(zre f − z) (25)

In which the coefficient k meets Hurwitz’ polynomials2+
k1s+ k2 = 0.

Below according to theH∞ method, calculate the
robust pre-feedbackv∗ of linear system, mapv∗ to the

original affine nonlinear system, and get the nonlinear
control strategyu∗ [16]. According to the linear robust
control theory, the robust control problem of System (20)
can be equivalent to the mathematical problem of solving
Raccati matrix inequation. It means the sufficient
condition of robust control problem with solution is when
and only when Raccati inequation has nonnegative
solutionP∗:

AT
z

P+PAz+P

(

1
γ2 B1zB

T
1z −B2zB

T
2z

)

P+CT
z Cz < 0 (26)

In which,γ > 0 is theL2gain of given interference for the
output. In general, the smallerγ is, the stronger
anti-interference ability the robust controller has. Its
optimal value can be obtained with the variational
method. If nonnegative solution is obtained, it shows that
for the linear system the most serious possible
interferences∗ =− 1

γ2 BT
1z

P∗z has optimal control law:

v∗ =−BT
1z

P∗z =−K∗z (27)

From the mapping relation ofz = f̃ (x), we can get the
optimal control rules in Space x.

u∗ =−b−1(x)a(x)+ b−1(x)v∗

=−b−1(x)a(x)−K∗zb−1(x)
(28)

From the perspective of differential game theory, we
can prove that Formula (28) is also the robust control law
of the original affine nonlinear system (12).

5 Simulation test

(1)According to the design principle of feedback
tracking controller, and the nonlinear robust control law
obtained above, set the specified output signal and the
initial value: y1re f = sin(10πt) + 5,y1(0) = 0,
y2re f = 20t + sin(100πt)+,y2(0) = 0.1. Test the
feedback control model of AC asynchronous motor. Set
the simulation time t=1s, and simulate gradually
increased load in this period and the change of the
electromagnetic torque of motor output. The simulation
parameters are as follows: rated power of 2.2(kVA), rated
frequency of fn=50(Hz), RFe=0.16Ω ; Lm=0.258(H);
Lr=0.27(H); Ls=0.27(H); Rs=0.85Ω ; Rr=0.81Ω ;
J=0.31(kg.m2); and pole pairs ofnp = 2.

Prior to adding the robust controller, only by output
feedback control, the system frequency tracking is normal,
but gain output is diverging, as shown in the figure below:
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(a)Speed output of the motor

(b)Flux linkage output of motor rotor

Figure 3 Feedback tracking simulation of output signal

After adding the nonlinear robust controller, the output
signal can fast converge simulation results, as shown in
Figure 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8
output trajectory curves

time/s

p
h

i(
W

b
)

 

 

y1−act
y1−ref

(a)Speed output of nonlinear robust control motor
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Figure 4 Tracking simulation of nonlinear robust control
output signal

Experimental results show that under the action of the
nonlinear control law u, the output signal yact of the
system can track the reference signal yref after a brief
adjustment process. And through the nonlinear robust
control method, the two output variables are completely
decoupled.

(2)The control results of electromagnetic torque and
motor efficiency are tested. The motor parameters are
unchanged.
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Figure 5 Comparison of motor output and efficiency
before and after adding the nonlinear robust controller

Experimental results show that after the adjustment of
nonlinear robust controller, the output torque of
asynchronous motor can be stably converged. The energy
efficiency of the motor is obviously improved. The
statistics show that the average loss increases from
47.63% to 72.89%, and the adjustment of output
electromagnetic torque and controllable power loss
rapidly becomes stable.

6 Conclusion

In this paper, nonlinear robust control is implemented
for the asynchronous motor with the iron loss. Results
show that through state feedback exact linearization
algorithm of MIMO system, the accurate linearization of
affine nonlinear motor model and the dynamic decoupling
of output variable can be realized, so as to realize the high
accuracy tracking and control of speed and flux linkage of
rotor. This paper gives the detailed deduced loss motor
model, and gives the exact linearization theoretical
derivation process of multiple input multiple output
nonlinear system, and designs the nonlinear robust
feedback controller. Test results show that the nonlinear
robust controller has good control effect of
electromagnetic torque. The average power loss of
asynchronous motor significantly increases from 47.63%
to 72.89%. By the design method in this paper, we can
make the whole system run stably. Although the control
law has the complex nonlinear feature, for the similar
nonlinear mechanical and electrical system realizing
energy saving control with this control method is
completely feasible.
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