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Abstract: In this paper, explicit logarithmic finite difference schemes (E-LFDSs) obtained by using various finite difference approaches
instead of the non-linear term of the modified Burgers equation are given for numerical solutions of the modified Burgers equation. A
test problem is used to verify the effectiveness and accuracy of the schemes that we have suggested. Comparisons are made with other
studies in the literature. All results are consistent with the results obtained in other studies in the literature. L, and L. error norms are
calculated. The obtained error norms are quite small. The results show that the present numerical approaches are highly successful to

solve the modified Burgers equation.
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1 Introduction

Burgers equation was first given by Bateman [2] and later
was studied by Burgers [4,5] as a mathematical model for
turbulence. The Burgers equation has applications in
various fields such as convection and diffusion, number
theory, gas dynamics, heat conduction, elasticity since it
has an extensive use in engineering and other scientific
fields [6]. The one-dimensional generalized Burgers
equation is in the form
u+uluy—vi, =0 a<x<b, p=12
in which u denotes the velocity for space x and time ¢ and
v > 0 is a constant representing the kinematics viscosity
of the fluid. It is known as Burgers equation and modified
Burgers equation for p = 1 and p = 2, respectively.

Many analytical and numerical solutions of such
equation were studied by a number of authors using
different methods [1]-[29]. An analytical solution of
Burgers equation has been given by Benton and Platzman
[3]. Miller [21] introduced infinite series solutions of the
equation. The equation has been solved numerically by
several authors using the explicit and exact-explicit finite
difference methods [20], a finite element approach [22],
B-spline collocation methods [9], variational iteration
method [1] and explicit logarithmic finite difference

schemes [8]. The problem we deal with is in general
form:

u,Jruzuvaum:O; a<x<b,t>t

with initial condition
u(x,to) =f(x); a<x<b
and boundary conditions

u(aat):gl (t)a“(bvt):gZ(t); 1>1

where x and ¢ are independent variables, u = u(x,t), v is
the viscosity parameter, f (x), g1 (¢) and g» (7) are known
functions.

In the literature many numerical method was applied
to approximate the solution of the modified Burgers
equation by several authors. The collocation method with
quintic splines [24], the colocation method with septic
splines [25], the sextic B-spline collocation method [15],
a non-polynomial spline based method [12], an explicit
numerical scheme [6], Petrov-Galerkin method [26] and
explicit exponential finite difference schemes [7] have
been used to obtain numerical solution of equation by
several authors. Time and space splitting techniques have
been applied to the Burgers equation and the modified
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Burgers equation, and then the quintic B-spline Let F (u) = " then the E-LFDS for equation (1) is

collocation procedure has been employed to approximate
the resulting systems by Saka and Dag [27].

In the present work, main aim is to apply the E-LFDSs
for the numerical solutions of modified Burgers equation.

2 Model Problem and Numerical Method

2.1 Model Problem
We consider the modified Burgers equation
w A+ luy — v, =0, 0<x<1,1>1 (D)

with initial condition

X

1 0 1 2
D T e termy O @

and boundary conditions
u(0,0) =0,u(1,t) = 1t ;t>10 ()

14 (Vt/co)exp(1/4vt)’

Following [13] modified Burgers equation (1) has the
analytic solution

x/t
14 (v/1/co)exp (x2/4vt)

where ¢ is a constant, 0 < ¢ < 1.

u(x,t) = ;0<x<l,t>1 4

2.2 Numerical Method

We indicate the finite difference approximation of
u(x,t)at the grid point (x;,#,) by u! in which
xi=1ih(i=0,1,...,N), t, =nk (n =0,1,2,...),h is the
grid size in x-direction and k represents the increment in
time. Let F' (u) is any continuous differential function and

multiplying equation (1) by the following equation is

obtained:
JF du ,ou  d%u
Guar P W < oty a_> ®)
and 5 5 2.
F o (2%t
o1 F(“)< oY 3x2) ©)

If we use the forward difference approach instead of L

the finite difference representation of equation (6) is
obtained as:

() =i on |- (250 e (2]

(O]

in which k is the time step.

obtained as:

i . u 22u\"
ul-“u,»Jrln{lk(u 5) + k<a 2> } (8)

In this E-LFDS, instead of the dependent variable and
its derivatives their approximate values are written using
the various finite difference approaches. These
approximations will result various explicit equations

If central difference approach is used instead of 2 2 in
equation (8)

2 n 2u +
(%) —# 1<i<N—1 (9
X/

and then the following finite difference approaches are
used instead of the non-linear term uz a“

Approach-I.

Approach-II.

8u N ui +uf, 2 ul | —uy
“ox). 2 2h ’

Approach-III.

3” o (Mt P,
ax a 2 2h ’

Approach-IV.

8u - who Fuf Ful N\l
8x 3 2h ’

We obtained the

respectlvely, where 1 <1 < N—1.
following E-LFDSs

E—LFDS -1 u““*u'urln{l—f ul)? (g —ulty) v (uly ) — 20!+ ult ])}
(10)
pl it )2 n

E—LFDS — 1L /" =l 0 1= & (1550) (uty —a ) v (ul — 20+ ) o,
(1)

02
E —LFDS —1II. u}”]:u;’-%—ln{l—ﬁ(u”'zﬂ’) (o =) v (=20 +udl ) b
12)

N 2
E—LFDS—IV,u;"]:u;’+ln{l—%(%) (u‘,’A]*u}',l)+rv(u;’+l72u;’+uf,l)}1
(13)

respectively,where r = hz, I1<i<N-1,n=0,1,2,..

The values of u) (i=0,1,2,...,N)are known from
initial and boundary conditions. Hence the right side of
the equality is known in every time step.
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3 Local Truncation Error and Consistency

In order to analyze the local truncation errors of the
numerical schemes (10)-(13), the nonlinear terms of the
schemes have been linearized by replacing the quantities
uf’, u"+2u" L u"";u" and ‘“Jﬂé U by local constants
Ul, Ug, U and U4, respectlvely For simplicity, we let
U, = U, = U,=U4 = U hence the numerical schemes
(10)-(13), convert into

n+l __ n
;= uj

+ln{ — % (U) (g —udfy) v (uf 2“?+”?71)}
(14)
Since the scheme (14) is logarithmic, the examination will be
improved by expanding the logarithmic term of the scheme into
a Taylor’s series. Hilal et al. [14] applied the same procedure to
calculate the local truncation error of exponential finite
difference schemes and examine their stability. If the
logarithmic term of the scheme expand to Taylor series and use

the first term of the expansion the schemes can be written as:

N2
”?H =u — Z_kh (U) (“?H *”?71)

—2uf! +u;?7]) .

(15)
+FV( z+l

Expansion of the terms U{’H U/, and U | about the point
(xi,tn) by Taylor’ s series and subsntutlon into

r=urt' —ur+ £ (U) (ur

i+1 Uin—l)

leads to

Therefore the principal part of the local truncation error is as

follows: ) 5
k (*u\" W . °u
E(W)ﬁ s 0 (axs)

Hence the local truncation error is 7" = O(k) + O(h?).

Since  lim [0(k)+O0(h?)] = 0 present schemes are
Jh—

consistent. And the schemes are first order in time and second
order in space.

4 Stability Analysis

To investigate the stability of schemes, we will use the von
Neumann stability analysis in which the growth factor of a
typical Fourier mode is defined as follows:

Wl = ull, = y'ePrmh (16)

1

where i = y/—1. von Neumann stability analysis is used to
analyze the stability of finite difference schemes applied to
linear partial differential equations. So we will investigate the
stability of linear form of the schemes. By substituting the (16)
equality into the (15) linear form of the schemes, we get the
growth factor as follows:

Y= 174rvsm2ﬁ— —1i (% (0)2sith) .

Stability condition in von-Neumann method is |y| < 1.
Therefore stability condition of the schemes is

(4rvsin2Bzh)2—8rvsm2B (%( ) SIth)ZSOA

5 Rate and Order of Convergence

5.1 Rate of Convergence

The accuracy of the method is measured in terms of the error
norm defined by

1=

N 2
e [Zi_owl ui -

2
Yo lUil

in which U and u indicate exact and computed numerical
solutions, respectively. The rates of convergence of the method,
computed by using

log <Eh /E’z’)
log(2)

where E" and E are the errors defined in eq. (17) with the grid
size h and % respectively.

rate =

5.2 Order of Convergence

Definition 1./23] A sequence {x(k)} generated by a numerical
method is said to converge to o with order p > 1 if,
‘ k1) (x‘

4C>0: 7’)‘“{) 7a|p

<C, Vko <k,

where ko > 0 is a suitable integer. In such a case, the method is
said to be of order p.

To estimate p, we suppose & = ’x“‘“) — a’, & = ’x“‘) —-a

s

and so, the previous inequality will be & < C&‘]f' [14].

Therefore:
log <€k+l )

PR .
10g<8k 1)
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6 Numerical Results and Discussion

Numerical solutions of test problem have been obtained by
E-LFDSs. To show the accuracy of the results, L, and Le.error

norms:

Ly=|u-Uyl,=

uj — (Uy),|

Lo = |lu—Uy||, = max
J

have been used. Numerical solutions have been obtained at
different times for different values of v, A, k and ¢y = 0.5. The
obtained results have been shown in Tables 1-5 and Figure 1-2.
Table 1 presents L and Leerror norms with v = 0.001,
h =0.0125 and k£ = 0.01 at different times. As it is seen from
the table, L, and L.error norms are small enough.L; and
Leerror norms of E-LFDSs at ty = 2 for v = 0.01 and k = 0.001
for different values of 4 are given in Table 2. It can be seen from
Table 2 that the values of L, and L. decrease with decrease of A.
The obtained L; and Leerror norms of present study are
compared with other methods [15,24] for v = 0.005,2 = 0.005
and k = 0.001 at times t = 2,6,10 in Table 3. While Table 4
compares the L, and L., error norms of the present study with
other methods [15,25,27] for v =0.01, 2 =0.02 and £k = 0.01 at
times ¢ = 2,6, 10. Table 5 compares the L, and L., error norms
of the present study with other methods [15,24,25] for
v =0.001, 2 =0.005 and k = 0.01 at times r = 2,6,10. The
Tables 3-5 clearly show that both of the L, and L..error norms
are better or as good as the others found in the literature. Rate of
convergence for v =0.01, £ = 0.01 and & changes as N changes
at t = 6 is shown in Table 6. From the table, we observe that the
present schemes are second order accurate in space. From this
table, it can be seen that errors approach to zero as & decreases,
which shows that the schemes are consistent. literature. Rate of
convergence for v = 0.001, k = 0.01 and k changes as K changes
at t = 6 is shown in Table 7. From the table, we observe that the
present schemes are first order accurate in time. From this table,
it can be seen that errors approach to zero as & decreases, which
shows that the schemes are consistent. Figures 1 and 2 show
behavior of the numerical solutions for v = 0.01 and v = 0.005
with » = 0.05, k = 0.0l at times ¢t = 1,2,4,6,8,10 for
E-LFDS-I. The top and bottom curves are at t = 1 and ¢ = 10,
respectively. It can be seen from the figures that the curve of the
numerical solution decays as the time increases. Note that as the
viscosity parameter v gets small the decay gets fast.
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Fig. 1: Numerical solutions for v =0.01 with 2 = 0.05, k = 0.01
attimest =1,2,4,6,8,10 for E-LFDS-I.
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Fig. 2: Numerical solutions for v = 0.005 with 4 = 0.05, k = 0.01
attimest =1,2,4,6,8,10 for E-LFDS-I.

7 Conclusions

Explicit logarithmic finite difference schemes obtained by using
various finite difference approaches instead of the non-linear
term u? % of the modified Burgers equation have been given for
numerical solutions of the modified Burgers equation. A test
problem was used to verify the effectiveness and accuracy of the
schemes that we have suggested. Comparisons have been made
with other studies in the literature. L, and L., error norms have
been calculated. The obtained error norms are quite small. The
results clearly show that the present schemes are accurate,
reliable and convenient alternative schemes. Therefore, the
present schemes can be recommended to obtain numerical
solutions of many other nonlinear equations commonly used in

the literature.
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Table 1: L, x 103 and L., x 103error norms with v = 0.001, & = 0.0125 and k = 0.01.
t Ly x 103 Lo x 103
E-LFDS-I E-LFDS-IT | E-LFDS-III | E-LFDS-1IV | E-LFDS-I E-LFDS-II | E-LFDS-1II | E-LFDS-IV

2 0.07162 0.07164 0.07159 0.07162 0.26391 0.26429 0.26350 0.26391

3 0.06347 0.06353 0.06340 0.06347 0.23107 0.23136 0.23074 0.23106

4 0.05725 0.05732 0.05718 0.05725 0.19484 0.19508 0.19456 0.19482

5 0.05289 0.05296 0.05281 0.05289 0.16843 0.16864 0.16819 0.16842

6 0.04954 0.04960 0.04946 0.04953 0.14886 0.14904 0.14866 0.14885

7 0.04679 0.04685 0.04672 0.04678 0.13365 0.13381 0.13348 0.13364

8 0.04445 0.04451 0.04439 0.04445 0.12132 0.12145 0.12117 0.12131

9 0.04241 0.04247 0.04235 0.04241 0.11100 0.11112 0.11087 0.11099

10 0.04061 0.04066 0.04055 0.04060 0.10281 0.10293 0.10268 0.10280

Table 2: L, x 103 and L., x 10? error norms with v = 0.01, k = 0.001 and ty=2.
h L, x 10° Loo X 10°
E-LFDS-I E-LFDS-IT | E-LFDS-III | E-LFDS-IV | E-LFDS-I E-LFDS-II | E-LFDS-1II | E-LFDS-IV

h=0.05 0.43131 0.43161 0.43102 0.43158 0.87507 0.87895 0.87057 0.87502
h=0.025 0.39056 0.39088 0.39023 0.39062 0.82809 0.83051 0.82555 0.82809
h=0.0125 | 0.38123 0.38142 0.38104 0.38124 0.81787 0.81911 0.81659 0.81787
h=0.01 0.38014 0.38029 0.37998 0.38014 0.81788 0.81886 0.81688 0.81788

Table 3: Comparison of the error norms L; and L., with those in other studies in the literature at = 2,6, 10 for 2 = 0.005, k = 0.001

and v = 0.005.

=2 r=6 =10

Ly x103 | Lox10® | Ly x 103 | Lox10° | Ly x10° | Lex 103
E-LFDS-I 0.22642 0.57989 0.16461 0.32987 0.13960 0.22886
E-LFDS-II 0.22647 0.58023 0.16470 0.33004 0.13968 0.22897
E-LFDS-III 0.22638 0.57954 | 0.16451 0.32970 0.13953 0.22875
E-LEDS-IV 0.22643 0.57989 0.16461 0.32987 0.13960 0.22886
[24] 0.25786 0.72264 | 0.22569 0.43082 0.18735 0.30006
[15] (SBCM1) 0.22890 0.58623 - - 0.14042 0.23019
[15] (SBCM2) 0.23397 0.58424 - - 0.13747 0.22626

Table 4: Comparison of the error norms L; and L. with those in other studies in the literature at t = 2,6, 10 for # = 0.02, k = 0.01 and

v=0.01.

=2 r=6 r=10

Ly x103 | Lox10° | Ly x 103 | Lo x10° | Ly x 103 | Lex 103
E-LFDS-I 0.37553 0.80874 | 0.32924 | 0.52579 | 0.55848 1.28125
E-LFDS-II 0.37585 0.81075 0.32980 | 0.52579 | 0.55877 1.28125
E-LFDS-III 0.37519 0.80665 0.32865 0.52579 | 0.55818 1.28125
E-LEDS-IV 0.37556 0.80874 | 0.32922 | 0.52579 | 0.55847 1.28125
[25] 0.79043 1.70309 | 0.51672 | 0.76105 0.80026 1.80239
[27]1 (QBCAL) 0.37911 0.81254 | 0.32941 0.52579 | 0.55848 1.28125
[27]1 (QBCA2) 0.39473 0.88383 0.31588 0.53910 | 0.52425 1.28125
[15] (SBCM1) 0.38474 | 0.82611 - - 0.55985 1.28127
[15] (SBCM2) 0.41321 0.81502 | - - 0.55095 1.28127
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Table 5: Comparison of the error norms L, and L., with those in other studies in the literature at ¢ = 2,6, 10 for 7 = 0.005, k = 0.01

and v = 0.001.
t=2 t=6 t=10
Lyx10° | Lo x10® | Ly x10° | Lwx 103 | Ly x10° | Lex 103
E-LFDS-I 0.06695 0.25831 0.04939 0.14774 0.04070 0.10258
E-LFDS-II 0.06697 0.25846 0.04942 0.14782 0.04072 0.10263
E-LFDS-III 0.06693 0.25815 0.04936 0.14766 0.04068 0.10253
E-LFDS-IV 0.06695 0.25831 0.04939 0.14774 0.04070 0.10258
[24] 0.06703 0.27967 0.06046 0.17176 0.05010 0.12129
[25] 0.18355 0.81862 0.08142 0.21348 0.05512 0.13943
[15] (SBCM1) 0.06843 0.26233 - - 0.04080 0.10295
[15] (SBCM2) 0.07220 0.25975 - - 0.03871 0.09882
Table 6: Rate of convergence for v =0.01, k = 0.01 and 7 = 6.
N E-LFDS-I E-LFDS-1I E-LFDS-III E-LFDS-1V
Rate Order Rate Order Rate Order Rate Order
4 0.32010 - 0.31999 - 0.32020 - 0.32006 -
8 0.21166 1.51233 0.21145 1.51331 0.21207 1.50988 0.21174 1.51157
16 0.11234 1.88410 0.11217 1.88509 0.11255 1.88423 0.11236 1.88448
32 0.05699 1.97122 0.05693 1.97031 0.05705 1.97283 0.05699 1.97157
64 0.02864 1.98987 0.02863 1.98847 0.02866 1.99058 0.02865 1.98918
Table 7: Rate of convergence for v =0.001, # =0.02 and t = 6.
K E-LFDS-I E-LFDS-II E-LFDS-III E-LFDS-IV
Rate Order Rate Order Rate Order Rate Order
128 0.03899 - 0.03896 - 0.03902 - 0.03899 -
256 0.03892 1.00180 | 0.03890 1.00154 0.03896 1.00154 0.03893 1.00154
512 0.03889 1.00077 | 0.03886 1.00103 0.03892 1.00103 0.03889 1.00103
1024 0.03886 1.00077 | 0.03884 1.00051 0.03889 1.00077 0.03887 1.00052
2048 0.03885 1.00026 | 0.03883 1.00026 0.03888 1.00026 0.03886 1.00026
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