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Abstract: In this paper, explicit logarithmic finite difference schemes (E-LFDSs) obtained by using various finite difference approaches

instead of the non-linear term of the modified Burgers equation are given for numerical solutions of the modified Burgers equation. A

test problem is used to verify the effectiveness and accuracy of the schemes that we have suggested. Comparisons are made with other

studies in the literature. All results are consistent with the results obtained in other studies in the literature. L2 and L∞ error norms are

calculated. The obtained error norms are quite small. The results show that the present numerical approaches are highly successful to

solve the modified Burgers equation.
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1 Introduction

Burgers equation was first given by Bateman [2] and later
was studied by Burgers [4,5] as a mathematical model for
turbulence. The Burgers equation has applications in
various fields such as convection and diffusion, number
theory, gas dynamics, heat conduction, elasticity since it
has an extensive use in engineering and other scientific
fields [6]. The one-dimensional generalized Burgers
equation is in the form

ut + upux − vuxx = 0 a < x < b, p = 1,2

in which u denotes the velocity for space x and time t and
v > 0 is a constant representing the kinematics viscosity
of the fluid. It is known as Burgers equation and modified
Burgers equation for p = 1 and p = 2, respectively.

Many analytical and numerical solutions of such
equation were studied by a number of authors using
different methods [1]-[29]. An analytical solution of
Burgers equation has been given by Benton and Platzman
[3]. Miller [21] introduced infinite series solutions of the
equation. The equation has been solved numerically by
several authors using the explicit and exact-explicit finite
difference methods [20], a finite element approach [22],
B-spline collocation methods [9], variational iteration
method [1] and explicit logarithmic finite difference

schemes [8]. The problem we deal with is in general
form:

ut + u2ux − vuxx = 0; a < x < b, t > t0

with initial condition

u(x, t0) = f (x) ; a < x < b

and boundary conditions

u(a, t) = g1 (t) ,u(b, t) = g2 (t) ; t > t0

where x and t are independent variables, u = u(x, t), v is
the viscosity parameter, f (x), g1 (t) and g2 (t) are known
functions.

In the literature many numerical method was applied
to approximate the solution of the modified Burgers
equation by several authors. The collocation method with
quintic splines [24], the colocation method with septic
splines [25], the sextic B-spline collocation method [15],
a non-polynomial spline based method [12], an explicit
numerical scheme [6], Petrov-Galerkin method [26] and
explicit exponential finite difference schemes [7] have
been used to obtain numerical solution of equation by
several authors. Time and space splitting techniques have
been applied to the Burgers equation and the modified
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Burgers equation, and then the quintic B-spline
collocation procedure has been employed to approximate
the resulting systems by Saka and Dag [27].

In the present work, main aim is to apply the E-LFDSs
for the numerical solutions of modified Burgers equation.

2 Model Problem and Numerical Method

2.1 Model Problem

We consider the modified Burgers equation

ut + u2ux − vuxx = 0; 0 < x < 1 , t > 1 (1)

with initial condition

u(x,1) =
x

1+(1/c0)exp(x2/4v)
; 0 < x < 1 (2)

and boundary conditions

u(0, t) = 0,u(1, t) =
1/t

1+
(√

t/c0

)

exp(1/4vt)
; t > 1. (3)

Following [13] modified Burgers equation (1) has the
analytic solution

u(x, t) =
x/t

1+(
√

t/c0)exp
(

x2/4vt
) ; 0 < x < 1, t > 1 (4)

where c0 is a constant, 0 < c0 < 1.

2.2 Numerical Method

We indicate the finite difference approximation of
u(x, t)at the grid point (xi, tn) by un

i in which
xi = ih (i = 0,1, . . . ,N), tn = nk (n = 0,1,2, . . .),h is the
grid size in x-direction and k represents the increment in
time. Let F (u) is any continuous differential function and

multiplying equation (1) by ∂F
∂u

the following equation is
obtained:

∂F

∂u

∂u

∂ t
= F ′ (u)

(

−u2 ∂u

∂x
+ v

∂ 2u

∂x2

)

(5)

and
∂F

∂ t
= F ′ (u)

(

−u2 ∂u

∂x
+ v

∂ 2u

∂x2

)

. (6)

If we use the forward difference approach instead of ∂F
∂ t

the finite difference representation of equation (6) is
obtained as:

F
(

un+1
i

)

= F (un
i )+kF ′ (un

i )

[

−
(

u2 ∂u

∂x

)n

i

+v

(

∂ 2u

∂x2

)n

i

]

(7)

in which k is the time step.

Let F (u) = eu then the E-LFDS for equation (1) is
obtained as:

un+1
i = un

i + ln

{

1− k

(

u2 ∂u

∂x

)n

i

+ vk

(

∂ 2u

∂x2

)n

i

}

(8)

In this E-LFDS, instead of the dependent variable and
its derivatives their approximate values are written using
the various finite difference approaches. These
approximations will result various explicit equations.

If central difference approach is used instead of ∂ 2u
∂x2 in

equation (8)

(

∂ 2u

∂x2

)n

i

∼=
un

i−1 − 2un
i + un

i+1

h2
, 1 ≤ i ≤ N− 1 (9)

and then the following finite difference approaches are

used instead of the non-linear term u2 ∂u
∂x

Approach-I.

(

u2 ∂u

∂x

)n

i

∼= (un
i )

2

(

un
i+1 − un

i−1

2h

)

,

Approach-II.

(

u2 ∂u

∂x

)n

i

∼=
(

un
i + un

i+1

2

)2(un
i+1 − un

i−1

2h

)

,

Approach-III.

(

u2 ∂u

∂x

)n

i

∼=
(

un
i−1 + un

i

2

)2(un
i+1 − un

i−1

2h

)

,

Approach-IV.

(

u2 ∂u

∂x

)n

i

∼=
(

un
i+1 + un

i + un
i−1

3

)2(un
i+1 − un

i−1

2h

)

,

respectively, where 1 ≤ i ≤ N− 1. We obtained the
following E-LFDSs

E−LFDS− I. un+1
i = un

i + ln
{

1− k
2h
(un

i )
2
(

un
i+1 − un

i−1

)

+ rv
(

un
i+1 − 2un

i + un
i−1

)

}

(10)

E−LFDS− II. un+1
i = un

i + ln

{

1− k
2h

(

un
i +un

i+1

2

)2
(

un
i+1 − un

i−1

)

+ rv
(

un
i+1 − 2un

i + un
i−1

)

}

,

(11)

E−LFDS− III. un+1
i = un

i + ln

{

1− k
2h

(

un
i−1+un

i

2

)2
(

un
i+1 − un

i−1

)

+ rv
(

un
i+1 − 2un

i + un
i−1

)

}

,

(12)

E−LFDS− IV. un+1
i = un

i + ln

{

1− k
2h

(

un
i+1+un

i +un
i−1

3

)2
(

un
i+1 − un

i−1

)

+ rv
(

un
i+1 − 2un

i + un
i−1

)

}

,

(13)
respectively,where r = k

h2 , 1 ≤ i ≤ N − 1, n = 0,1,2, . . ..

The values of u0
i (i = 0,1,2, ...,N)are known from

initial and boundary conditions. Hence the right side of
the equality is known in every time step.

c© 2021 NSP

Natural Sciences Publishing Cor.



Sohag J. Math. 8, No. 3, 73-79 (2021) / www.naturalspublishing.com/Journals.asp 75

3 Local Truncation Error and Consistency

In order to analyze the local truncation errors of the
numerical schemes (10)-(13), the nonlinear terms of the
schemes have been linearized by replacing the quantities

un
i ,

un
i +un

i+1

2
,

un
i−1+un

i

2
and

un
i+1+un

i +un
i−1

3
by local constants

Ũ1, Ũ2, Ũ3 and Ũ4, respectively. For simplicity, we let
Ũ1 = Ũ2 = Ũ3=Ũ4 = Ũ hence the numerical schemes
(10)-(13), convert into

un+1
i = un

i

+ ln
{

1− k
2h

(

Ũ
)2 (

un
i+1 −un

i−1

)

+ rv
(

un
i+1 −2un

i +un
i−1

)

}

.

(14)

Since the scheme (14) is logarithmic, the examination will be

improved by expanding the logarithmic term of the scheme into

a Taylor’s series. Hilal et al. [14] applied the same procedure to

calculate the local truncation error of exponential finite

difference schemes and examine their stability. If the

logarithmic term of the scheme expand to Taylor series and use

the first term of the expansion the schemes can be written as:

un+1
i = un

i − k
2h

(

Ũ
)2 (

un
i+1 −un

i−1

)

+ rv
(

un
i+1 −2un

i +un
i−1

)

.

(15)

Expansion of the terms Un+1
i , Un

i+1 and Un
i−1 about the point

(xi, tn) by Taylor’ s series and substitution into

T n
i =Un+1

i −Un
i + k

2h

(

Ũ
)2 (

Un
i+1 −Un

i−1

)

− rv
(

Un
i+1 −2Un

i +Un
i−1

)

leads to

T n
i =

[

∂U
∂ t

+
(

Ũ
)2 ∂U

∂ x
−v ∂ 2U

∂ x2

]n

i

+ k
2

(

∂ 2U
∂ t2

)n

i
+ h2

6

(

Ũ
)2

(

∂ 3U
∂ x3

)n

i
+ · · ·

Therefore the principal part of the local truncation error is as

follows:
k

2

(

∂ 2u

∂ t2

)n

i

+
h2

6

(

Ũ
)2

(

∂ 3u

∂x3

)n

i

Hence the local truncation error is T n
i = O(k)+O(h2).

Since lim
k,h→0

[

O(k)+O(h2)
]

= 0 present schemes are

consistent. And the schemes are first order in time and second

order in space.

4 Stability Analysis

To investigate the stability of schemes, we will use the von

Neumann stability analysis in which the growth factor of a

typical Fourier mode is defined as follows:

un
i = un

m = γneiβmh (16)

where i =
√
−1. von Neumann stability analysis is used to

analyze the stability of finite difference schemes applied to

linear partial differential equations. So we will investigate the

stability of linear form of the schemes. By substituting the (16)

equality into the (15) linear form of the schemes, we get the

growth factor as follows:

γ = 1−4rvsin2 βh

2
− i

(

k

h

(

Û
)2

sinβh

)

.

Stability condition in von-Neumann method is |γ | ≤ 1.

Therefore stability condition of the schemes is

(

4rvsin2 βh

2

)2

−8rvsin2 βh

2
+

(

k

h

(

Û
)2

sinβh

)2

≤ 0.

5 Rate and Order of Convergence

5.1 Rate of Convergence

The accuracy of the method is measured in terms of the error

norm defined by

E =

[

∑N
i=0 |Ui −ui|2

∑N
i=0 |Ui|2

]
1
2

(17)

in which U and u indicate exact and computed numerical

solutions, respectively. The rates of convergence of the method,

computed by using

rate =
log

(

Eh/E
h
2

)

log(2)

where Eh and E
h
2 are the errors defined in eq. (17) with the grid

size h and h
2 , respectively.

5.2 Order of Convergence

Definition 1.[23] A sequence
{

x(k)
}

generated by a numerical

method is said to converge to α with order p ≥ 1 if,

∃C > 0 :

∣

∣

∣
x(k+1)−α

∣

∣

∣

∣

∣x(k)−α
∣

∣

p ≤C, ∀k0 ≤ k,

where k0 ≥ 0 is a suitable integer. In such a case, the method is

said to be of order p.

To estimate p, we suppose εk+1 =
∣

∣

∣
x(k+1)−α

∣

∣

∣
, εk =

∣

∣

∣
x(k)−α

∣

∣

∣
,

and so, the previous inequality will be εk+1 ≤ Cε
p
k

[14].

Therefore:

p ≈
log

(

εk+1

εk

)

log
(

εk

εk−1

) .
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6 Numerical Results and Discussion

Numerical solutions of test problem have been obtained by

E-LFDSs. To show the accuracy of the results, L2 and L∞error

norms:

L2 = ‖u−UN‖2 =

√

√

√

√h
N

∑
j=0

∣

∣

∣
u j − (UN) j

∣

∣

∣

2
,

L∞ = ‖u−UN‖∞ = max
j

∣

∣

∣
u j − (UN) j

∣

∣

∣

have been used. Numerical solutions have been obtained at

different times for different values of v, h, k and c0 = 0.5. The

obtained results have been shown in Tables 1-5 and Figure 1-2.

Table 1 presents L2 and L∞error norms with v = 0.001,

h = 0.0125 and k = 0.01 at different times. As it is seen from

the table, L2 and L∞error norms are small enough.L2 and

L∞error norms of E-LFDSs at t f = 2 for v = 0.01 and k = 0.001

for different values of h are given in Table 2. It can be seen from

Table 2 that the values of L2 and L∞ decrease with decrease of h.

The obtained L2 and L∞error norms of present study are

compared with other methods [15,24] for v = 0.005,h = 0.005

and k = 0.001 at times t = 2,6,10 in Table 3. While Table 4

compares the L2 and L∞ error norms of the present study with

other methods [15,25,27] for v = 0.01, h = 0.02 and k = 0.01 at

times t = 2,6,10. Table 5 compares the L2 and L∞ error norms

of the present study with other methods [15,24,25] for

v = 0.001, h = 0.005 and k = 0.01 at times t = 2,6,10. The

Tables 3-5 clearly show that both of the L2 and L∞error norms

are better or as good as the others found in the literature. Rate of

convergence for v = 0.01, k = 0.01 and h changes as N changes

at t = 6 is shown in Table 6. From the table, we observe that the

present schemes are second order accurate in space. From this

table, it can be seen that errors approach to zero as h decreases,

which shows that the schemes are consistent. literature. Rate of

convergence for v = 0.001, k = 0.01 and k changes as K changes

at t = 6 is shown in Table 7. From the table, we observe that the

present schemes are first order accurate in time. From this table,

it can be seen that errors approach to zero as h decreases, which

shows that the schemes are consistent. Figures 1 and 2 show

behavior of the numerical solutions for v = 0.01 and v = 0.005

with h = 0.05, k = 0.01 at times t = 1,2,4,6,8,10 for

E-LFDS-I. The top and bottom curves are at t = 1 and t = 10,

respectively. It can be seen from the figures that the curve of the

numerical solution decays as the time increases. Note that as the

viscosity parameter v gets small the decay gets fast.

Fig. 1: Numerical solutions for v = 0.01 with h = 0.05, k = 0.01

at times t = 1,2,4,6,8,10 for E-LFDS-I.

Fig. 2: Numerical solutions for v= 0.005 with h= 0.05, k = 0.01

at times t = 1,2,4,6,8,10 for E-LFDS-I.

7 Conclusions

Explicit logarithmic finite difference schemes obtained by using

various finite difference approaches instead of the non-linear

term u2 ∂ u
∂ x

of the modified Burgers equation have been given for

numerical solutions of the modified Burgers equation. A test

problem was used to verify the effectiveness and accuracy of the

schemes that we have suggested. Comparisons have been made

with other studies in the literature. L2 and L∞ error norms have

been calculated. The obtained error norms are quite small. The

results clearly show that the present schemes are accurate,

reliable and convenient alternative schemes. Therefore, the

present schemes can be recommended to obtain numerical

solutions of many other nonlinear equations commonly used in

the literature.
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Table 1: L2 ×103 and L∞ ×103error norms with v = 0.001, h = 0.0125 and k = 0.01.

t L2 ×103 L∞ ×103

E-LFDS-I E-LFDS-II E-LFDS-III E-LFDS-IV E-LFDS-I E-LFDS-II E-LFDS-III E-LFDS-IV

2 0.07162 0.07164 0.07159 0.07162 0.26391 0.26429 0.26350 0.26391

3 0.06347 0.06353 0.06340 0.06347 0.23107 0.23136 0.23074 0.23106

4 0.05725 0.05732 0.05718 0.05725 0.19484 0.19508 0.19456 0.19482

5 0.05289 0.05296 0.05281 0.05289 0.16843 0.16864 0.16819 0.16842

6 0.04954 0.04960 0.04946 0.04953 0.14886 0.14904 0.14866 0.14885

7 0.04679 0.04685 0.04672 0.04678 0.13365 0.13381 0.13348 0.13364

8 0.04445 0.04451 0.04439 0.04445 0.12132 0.12145 0.12117 0.12131

9 0.04241 0.04247 0.04235 0.04241 0.11100 0.11112 0.11087 0.11099

10 0.04061 0.04066 0.04055 0.04060 0.10281 0.10293 0.10268 0.10280

Table 2: L2 ×103 and L∞ ×103 error norms with v = 0.01, k = 0.001 and t f = 2.

h L2 ×103 L∞ ×103

E-LFDS-I E-LFDS-II E-LFDS-III E-LFDS-IV E-LFDS-I E-LFDS-II E-LFDS-III E-LFDS-IV

h = 0.05 0.43131 0.43161 0.43102 0.43158 0.87507 0.87895 0.87057 0.87502

h = 0.025 0.39056 0.39088 0.39023 0.39062 0.82809 0.83051 0.82555 0.82809

h = 0.0125 0.38123 0.38142 0.38104 0.38124 0.81787 0.81911 0.81659 0.81787

h = 0.01 0.38014 0.38029 0.37998 0.38014 0.81788 0.81886 0.81688 0.81788

Table 3: Comparison of the error norms L2 and L∞ with those in other studies in the literature at t = 2,6,10 for h = 0.005, k = 0.001

and v = 0.005.

t = 2 t = 6 t = 10

L2 ×103 L∞ ×103 L2 ×103 L∞ ×103 L2 ×103 L∞ ×103

E-LFDS-I 0.22642 0.57989 0.16461 0.32987 0.13960 0.22886

E-LFDS-II 0.22647 0.58023 0.16470 0.33004 0.13968 0.22897

E-LFDS-III 0.22638 0.57954 0.16451 0.32970 0.13953 0.22875

E-LFDS-IV 0.22643 0.57989 0.16461 0.32987 0.13960 0.22886

[24] 0.25786 0.72264 0.22569 0.43082 0.18735 0.30006

[15] (SBCM1) 0.22890 0.58623 - - 0.14042 0.23019

[15] (SBCM2) 0.23397 0.58424 - - 0.13747 0.22626

Table 4: Comparison of the error norms L2 and L∞ with those in other studies in the literature at t = 2,6,10 for h = 0.02, k = 0.01 and

v = 0.01.

t = 2 t = 6 t = 10

L2 ×103 L∞ ×103 L2 ×103 L∞ ×103 L2 ×103 L∞ ×103

E-LFDS-I 0.37553 0.80874 0.32924 0.52579 0.55848 1.28125

E-LFDS-II 0.37585 0.81075 0.32980 0.52579 0.55877 1.28125

E-LFDS-III 0.37519 0.80665 0.32865 0.52579 0.55818 1.28125

E-LFDS-IV 0.37556 0.80874 0.32922 0.52579 0.55847 1.28125

[25] 0.79043 1.70309 0.51672 0.76105 0.80026 1.80239

[27] (QBCA1) 0.37911 0.81254 0.32941 0.52579 0.55848 1.28125

[27] (QBCA2) 0.39473 0.88383 0.31588 0.53910 0.52425 1.28125

[15] (SBCM1) 0.38474 0.82611 - - 0.55985 1.28127

[15] (SBCM2) 0.41321 0.81502 - - 0.55095 1.28127
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Table 5: Comparison of the error norms L2 and L∞ with those in other studies in the literature at t = 2,6,10 for h = 0.005, k = 0.01

and v = 0.001.

t = 2 t = 6 t = 10

L2 ×103 L∞ ×103 L2 ×103 L∞ ×103 L2 ×103 L∞ ×103

E-LFDS-I 0.06695 0.25831 0.04939 0.14774 0.04070 0.10258

E-LFDS-II 0.06697 0.25846 0.04942 0.14782 0.04072 0.10263

E-LFDS-III 0.06693 0.25815 0.04936 0.14766 0.04068 0.10253

E-LFDS-IV 0.06695 0.25831 0.04939 0.14774 0.04070 0.10258

[24] 0.06703 0.27967 0.06046 0.17176 0.05010 0.12129

[25] 0.18355 0.81862 0.08142 0.21348 0.05512 0.13943

[15] (SBCM1) 0.06843 0.26233 - - 0.04080 0.10295

[15] (SBCM2) 0.07220 0.25975 - - 0.03871 0.09882

Table 6: Rate of convergence for v = 0.01, k = 0.01 and t = 6.

N E-LFDS-I E-LFDS-II E-LFDS-III E-LFDS-IV

Rate Order Rate Order Rate Order Rate Order

4 0.32010 - 0.31999 - 0.32020 - 0.32006 -

8 0.21166 1.51233 0.21145 1.51331 0.21207 1.50988 0.21174 1.51157

16 0.11234 1.88410 0.11217 1.88509 0.11255 1.88423 0.11236 1.88448

32 0.05699 1.97122 0.05693 1.97031 0.05705 1.97283 0.05699 1.97157

64 0.02864 1.98987 0.02863 1.98847 0.02866 1.99058 0.02865 1.98918

Table 7: Rate of convergence for v = 0.001, h = 0.02 and t = 6.

K E-LFDS-I E-LFDS-II E-LFDS-III E-LFDS-IV

Rate Order Rate Order Rate Order Rate Order

128 0.03899 - 0.03896 - 0.03902 - 0.03899 -

256 0.03892 1.00180 0.03890 1.00154 0.03896 1.00154 0.03893 1.00154

512 0.03889 1.00077 0.03886 1.00103 0.03892 1.00103 0.03889 1.00103

1024 0.03886 1.00077 0.03884 1.00051 0.03889 1.00077 0.03887 1.00052

2048 0.03885 1.00026 0.03883 1.00026 0.03888 1.00026 0.03886 1.00026
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