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Abstract: The concepts of(A, u)—fuzzy subsemigroup and variou@, u)—fuzzy ideals of a semigroup were introduced by
generalizing(e, € vq)—fuzzy subsemigroup ange, €\Vq)—fuzzy ideal. The regular semigroup was characterized by the propertie
of the middle parts of variou§ , ) —fuzzy ideals, and several equivalence conditions of regular seapignere obtained.
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1 Introduction subsemigroup anft, €\vq)—fuzzy ideal of a semigroup,
Yao [9] introduced the notions of(A,u)—fuzzy

The concept of fuzzy set, introduced by Zad@h][was  Subsemigroup and variougA,u)—fuzzy ideals, and
applied to the theory of groups by Rosenfeld. [Since dl_s;cussed the_zlr fundamental properties. In this paper, we
then, many scholars have been engaged in thewill characten;e regular semigroups by th(_a Pproperties of
fuzzification of some algebraic structures. Kurugj4]  (A.H)—fuzzy ideal, (A,u)— fuzzy quasi-ideal and
initiated the theory of fuzzy semigroups, and introduced (A, H)—fuzzy bi-ideal of a semigroup.
the concepts of fuzzy ideal and fuzzy bi-ideal. A
systemtic exposition of fuzzy semigroup by Mordeson et
al appeared ing] , where one can find the theoretical . .
results of fuzzy semigroup and their use in fuzzy coding,2 (A, 4)—fuzzy ideal, fuzzy quasi-ideal and
fuzzy finite state machines and fuzzy languages. fuzzy bi-ideal
It is worth to be pointed out that Bhakat and Dag?]
introduced the concepts dfa, 3)—fuzzy subgroup by
using the “belongs to” relation and “quasi-coincident A semigroup is an algebraic systeli®.) consisting of a
with” relation between a fuzzy point and a fuzzy subset,nonempty setS together with an associative binary
and gave the concepts 6, c\Vq)—fuzzy subgroup and operation *". A subsemigroup ofSis a nonempty subset
(€,evq)—fuzzy subring. Muhammad et é][studied the T of Ssuch thatTT C T. A nonempty subset of Sis
characterizations of regular semigroups usingcalled a left (right) ideal ofSif ST C T(TSCT). A
(e,evq)—fuzzy ideals. nonempty subset of Sis called an ideal o§if it is both
It is well known that a fuzzy subsét of a groupG is a left ideal and a right ideal &. A nonempty subsep of
a Rosenfeld's fuzzy subgroup if and only if Siscalledaquasi-ideal &if QSNSQ C Q. A nonempty
A = {xe€ G|AKX >t} is a subgroup ofG for all  subsetT of Sis called a generalized bi-ideal & if
t € (0,1] (for our convenience, here 0 is regarded as al ST C T. A subsemigrouf of Sis called a bi-ideal 06
subgroup ofG ). Similarly, A is an (€,evq)—fuzzy if TST C T. A subsemigroud of Sis called an interior
subgroup if and only ifA; is a subgroup ofG for all ideal of Sif STSC T. Obviously, each left (right) ideal of
t € (0,0.5]. A corresponding result should be consideredS is a quasi-ideal ofS and each quasi-ideal @ is a
naturally when A is a subgroup of G for all  bi-ideal ofS
t € (a,b],where(a,b] is an arbitrary subinterval of [0,1]. An elementa of a semigroupS is called a regular
Motivated by above problem, Yuan et all(] element if there exists an elemeht of S such that
introduced fuzzy subgroup with thresholds of a group. Ina = aba. A semigroupSis called a regular semigroup if
order to generalize the concepts 6f,€ vq)—fuzzy  every element oSis a regular element.
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In the following discussionsS always stands for a

semigroup, andh and u are two constant numbers such A(X) VA > (1s-A)(X) A = (1s-A)(X) A (A-1s)(X)

that 0< A < pu < 1.

By a fuzzy subset o6 we mean a mapping from S
to the closed intervdlD, 1. If T is a subset of, then the
characteristic function of is denoted by 4.

In order to generalize the concepts of fuzzy

subsemigroup and various fuzzy ideals $fdefined in
[3], we introduced the followings.

Definition 2.1. A fuzzy subsetA of S is called a
(A, u)—fuzzy subsemigroup ddif for all x,y € S

AXY) VA = AX) AAY) AU

Definition 2.2[9] A fuzzy subsetA of S is called a
(A, u)—fuzzy left (right) ideal ofSif for all x,y € S,

AXY) VA = A(Y) ARAY) VA Z AX) A [).

A fuzzy subsefA of Sis called a(A, u)—fuzzy ideal ofS
if it is both a (A, u)—fuzzy left ideal and dA, u)—fuzzy
right ideal ofS.

Definition 2.3. A fuzzy subsetA of S is called a
(A, u)—fuzzy generalized bi-ideal @if for all x,y,ze S,

Axyz) VA = AX) AA(Z) A U

Let A B be fuzzy subsets @, then the fuzzy subsét-
B of Sis defined as the following. For alle S, if Ix;,%; €
S, such thak = x;xo, then
(A-B)(x) = sup{A(x1) AB(x2) | X = x1X2}, otherwise(A-
B)(x) =0.
Definition 2.4. A fuzzy subsetA of S is called a
(A, u)—fuzzy quasi-ideal oSif for all x€ S,

AX)VA = (A-1s)(X) A (1s- A)(X) A L.

Definition 2.5. A (A, u)—fuzzy subsemigroup of Sis
called a(A, u)—fuzzy bi-ideal(interior ideal) oSif for all
X,Y,2€ S

AXY2) VA > AX) AAE) AR (AKYZ) VA > AlY) A R).

It is obvious that an(e, € vq)—fuzzy subsemigroup
(left ideal, right ideal, ideal, bi-ideal, quasi-ideal) &
(0,0.5)—fuzzy subsemigroup (left ideal, right ideal, ideal,
bi-ideal, quasi-ideal).

The following two theorems show the relations among 1s

(A, u)—fuzzy left (right) ideal,(A, u)—fuzzy quasi-ideal
and(A, u)—fuzzy bi-ideal.

Theorem 2.1.Let A be a(A, u)—fuzzy left ideal (right
ideal) of S ThenAis a(A, u)—fuzzy quasi-ideal o

Proof. We only prove the case @A, u)—fuzzy left ideal.
Forallx € S if dx1,% € S, such thak = x;Xp, then
(1s-A)(X) At = sup{1s(X1) AAX2) A M | X = X1X2 }

= SUp{A(X2) AU | X = X1 X2}

< SUP[A(X1X2) VA | X= XX} = A(X) VA.

Otherwise(1s-A)(x) A 4 = 0. So

AU.
It means thafAis a(A, u)—fuzzy quasi-ideal of.

Theorem 2.2.Let A be a(A, u)—fuzzy quasi-ideal oS,
ThenAis a(A, u)—fuzzy bi-ideal ofS.

Proof. For allx,y,z€ S we have

AXY) VA = (A-15) () A (1s- A) () A
> AX) A Ls(y) A Ls(X) AAY) A U
= AX) AA(Y) Al
Ay2) VA > (A-15)(92) A (1s- A) (y2) A
> AX) A 1s(yz) A Ls(xy) AA(Z) A

=AX) ANA(Z) A .
It follows thatAis a(A, u)—fuzzy bi-ideal ofS.

(A, u)—fuzzy subsemigroups and various
(A, u)—fuzzy ideals ofScan be characterized by their cut
sets.

Theorem 2.3[9] A fuzzy subsetA of Sis a(A, u)—fuzzy
subsemigroup (left ideal, right ideal, ideal)®if and only
if for all t € (A, u],A is a subsemigroup (left ideal, right
ideal, ideal) ofSwhenever; # 0.

Similarly, we have the following theorem.

Theorem 2.4.A fuzzy subsetA of Sis a (A, u)—fuzzy
quasi-ideal( bi-ideal, interior ideal) @& if and only if for
all't € (A, u],A is a quasi-ideal(bi-ideal, interior ideal) of
SwheneverA; # 0.

Proof. We only prove the case of(A,u)—fuzzy
quasi-ideal. LeA be a(A, u)—fuzzy quasi-ideal oS and

t € (A,ul. If x € ASN SA, then there exist
a,be A,r,se S such thak = ar = sh. So we have

AX)VA = (A-1g)(X) A (s A)(X) A U
> A(a) A1g(r) Als(s) AA(b) A
=A@ ANAb)Au
StAU=t>A.

It implies thatA(x) >t. Sox € Ay and ASNSA C A.
HenceA; is a quasi-ideal o8,

Conversely, for alt € (A, u], let A be a quasi-ideal of
Sor A; = 0. We will show that
AX)VA = (A-1g)(X) A (1s-A)(X) AU, VX E S
If possible, letxg € Ssuch thatA(xg) VA < (A-1s)(Xg) A
(1s-A)(X0) A L. Chooset such thatA(xg) VA <t < (A-
1s)(%0) A (1s- A)(%0) A, thent € (A, p], o & Ac and (A-
)(%0) A (1s- A)(Xg) > t. So there exisa, b,r,se S, such
thatxg = ar = shandA(a) AA(b) >t. Thusxg € A/ SN SA;,
a contradiction. So we haw(x) VA > (A-1s)(X) A (1s-
A)(X) A u,Vx € S HenceAis a (A, u)—fuzzy quasi-ideal
of S

3 The characterization of regular semigroup

To characterize the regularity of the semigro8pwe
define the fuzzy subsét™ of S, called the middle part of
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A, as the following
A"(X)=(AX)VA)AU,VXE S

whereA is a fuzzy subset db.
Theorem 3.1.Let A B be fuzzy subsets @&, then

(1)(ANB)"=A"NnB",

(2)(AuB)” =A"UB™,

(3)A-B)" DA -B".

Proof. For allx € S, we have
(ANB)~(X) = ((A(X) AB(X)) VA) A i
=A" (X)AB (X) = (A" NB7)(X).
(AUB)~(x ) (A(X)VB(X)) VA) Al
=A"(X) VB (x) = (A~ UB™)(X).

This means (1) and (2) hold.

(3)For allx € S/ if xis not expressible as= x;x, for some

X1,%2 € S, then(A-B)~(x) > 0= (A~ -B7)(x). Otherwise,
(A-B)"(x) = (A-B)(X) VA) A

(sup{A(x1) AB(X2) | x=X1X2} VA) A UL

— SUPL((A(K)V A) A0 A (B VA) A ) | X = X0
=suplA (X)) AB(X2) | x=x1X2}
= (A-B)(¥).

It shows thatfA-B)" DA -B™.

Theorem 3.2.LetAbe a(A, u)—fuzzy subsemigroup (left
ideal, right ideal, bi-ideal, quasi-ideal) & ThenA~ is

also a(A, u)—fuzzy subsemigroup (left ideal, right ideal,

bi-ideal, quasi-ideal) o&.
Proof. The proof is straightforward.

Now we characterize the regular semigroup by the

properties of(A, u)—fuzzy ideal, (A, u)—fuzzy bi-ideal
and (A, u)—fuzzy quasi-ideal ofS. First we need the
following lemmas.

Lemma 3.1.Let X,Y be two nonempty subsets 8fThen

(1) Ix N1y = Ixay, Ix ULy = Ixuy, Ix - by = Ixyy,
Q= =Ikk=ly=X=Y.

Proof. The proof is straightforward.

Lemma 3.2[8] For the semigroupS, the following

conditions are equivalent.

(1) Sis regular,

(2) RNL = RL for every right ideaR and every left ideal
L of S

(3) QQ = Q for every quasi-ideaD of S.

Theorem 3.3.The semigrousis regular if and only if for
every (A, u)—fuzzy right idealA and every(A, u)—fuzzy
leftidealB of S, (ANB)” = (A-B)".

Proof. AssumeSis regular. LetA andB be (A, u)—fuzzy
right ideal and(A, u)—fuzzy left ideal ofS, respectively.
Then for allx € S, on one hand, we have

(A-B)~(X) = (sUp{A(x1) AB(X2) | Xx=X1X2} VA) A Ul
SUp{(A(X1) AH) A (B(X2) A ) | X=X1X2} VA) A U

On the other hand, considering the regularity $f
there exista € S, such thak = xax. Thus

(A-B)”(x) = (A-B)(xax) vA) A
> ((Axa) AB(X)) VA) A
Z ((AX)AB(X)) VA) A
= (ANB)™ (x).
Hence(ANB)™ = (A-B)~.

Conversely, assume the condition holds. ReindL be
right ideal and left ideal o§, respectively. Thendand 1
are (A, u)—fuzzy right ideal and A, u)—fuzzy left ideal
of S, respectively. Thus from Lemma 3.1 we have
g =(Ir-1)” = (IrN1)” =1, and henc&L = RN
L. ThereforeSis regular semigroup from Lemma 3.2.
Theorem 3.4. For the semigroupS, the following

conditions are equivalent.
(1) Sis regular.

(2) A~ = (A-1s-A)~ for every(A, u)—fuzzy generalized
bi-ideal A of S

(3) A~ = (A-1s-A)~ for every (A, u)—fuzzy bi-ideal A
of S

(4 A =(A-1s-A) for every (A, u)—fuzzy quasi-ideal
Aof S

Proof. (1) = (2): For allx € S, there exista € S, such
thatx = xax. Thus
(A-15-A)(x) = ((A-1s-A)(xax) VA) A
Z ((A(X) A ls(@) AAX)) VA) A
= (AX)VA)A U
= A (x).
Conversely, ifx is not expressible as= x1xox3, then
A~ (X) =2 A = (A-1s-A)~(x). Otherwise
AT (X) = (A(X1XoX3) VA) A U
> (A1) AAGG)) VA) A
= ((A(Xl) A\ 15(X2) /\A(Xg)) VA ) AU.
It follows that

A (X) = (sup{A(x) A 1s(%2) AA(X3) | X=XaXoXa} VA) A U
— (A-15-A) ().

HenceA™ = (A-1s-A)".

(4) = (1): Let Q be any quasi-ideal ofS. Then

QSQ C RSNV € Q. In order to showQ C QQ, we
define fuzzy subsek of Shy

A(s) = {g’s‘c‘;g,VSeS

From Theorem 2.3, we have thatis a (A, u)—fuzzy

quasi-ideal ofS and henceA~ = (A-1s-A)~. For all
xeQ,
(A1 A" (X)) =A" (X)) =AX) VA AU = U.

z Esup{( A(xaX2) VA) A (B(XaXo) VA) | X=xax} VA) A This implies that there exis), X3 € Q,x) € S such that
= (A AB(X)) VA) A x0x3xJ = x, and
= (ANB)~(x). SUP{A(Xl)/\ls(XZ)AA( ) \ = X1XX3}
= A(G) A 1s0Q) NAGG) =
© 2014 NSP
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So x = x39x3 € Q. It shows thatQSQ = Q. From
Lemma 3.2Sis a regular semigroup.

(2) = (3) and(3) = (4) are obvious.

Theorem 3.5. For the semigroupS the following
conditions are equivalent.

(1) Sis regular.

(2 (AnB)” = (A-B-A)" for every (A,u)—fuzzy
quasi-idealA and every(A, u)—fuzzy idealB of S.
BYANB)” = (A-B-A)" for every (A,u)—fuzzy
quasi-idealA and every(A, u)—fuzzy interior idealB of
S

4 (AnB)” = (A-B-A)" for every (A,u)—fuzzy
bi-ideal A and every(A, u)—fuzzy idealB of S.
(5)(ANB)~ = (A-B-A)~ for every(A, u)—fuzzy bi-ideal
Aand every(A, u)—fuzzy interior ideaB of S.
B)YANB)™ = (A-B-A)~ for every (A,u)—fuzzy
generalized bi-ideah and every(A, u)—fuzzy idealB of
S

(7 ANB)™ = (A-B-A)~ for every (A,u)—fuzzy
generalized bi-idealA and every(A, u)—fuzzy interior
idealB of S

Proof. (1) = (7): Let A/B be (A, u)—fuzzy generalized
bi-ideal and(A, u)—fuzzy interior ideal ofS, respectively.
For allx € S, if X = x1xox3 for somexy, X2, X3 € S, then
A" (X) = AXaxeXz) VA A
(A(XL) AAXS)) VA A p
(A(x2) AB(x2) AA(X3)) VA A,

B(X1X2X3) VAAU
B(xo) VA AU
(A(x2) AB(x2) AA(X3)) VA A .

B~ (x)

VoV WV WV

Hence we have

(ANB)~(x) = A~ (X) AB~(X)
2 sup{A(x1) AB(X2) ANA(Xa) | X=XaxoXa} VA Al
=(A-B-A)(x).

Furthermore, from the condition (1), there exiats S,
such thaix = xax = xaxax. Thus

(A-B-A)~(X) = (A-B-A)(xaxax) VA A L

(A(X) AB(axa) AA(X)) VA Al
(AX) AB(X) AAXX)) VA A
(ANB)~ (X).

It follows that(ANB)~ = (A-B-A)~.

(2) = (1): Let A be a(A,u)—fuzzy quasi-ideal ofS.
Considering that 4 is a (A, u)—fuzzy ideal of S and
1s D A, we have

A =(ANls)” = (A-1s-A)".

It implies thatSis regular from Theorem 3.4.
(7 = 6 = & =
(7) = (6) = (4) = (2) are obvious.
Lemma 3.3.Let AandB be (A, u)—fuzzy right ideal and
(A, u)—fuzzy left ideal ofS respectively. Then
(A-1s-B)~ C (A-B)~ C (ANB)~.

Proof. The proof is straightforward.

B
B

WV WV

and

Theorem 3.6. For the semigroupS, the following
conditions are equivalent.

(2) Sis regular.

(2) (ANB)~ C (A-B)~ for every(A, u)—fuzzy right ideal
Aand every(A, u)—fuzzy left idealB of S,

(3) (AnB)~ C (A-B)~ for every (A,u)—fuzzy
quasi-idealA and every(A, u)—fuzzy leftidealB of S

(4) (AnB)~ C (A-B)~ for every (A, u)— fuzzy bi-ideal
Aand every(A, u)—fuzzy left idealB of S.

5) (AnB)~ C (A-B)” for every (A,u)—fuzzy
generalized bi-ideah and every(A, u)—fuzzy left ideal
Bof S

(6) (AnB)~ C (A-B)~ for every fuzzy subseA and
every (A, u)—fuzzy left idealB of S.

Proof. (1) = (6): Let A and B be fuzzy subset and
(A, u)—fuzzy left ideal of S, respectively. Then for all
x € S, there exists an elemeate S such thatx = xax.
Thus

>
°Y

(A-B)" (¥ ‘B)

—

xax) VA AU
ax)) VA AU
X))VAAU

[A\YAR\VAI!
>>>>
2 X X
Zs =
o w
R 2o

It shows that ANB)~ C (A-B)~.

(2) = (1): Let AandB be (A, u)—fuzzy right ideal and
(A, u)—fuzzy left ideal ofS, respectively. Then from the
condition (2) and Lemma 3, we haydNB)~ = (A-B)".
From Theorem $is regular.

(6) = (5) = (4) = (3) = (2) is obvious.

Symmetrically we have the following theorem.

Theorem 3.7. For the semigroupS, the following
conditions are equivalent.

(1) Sis regular.

(2) (ANB)~ C (A-B)~ for every(A, u)—fuzzy right ideal
Aand every(A, u)—fuzzy quasi-ideaB of S.

(3)(ANB)~ C (A-B)~ for every(A, u)—fuzzy right ideal
Aand every(A, u)—fuzzy bi-idealB of S.

(4) (AnB)~ C (A-B)~ for every(A, u)—fuzzy right ideal
Aand every(A, u)—fuzzy generalized bi-ided® of S,

(5) (ANB)~ C (A-B)~ for every(A, u)—fuzzy right ideal
Aand every fuzzy subs&of S,

Theorem 3.8. For the semigroupS the following
assertions hold.

(1) If Sis regular, thenANCNB)~ C (A-C-B)~ for
every(A, u)—fuzzy right idealA, every(A, u)—fuzzy left
idealB and every fuzzy subsétof S.

2) If (AnB)™ C (A-1s-B)~ for every (A, u)—fuzzy
right ideal A and every(A, u)—fuzzy left idealB, thenS
is regular.

Proof. (1) Let A andB be (A, u)—fuzzy right ideal and
(A, u)—fuzzy left ideal ofS, respectively. For any fuzzy
subseC of Sandx € S there exists an elemeabf Ssuch
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thatx = xaxax. Thus [6] S. Muhammad , B. Young and N. Yasir. Chaacterizations of

_ . reguar semigroups bfo, ) —fuzzy ideals, Computers and
(A-C-B)”(x) = (A-C-B)(xaxax) VA A U Mathematics with Application&9, 161-175 (2010).

> (A(xa) A\C(X) AB(ax)) VA A U [7] A. Rosenfeld. Fuzzy groups, J. Math. Anal. Ap@5, 512-
> (A(X) AC(X) AB(X) VA A 517 (1971) . |
ANCAB)™ (X). [8] O. Steinfeld. Quasi-ideals in Rings and Semigroups,
= ( Akademiaikiado, Budapest, (1978).
Hence(ANCNB)~ C (A-C-B)". [9] B. Yao. (A, u)—fuzzy ideals in semigroups, Fuzzy Systems
(2) Let A and B be (A,u)—fuzzy right ideal and and Mathematics23, 123-127 (2009).
(A,u)—fuzzy left ideal of S respectively. If [10] X. Yuan, C. Zhang and Y. Ren. Generalized fuzzy groups
(ANB)~ C (A-1s-B)~ holds, then(ANB)~ = (A-B)~ and many-valued implications, Fuzzy Sets and Systems,
holds from Lemma 3.3. Henc®is regular from Theorem 138 205-211 (2003). _
3.6. [11] L. A. Zadeh. Fuzzy sets, Information and Conti&l,338-
353 (1965).

[12]J. S. Han, H. S. Kim, J. Neggers. Semiring order in a
semiring, Applied Mathematics & Information Sciencés,
99-102 (2012).

The following corollary is an immediate consequence
of Theorem 3.8.

Corollary For the semigrouf®, the following conditions
are equivalent.

(1) Sis regular.

(2) (AnCnB)~ C (A-C-B)~ for every (A, u)—fuzzy
right ideal A, every (A, u)—fuzzy left idealB and every
(A, u)—fuzzy bi-idealC of S.

(3) (AnCnNnB)~ C (A-C-B)~ for every (A, u)—fuzzy
right ideal A, every (A, u)—fuzzy left idealB and every
(A, u)—fuzzy quasi-ideaC of S.
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