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Abstract: Yearly electricity consumption trends of most developing countries useadybit approximately exponential growth
curves. An optimized nonhomogeneous exponential model (ONEMbpjssed as a method of forecasting electricity consumption by
using trend extrapolation. The parameters of the nonhomogeneoniseskjal equation are obtained by using the inverse accumulated
generating operation, discretizing the differential equation, minimizing éselual sum of squares (RSS), and accumulating the
homogeneous exponential equation. Furthermore, to improve &iilegarecision, particle swarm optimization (PSO) algorithm is
used to optimize the equation parameters. To evaluate the forecastiognmarte for comparison, the said model and two other
traditional methods are used to forecast the yearly electricity consumgpitimdia. Empirical results show that this model is much
better than traditional methods for each error analysis indicator.
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1 Introduction relationship and obtain forecasting results by inputthe t
values of the influencing factors of the forecasting period
Electricity consumption is one of the important driving into the equation §2,13,14]. Most of these methods
factors of economic growth. The causal relationshipusually simulate historical data efficiently. When used for
between electricity consumption and economic growthforecasting, however, these methods do not usually
has been proved by extensive researt2,B,4]. Unlike  produce satisfactory results because the exact values of
other energy sources, electricity cannot be stored on &he influencing factors in the forecasting period are
large scale. Hence, precise forecasting of electricityunknown. Other researchers concentrate on the change
consumption is very important to balance supply andrule of the electricity consumption trend itself. They use
demand. On the basis of the difference of forecastingthe historical electricity consumption data to build trend
indicators, research on electricity consumption Simulation equations and obtain the forecasting results by
forecasting is usually divided into two categories: trend extrapolation 15,16,17]. The forecasting model
short-term ,6,7,8] and mid/long-term 9,10,11]. As a  proposed in this paper belongs to the latter.
representative research area of the latter, yearly aldgtri The economic development of most developed
consumption forecasting plays an important role incountries is at the post-industrialization stage, and the
electricity price adjustment and system expansionelectricity needs of people’s daily lives have been met.
planning. Two methods of yearly electricity consumption Therefore, their yearly electricity consumption changes
forecasting are currently used. Some researchers focus arery slowly and is easily forecasted. By contrast, the
the relationship between the yearly electricity yearly electricity consumption of developing countries,
consumption and its influencing factors. They usually which is investigated in detail in this study, usually
develop an equation to quantitatively simulate thisincreases rapidly. In fact, from 2001 to 2010, among the
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top 30 electricity consumers of the world are 15 estimations cannot be obtained directly by inputting the
developed countries and areas whose yearly growth rate isbservational data and minimizing the residual sum of
only 1.1%, whereas that of the other 15 developingsquares (RSS). The grey theory uses the differential form
consumers is as high as 7.4%. In fact, for most developingf the exponential equation, written as follows to estimate
countries, their long-term electricity consumption trend the parameters [23]:
usually present approximately exponential growth curves
[18]. dy<1> (t) W

Neural networks and other artificial intelligent g TyT =2 ®3)
algorithms have been used for trend extrapolation of daily ’
[19,20] and monthly R1,22] electricity consumption. 1 o 0) /iy i ;
Limited by the algorithms themselves, these modelsWherey( )(k) o ély( (i) is the accumulated generating
usually need large sample data with relative clear laws foroperation (AGO) time series.
parameter training. However, compared with daily and  To discretize Eq.3J), its first term is processed as
monthly electricity consumption, yearly data are very

limited and, more importantly, affected by the ayd lim y O (t+at)—yD (1)
socioeconomic and political environment. The intercept, dt At—0 at
slope, and curvature of a country’s exponential growth ~yD (k+1) —yb (k) )
curve do not usually remain stable for a long time. As a =y (k+1)
result, these models do not usually obtain satisfactory
forecasting results. and the second term as

At present, the GM(1, 1) algorithm2B,24,25] is A
widely used in extrapolating the approximate exponential Ay )y =22 {y(l) (K) +yP (k+ 1)} (5)
curve. However, the forecasting equation of GM(1, 1) is 7

essentially homogeneous, that is, GM(1, 1) is suitable
only to a time series with a steadily increasing rate, which
is a special form of the approximately exponential curve. A
This characteristic obviously does not necessarily erist i yO (k+1)+ 22 {ym (k) +yD (k+ 1)} =X (6)
the yearly electricity consumption curve. To improve 2

representativeness, a nonhomogeneous exponential model Gy en the n sets of historical data, inputting them into

is proposed to extrapolate the electricity conspmptionEq_ (6) and minimizing the RSS results in the following
trends of developing countries. Furthermore, to improveggtimations of\; andAs:

the forecasting results, particle swarm optimization (PSO
algorithm is used to optimize the equation parameters.

As aresult, Eq.J) is finally written as

A = (B"B) 'BTY

s 2T ()
. _ — [ %]
2 Optimized Nonhomogeneous Exponential
Model (ONEM) where
. . . In(1 1 0
2.1 Algorithm and limitation of GM(1, 1) *g[y( (W+yPE] 1 y9(2)
-2 +yPE)] 1 yo(3)
A nonhomogeneous exponential equation can be written B= : : Y = :
as
xO (k) = ce® +b 1) —3yP(n=1)+yH(n) 1 yO(n)
whereas its .invgrse accumulated generating operation Accordingly, the forecasting equation g is
(IAGO) equation is
YO (k) = x9 (k+-1) ~x (k) ) §Ok+1) = (1- )y (1) - e ke (@)
= c(e?— 1) A
Obviously, Eg. B) is a homogeneous exponential As shown in the aforementioned modeling process, to
equation. discretize the first term of the differential equation, Eq.

As introduced before, GM(1, 1) can simulate the (4) usesyM(k+ 1) and y (k). However, there is no
homogeneous exponential curves. Hence, the GM(1, 1ljeason to use the mean ¢F)(k+ 1) andy<1>(k) for Eq.
can be used to simulate the IAGO results of a(5).In fact, for the second term of EB)( the only certain
nonhomogeneous exponential time series. fact ist € [k,k+ 1]. The use of the mean can simplify the

As a parameter lies in the exponential term of the modeling process, but affects the precision of the
homogeneous  exponential  equation, parameteestimated parameters.
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2.2 Nonhomogeneous exponential equation wherex( (i) is theit" yearly electricity consumption value
. X . X A andxt9 (i) is its forecasting result.
Let By = (1—€eM)(y9(1) — f\‘@) andf, = —A1in Eq.@) is C. Performance comparison and single position
1

adjustment. The performance of each particle is compared

further written as with its best performance. F(Z) < pbest, then

9O (k+ 1) = BrePek. 9
Considering the relationship betweeyi® (k) and Zppest = 2
x%)(k), the forecasting equation af®) is D. Performance comparison and all position

adjustment. The performance of each particle is compared
>”<<°>(k+1) zy(o)(k)+§,(O)(k71)+”'9(0)(2)+X(0)(2) with the best performance of all particles. |If

_ Bleﬁz(kAll;E(fze:Z(k 1)} +x0 (2) { g;i:tt: 5 (Zf) (14)
- Bifzfpz +x9(2) The speed vector of particles is adjusted
(10) V} = \/}71 + pl(zpbest - Zf) + pZ(Zgbest_ Zf) (15)
2.3 Application of PSO g]ti:aeﬁle \?vnp?(fszit?(;ﬁ Sstochastic values. Particles are moved
The _PSO alg_ori_thm_ propose_d by _Ken_nedy and El_aerhart Z= 2}714_\,}
[26] is an optimization technique inspired by the life of {t —t+1 (16)

natural swarms, such as birds and fistzg [ It uses the

learning, information sharing, and position updating ~ Then, turning to step B until the performance is
strategy of each solution. With the behavior of the satisfactory.

technique analogous to bird flocking and the search space

analogous to the flocking area of the bird, each bird may . )

be treated as a particle in the search space that is equipped4 Modeling process of forecasting

with communicating abilities. To search candidates of . . .
interest in the domain, random particles are generated! N modeling process of yearly electricity consumption
These generated particles are further flagged with gorecasting by using ONEM is as follows: o
certain velocity, and a communication system among the A. Selecting the historical data. The electricity
particles is established to enable them to converse witffonsumption data of a developing country for several
each other. This system is accomplished with the help ofontinuous years are selected and writter(3s

topologies and their mathematical formulatio2§][ The B. Data preprocessing. The IAGO time series, written

main process of PSO algorithm is as follows: asy'9, is obtained by using Eq. (2). Furthermore, the AGO
A. Initializing the particle swarm. Let= 0, to ensure  time series of/? is calculated and written 3&Y.

the optimization effect, the position of one of the particle C. Designing several particles. The initial position of

is assigned td0.5,0.5,...,0.5], and other positions are each particle is a vector. As introduced before, the initial
stochastically assigned to vectors between 0 and 1position of one of the particles is assigned to

Accordingly, the matrixB is written as [0.5,0.5,...,0.5]. Other initial positions are stochastically
assigned to vectors between 0 and 1.
—Z(OyP (D) +(1-Z(1)yY(2)] 1 D. Optimizing the parameter estimations. The
~[Z2y? (1) + (1-2(2))yD(3)] 1 optimum parameter estimations of E40Y are obtained
B= . . by using the PSO algorithm.
: : E. Forecasting the electricity consumption. The
~[Z(n—1)yP(n-1)+ (1-Z(n-1))yP(n) 1 forecasting results of future electricity consumption are

. (11)  obtained by using Eq10).
B. Performance evaluation. Based on the position of

each particle, performancg(Z) is evaluated. In this

model, the mean absolute percentage error (MAPE) (i3 M odel test

%) of the simulation to the historical data is selected as

the indicator to measure the performance of each particIeB_l Data selection

1
MAPE:NIZ[

RO (i) —xi) 100 (12) Indiais alarge South Asian developing country that has
xO) (i) experienced a high increase in gross domestic product
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Fig. 1: India’s electricity consumption curve Fig. 2: Comparison among different forecasting results.

over the past several decad@$][ The current lag of the  network model were used to forecast India’s yearly
basic industry has caused India to suffer from the effectselectricity consumption from 2001 to 2010. For GM(1, 1),
of energy shortage. As per the published data from thehe same as the ONEM, electricity consumption data for
Central Electricity Authority, India experienced an energ the 20 continuous years before the forecasting year were
deficit of 8.5% and a peak demand shortage of 9.8% forselected to build the model. For neural network models,
the financial year 2010 to 2011. Of all the energy sourcesthe error backpropagation artificial neural network and
electricity is experiencing the most severe shortage andadial basis function artificial neural network (RBFANN)
has resulted in a massive loss to the national economyre the most representative neural network models. As the
[29]. Precisely forecasting India’s yearly electricity |atter is usually better than the former in terms of learning
consumption will have great significance in adjusting efficiency and stability 22, RBFANN was selected to
energy-related policies and in promoting economicforecast India’s electricity consumption from 2001 to
growth. Hence, India’s yearly electricity consumption is 2010. As with the ONEM and GM(1, 1), electricity
selected to evaluate the performance of the proposedonsumption data for 20 continuous years before the
forecasting model. Real data (RD) of India’s yearly forecasting year were also selected to build the model.
electricity consumption during between 1971 and 2010when training the RBFANN, for the 20 selected values,
[18] were selected to draw the consumption curve (Fig.the 11th to 20th values were selected as the output values,
1). As shown in Fig.1, the long-term trend of India’s respectively, and 10 values before each output value were
electricity consumption curve is similar to an exponential selected as its input vector. After training, the forecasti
growth curve. As a result of unexpected changes of theesult was obtained by inputting the 11th to 20th values
socioeconomic environment, the said curve exhibitsinto the network. The RD, forecasting results of each
several irregular waves. model, and their percentage errors (PE) are listed in Table
1

To show the forecasting performance intuitively, the
3.2 Forecasting results and error analysis RD and its forecasting results were used to drawZig.

As shown in Fig2, the irregular changes of the main
The ONEM proposed in this paper was used to forecastrend have affected the generalization ability, which
India’s yearly electricity consumption from 2001 to 2010. resulted in RBFANN having very unstable and obviously
For each forecasting point, electricity consumption datalarger forecasting errors than the other two models in
for 20 continuous years that immediately precede thegeneral. Compared with ONEM, the lack of a constant
forecasting point were selected to build the forecastingterm results in a very smooth forecasting curve of GM(1,
model. For example, when forecasting the 20011). This characteristic renders GM unable to react quickly
electricity consumption, electricity consumption data to irregular changes in the main trend.
from 1981 to 2000 were selected to estimate the To analyze the precision of the overall forecast, aside
parameters of Eq.10). The forecasting result was from the MAPE defined in Eq.1Q), the median absolute
obtained by assigning = 20 in Eq. (0). Electricity  percentage error (MdAPE) (in %), maximum absolute
consumption data from 2002 to 2010 were also forecastegercentage error (MaxAPE) (in %), and geometric mean
by using the same method. Furthermore, to compare theelative absolute error (GMARE) (in %) were selected as
forecasting performance, the GM(1, 1) and neuralindicators to compare the different forecasting models.
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Table 1: Real electricity consumption data and their forecasting results
Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
RD 384.1 4029 4274 4565 4829 532.0 591.3 617.3 661.0 8698.
ONEM 391.7 3979 416 4431 4742 503.2 5525 567.1 629.6 5678.
PE 2 -1.2 -2.7 -2.9 -1.8 -5.4 -6.6 -8.1 -4.8 -2.9
GM(1,1) 439.3 449.2 459.6 473.4 490.8 5109 539.8 580.2 2620665.0
PE 14.4 115 7.5 3.7 1.6 -4.0 -8.7 -6.0 -6.2 -4.8
RBFANN 4649 386.7 404.2 375.5 554 386.5 533.7 668.1 515.67.478
PE 21.0 -4 -5.4 -17.7 147  -27.3 -9.7 8.2 -22.0 12.7
Table 2: Forecasting errors of each model 4 Conclusions
MAPE MJAPE MaxAPE GMARE Yearly electricity consumption forecasting is very
ONEM 3.84 2.92 8.13 2331 important for electricity price adjustment and system
GM(1,1) 6.84 6.09 14.37 alra expansion planning. For most developing countries,
RBFANN  14.29 13.70 27.35 87.13 . . .
yearly electricity consumption trends are approximately
exponential growth curves. The ONEM is proposed in
this paper as a method of forecasting the yearly electricity
o ) consumption by wusing trend extrapolation. The
These indicators are defined as follows: nonhomogeneous exponential forecasting equation is
o . obtained by using the IAGO, discretizing the differential
1RO —xO) equati inimizing the RSS d lating th
MdAPE = mediam / %100 (17) ~ equation, minimizing the , and accumulating the
i xO) (i) intermediate homogeneous exponential  equation.
Furthermore, the PSO algorithm is used to optimize the
20)(i) —xO)(i) equation parameters. To evaluate the forecasting
MaxAPE = max|——~—— /| x 100 (18) performance of the model, the ONEM, GM(1, 1), and
! xO (i) RBFANN are all used to forecast India’s yearly electricity
consumption from 2001 to 2010. Results show that the
20 (i x<°)(i) MAPE, MdAPE, MaxAPE, and GMARE of ONEM are

[ 59m -
GMARE = T(i)

L

wherext9 (i) is the forecasting result obtained from the

1 x100  (19)

as small as 3.84%, 2.92%, 8.13%, and 23.31%
respectively, which are much better than the results
obtained by the other two models.

benchmark method. In this case, it is the worst forecasting

result tox(? (i) of all the three models.
Despite having similar functions of determining

which is the best model, these error analysis indicator

have fine distinctions. The MAPE is an accuracy indicato

results to the RD. The MdAPE is the middle value of all

absolute percentage errors ordered by size and can al
reflect the general closeness of the forecasting results tQ,
the RD. In addition, the MdAPE can overcome the

influence of several outliers. The MaxAPE generates th
worst forecasting result and
forecasting risk. Compared with the other
superiority.

Using data in Table 1, Eql@), and Egs. 17) to (19),

each error analysis indicator for each forecasting model

was calculated (see Table 2).
As shown in Tablg, ONEM is always much better

than the other two forecasting models for each error

analysis indicator. This result proves the applicabilify o
ONEM in forecasting the yearly electricity consumption
of developing countries like India.

reflects the maximal
three
indicators, the GMARE pays more attention to relative
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