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Abstract: The aim of this paper is to give a new approach to modifiedq-Bernstein polynomials for functions depend on the several
variables. We derive the recurrence formulas related to thesecond Stirling numbers and generalized Bernoulli polynomials. Moreover,
the interpolation function of these polynomials depend on the several variables and the derivatives of these polynomials and also their
generating function are given. Final part of this paper, we get new interesting identities of modifiedq-Bernoulli numbers andq-Euler
numbers applyingp-adicq-integral representation onZp andp-adic fermionicq-invariant integral onZp, respectively, to the inverse of
q-Bernstein polynomials.

Keywords: p-adicq-integral onZp; Generating function; Bernstein polynomial of several variables; Shift difference operator; Stirling
numbers of the second kind; Bernoulli polynomials of higherorder; Mellin transformation.

1 Introduction

The Bernstein polynomials, named after their creater S.
N. Bernstein in 1912, have been studied by many
researchers for a long time. Recently Acikgoz and Araci
have originally defined the generating function of
Bernstein polynomials and analysed their interesting
properties arising from that generating function, and also
the generating function of Bernstein polynomials in two
dimensional are defined by the same authors (see [1], [2],
[3]). Next, Simsek and Acikgoz have constructed a
generating function of (q-) Bernstein type polynomials
based on theq-analysis, [40], and gave some new
relations related to these polynomials, Hermite
polynomials, Bernoulli polynomials of higher order and
the second kind Stirling numbers. Interpolation function
of (q-) Bernstein type polynomials is defined by applying
Mellin transformation to this generating function. In [20],
Kim-Choi-Kim have studied on thek-dimensional
generalization ofq-Bernstein polynomials, in which they
have given some interesting properties of the
k-dimensional generalization ofq-Bernstein polynomials
(see[20]). Our generalization ofq-Bernstein polynomials
are different from thek-dimensional generalization of

q-Bernstein polynomials of Kim-Choi-Kim. In the
present paper, we also derived some interesting properties
of our generalization ofq-Bernstein polynomials. Recent
works including integral representations and properties of
Stirling numbers of the first kind [11], formulae for the
q-Bernstein polynomials andq-deformed binomial
distributions [16], integral representations for the Gamma
function, the Beta Function, and the double Gamma
function [27], irregular prime power divisors of the
Bernoulli numbers [32], application of a composition of
generating functions for obtaining explicit formulas of
polynomials [33], hyperharmonic series involving
Hurwitz zeta function [34], p-adic q-deformed fermionic
integrals in the p-adic integer ring [8] have been
investigated extensively.

We are now in a position to give some definitions and
some properties of Bernstein polynomials of several
variables with their generating function.

Let C(Dw) denotes the set of continuous functions on
Dw, in whichDw andD meanD ×D × ...×D

︸ ︷︷ ︸

w−times

and[0,1],
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respectively. Forf ∈C(Dw), we have

Bn1,n2,··· ,nw ( f ;x1,x2, · · · ,xw)

:=
n1

∑
k1=0

n2

∑
k2=0

· · ·
nw

∑
kw=0

f

(
k1

n1
,
k2

n2
, · · · , kw

nw

)

×Bk1,k2,··· ,kw;n1,n2,··· ,nw (x1,x2, · · · ,xw)

where Bn1,n2,··· ,nw ( f ;x1,x2, · · · ,xw) is called the

Bernstein operator of several variables of order
w

∑
i=1

ni for

f . For ki ,ni ∈ N0 with i = 1,2, · · · ,w, the Bernstein

polynomials of several variables of degree
w

∑
i=1

ni is defined

by

Bk1,k2,··· ,kw;n1,n2,··· ,nw (x1,x2, · · · ,xw)

=
w

∏
i=1

((
ni

ki

)

xki
i (1− xi)

ni−ki

)

, (1)

where
(n

k

)
= n(n−1)···(n−k+1)

k! andxi ∈ D for i = 1,2, ...,w.
These polynomials satisfy the following relation

Bk1,k2,··· ,kw;n1,n2,··· ,nw (x1,x2, · · · ,xw) =
w

∏
i=1

Bki ,ni (xi)

and they have form a partition of unity; that is:
n1

∑
k1=0

n2

∑
k2=0

· · ·
nw

∑
kw=0

Bk1,k2,··· ,kw;n1,n2,··· ,nw (x1,x2, · · · ,xw) = 1.

By using the definition of Bernstein polynomials for
functions of several variables, it is not difficult to prove
the property given above as

n1

∑
k1=0

n2

∑
k2=0

· · ·
nw

∑
kw=0

w

∏
i=1

Bki ,ni (xi) = 1.

Also, Bk1,k2,··· ,kw;n1,n2,··· ,nw (x1,x2, · · · ,xw) = 0 for
ki > ni with i = 1,2, ...,w, because

(ni
ki

)
= 0. There are

w

∏
i=1

(ni +1),
w

∑
i=1

ni-th degree Bernstein polynomials.

Many researchers have studied the Bernstein
polynomials of two variables in approximation theory
(see [35], [36]). But nothing was known about the
generating function of these polynomials. Note that for
ki ,ni ∈ N0 andxi ∈ D with i = 1,2, ...,w, we obtain the
generating function for
Bk1,k2,··· ,kw;n1,n2,··· ,nw (x1,x2, · · · ,xw) as follows:

Fk1,k2,··· ,kw (t;x1,x2, · · · ,xw) =
w

∏
i=1

(txi)
ki

ki !
e

wt−t
w

∑
i=1

xi

(2)

=
∞

∑
n1=k1

∞

∑
n2=k2

×·· ·×

∞

∑
nw=kw

Bk1,k2,··· ,kw;n1,n2,··· ,nw (x1,x2, · · · ,xw)
w

∏
i=1

tni

ni !

where

Bk1,k2,··· ,kw;n1,n2,··· ,nw (x1,x2, · · · ,xw) =






w

∏
i=1

(ni
ki

)
xki

i (1− xi)
ni−ki if ni ≥ ki ,

0 if ni < ki ,

for ki ∈ N0 andxi ∈ D , for i = 1,2, ...,w.

Remark.By substitutingw = 1 into (2), we get a special
case ofFk1,k2,··· ,kw (t;x1,x2, · · · ,xw) which was proved by
Acikgoz and Araci (for details, see [1])

Fk1 (t,x1) =
(tx1)

k1 et

k1!etx1
=

∞

∑
n1=k1

Bk1,n1 (x1)
tn1

n1!
.

Let 0 < q < 1. Define the q-number of x by

[x]q := 1−qx

1−q and [x]−q := 1−(−q)x

1+q , (see
[4],[5],[6],[19],[20],[17],[21],[31],[38],[39],[40] for
details and related facts). Note that lim

q→1−
[x]q = x. [19] is

actually motivated the authors to write this paper and they
have extended all results given in [19] to modified
q-Bernstein polynomials of several variables.

2 The Modified q-Bernstein Polynomials for
Functions of Several Variables

For 0< q< 1, we consider

Fk1,k2,··· ,kw (t,q;x1,x2, · · · ,xw) =
w

∏
i=1

(

t [x]q

)ki

ki !
e

t
w

∑
i=1

[1−xi ]q

=
∞

∑
n1=k1

∞

∑
n2=k2

×·· ·×

∞

∑
nw=kw

Bk1,k2,··· ,kw;n1,n2,··· ,nw (x1,x2, · · · ,xw;q)
w

∏
i=1

tni

ni !

whereki ,ni ∈N0 andxi ∈D for i = 1,2, ...,w. We note that

lim
q→1−

Fk1,k2,··· ,kw (t,q;x1,x2, ...,xw)=Fk1,k2,··· ,kw (t;x1,x2, ...,xw) .

Definition 1.We define the generating function of modified
q-Bernstein polynomials for functions of several variables
as follows:

Fk1,k2,··· ,kw (t,q;x1,x2, · · · ,xw) =
w

∏
i=1

(

t [xi ]q

)ki

ki !
e

t

w

∑
i=1

[1−xi ]q

(3)

=
∞

∑
n1=k1

∞

∑
n2=k2

×·· ·×

∞

∑
nw=kw

Bk1,k2,··· ,kw;n1,n2,··· ,nw (x1,x2, · · · ,xw;q)
w

∏
i=1

tni

ni !

where ki ,ni ∈ N0 and xi ∈ D with i = 1,2, ...,w.
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By using Taylor expansion ofe
t

w

∑
i=1

[1−xi ]q
and the

comparing coefficients on the both sides in (3), we get the
following Corollary.

Corollary 1.For ki ,ni ∈ N0 and xi ∈ D for i = 1,2, ...,w,
we have

Bk1,k2,··· ,kw;n1,n2,··· ,nw (x1,x2, · · · ,xw;q)

=







w

∏
i=1

(ni
ki

)
[xi ]

ki
q [1− xi]

ni−ki
q if ni ≥ ki ,

0 if ni < ki .
. (4)

Theorem 1. Recurrence Formula for

Bk1,k2,··· ,kw;n1,n2,··· ,nw (x1,x2, · · · ,xw;q)) For
ki ,ni ∈ N0, xi ∈ D and i= 1,2, ...,w, we have

Bk1,k2,··· ,kw;n1,n2,··· ,nw (x1,x2, · · · ,xw;q)

=
w

∏
i=1

(
[1− xi]qBki ;ni−1 (xi ;q)+ [xi ]qBki−1;ni−1 (xi ;q)

)
.

(5)

Proof. By using the definition of Bernstein polynomials
for functions of several variables, we have

Bk1,k2,··· ,kw;n1,n2,··· ,nw (x1,x2, · · · ,xw;q)

=
w

∏
i=1

[(
ni −1

ki

)

+

(
ni −1
ki −1

)]

[xi ]
ki
q [1− xi]

ni−ki
q

=
w

∏
i=1

(
[1− xi]qBki ;ni−1 (xi ;q)+ [xi ]qBki−1;ni−1 (xi ;q)

)
.

This is the desired result.

Remark.By settingw= 1 andq→ 1− into (6), we get the
familiar identity forBk1,n1 (x1) as follows:

Bk1,n1 (x1) = (1− x1)Bk1,n1−1 (x1)+ x1Bk1−1,n1−1 (x1) .

(see [1],[3],[40]).

Theorem 2. For ki ,ni ∈ N0 and xi ∈ D with
i = 1,2, ...,w, we have

Bn1−k1,n2−k2··· ,nw−kw;n1,n2,··· ,nw
(1−x1,1−x2, · · · ,1−xw;q)

= Bk1,k2,··· ,kw;n1,n2,··· ,nw

(x1,x2, · · · ,xw;q)

Remark.By substitutingw = 1 andq → 1− into (??), we
get the well-known identity as follows:

Bn1−k1,n1 (1− x1) = Bk1,n1 (x1) .

(see [1],[3]).

Definition 2.Let f be a continuous function of several
variables onDw. Then the modified q-Bernstein operator

of order
w

∑
i=1

ni for f is defined by

Bn1,n2,··· ,nw ( f : x1,x2, · · · ,xw;q)

=
n1

∑
k1=0

n2

∑
k2=0

· · ·
nW

∑
kW=0

f

(
k1

n1
,
k2

n2
, · · · , kw

nw

)

Bk1,k2,··· ,kw;n1,n2,··· ,nw (x1,x2, · · · ,xw;q)

where xi ∈ D , ni ∈ N.

When we set f
(

k1
n1
, k2

n2
, · · · , kw

nw

)

= 1 into (??), we

easily see that,

Bn1,n2,··· ,nw (1 : x1,x2, · · · ,xw;q) (6)

=
n1

∑
k1=0

n2

∑
k2=0

· · ·
nw

∑
kw=0

Bk1,k2,··· ,kw;n1,n2,··· ,nw (x1,x2, · · · ,xw;q)

From the definition of binomial theorem and (6), we
get the following Corollary2 for modified q-Bernstein
polynomials for functions of several variables:

Corollary 2.For any ki ,ni ∈ N0 and xi ∈ D with
i = 1,2, · · · ,w, we have

Bn1,n2,··· ,nw (1 : x1,x2, · · · ,xw;q)=
w

∏
i=1

(
1+(1−q) [xi ]q[1−xi ]q

)ni ,

(7)
we easily see that

lim
q→1

Bn1,n2,··· ,nw (1 : x1,x2, · · · ,xw;q) = 1.

This is a partition of unity for modified Bernstein
polynomials for functions of several variables.

Theorem 3.For ξ j ∈ C, xj ∈ D and nj ∈ N, with

j = 1,2, · · · ,w and i=
√
−1, we have

Bk1,k2,··· ,kw;n1,n2,··· ,nw (x1,x2, · · · ,xw;q)

=
1

(2π i)w

∮

C

∮

C

· · ·
∮

C
︸ ︷︷ ︸

w-times

w

∏
j=1

n j !F
(kj)
q

(

x j ,ξ j

) dξ j

ξ n j+1
j

(8)

where

F (k)
q (x, t) =

(t[x]q)
k

k!
et[1−x]q (see [40])

and C is a circle around the origin and integration is in the
positive direction.

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1262 S. Araci: On the Properties of q-Bernstein-type...

Proof.By using the definition of the modifiedq-Bernstein
polynomials of several variables and the basic theory of
complex analysis including Laurent series that

∮

C

∮

C

· · ·
∮

C
︸ ︷︷ ︸

w-times

w

∏
j=1

F
(kj)
q

(

x j ,ξ j

) dξ j

ξ n j+1
j

=
∞

∑
l1=0

∞

∑
l2=0

· · ·
∞

∑
lw=0

∮

C

∮

C

· · ·
∮

C

w

∏
j=1

Bkj ,l j (x j ,q)ξ l j
j

l j !

dξ j

ξ n j+1
j

= (2π i)w
(

Bk1,k2,··· ,kw;n1,n2,··· ,nw (x1,x2, · · · ,xw;q)

n1!n2! · · ·nw!

)

. (9)

By using (9), we obtain

Bk1,k2,··· ,kw;n1,n2,··· ,nw (x1,x2, · · · ,xw;q)

=
1

(2π i)w

∮

C

∮

C

· · ·
∮

C
︸ ︷︷ ︸

w-times

w

∏
j=1

n j !F
(kj)
q

(

x j ,ξ j

) dξ j

ξ n j+1
j

and

∮

C

∮

C

· · ·
∮

C
︸ ︷︷ ︸

w-times

w

∏
j=1

F
(kj)
q

(

x j ,ξ j

) dξ j

ξ n j+1
j

= (2πi)w

(
w

∏
j=1

[x j ]
kj
q [1− x j ]

n j−kj
q

k j ! (n j − k j)!

)

. (10)

We also obtain from (9) and (10) that

1
(2π i)w

∮

C

∮

C

· · ·
∮

C
︸ ︷︷ ︸

w-times

w

∏
j=1

n j !F
(kj)
q

(

x j ,ξ j

) dξ j

ξ n j+1
j

=
w

∏
j=1

(
n j

k j

)

[x j ]
kj
q [1− x j ]

n j−kj
q . (11)

So, from (9) and (11) and Corollary1, we complete the
proof of theorem.

We now give the modifiedq-Bernstein polynomials for
functions of several variables as a linear combination of
polynomials of higher order as follows:

Theorem 4.For ki ,ni ∈ N0, xi ∈ D , and i= 1,2, ...,w, we
have

Bk1,k2,··· ,kw;n1,n2,··· ,nw (x1,x2, · · · ,xw;q)

=
w

∏
i=1

[(
ni − ki +1

ki

)
[xi ]q

[1− xi]q

]

Bk1−1,k2−1,··· ,kw−1;n1,n2,··· ,nw (x1,x2, · · · ,xw;q) .

Proof.Using the definition of modifiedq-Bernstein
polynomials for functions of several variables and the
property (4), the proof follows.

Theorem 5.If ni,ki ∈N0 and xi ∈D with i = 1,2, ...,w, we
have

Bk1,k2,··· ,kw;n1,n2,··· ,nw
(x1,x2, · · · ,xw;q)

=
n1

∑
l1=k1

n2

∑
l2=k2

· · ·
nw

∑
lw=kw

w

∏
i=1

(
ni

l i

)(
l i
ki

)

(−1)l i−ki q(l i−ki)(1−xi )[xi ]
l i
q.

Proof.From the definition of modified q-Bernstein
polynomials of several variables and binomial theorem
with ni , ki ∈ N0 andxi ∈ D for i = 1,2, ...,w, we have

Bk1,k2,··· ,kw;n1,n2,··· ,nw
(x1,x2, · · · ,xw;q) =

w

∏
i=1

(
ni

ki

)

[xi ]
ki
q [1−xi ]

ni−ki
q

=
n1

∑
l1=k1

n2

∑
l2=k2

· · ·
nw

∑
lw=kw

w

∏
i=1

(
ni

l i

)(
l i
ki

)

(−1)l i−ki q(l i−ki)(1−xi )[xi ]
l i
q.

This is the desired result.

Theorem 6.For ni , l i ∈ N0 and xi ∈ D , with i = 1,2, ...,w,
we have

(
w

∏
i=1

[xi ]q

)m

=
w

∏
i=1

1
(

[1−xi ]q+[xi ]q

)ni−m

n1

∑
k1=m

n2

∑
k2=m

· · ·
nw

∑
kw=m

w

∏
i=1

(ki
m

)

(ni
m

)Bk1,k2,··· ,kw;n1,n2,··· ,nw
(x1,x2, · · · ,xw;q) .

Proof.We easily see from the property of the modifiedq-
Bernstein polynomials of several variables that

n1

∑
k1=1

n2

∑
k2=1

· · ·
nw

∑
kw=1

w

∏
i=1

ki

ni
Bk1,k2,··· ,kw;n1,n2,··· ,nw

(x1,x2, · · · ,xw;q)

=
w

∏
i=1

[xi ]q

(

[xi ]q+[1−xi ]q

)ni−1

and also

n1

∑
k1=2

n2

∑
k2=2

· · ·
nw

∑
kw=2

w

∏
i=1

(ki
2

)

(ni
2

)Bk1,k2,··· ,kw;n1,n2,··· ,nw
(x1,x2, · · · ,xw;q)

=

(
w

∏
i=1

[xi ]q

)2
(

[xi ]q+[1−xi ]q

)ni−2
.

Continuing this method, we have
(

w

∏
i=1

[xi ]q

)m

=
w

∏
i=1

1
(

[1−xi ]q+[xi ]q

)ni−m

×
n1

∑
k1=m

n2

∑
k2=m

· · ·
nw

∑
kw=m

w

∏
i=1

(ki
m

)

(ni
m

)Bk1,k2,··· ,kw;n1,n2,··· ,nw
(x1,x2, · · · ,xw;q)

and after making some algebraic operations, we obtain the
desired result.
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We have seen from the theorem given above, it is

possible to write

(
w

∏
i=1

[xi ]q

)m

as a linear combination of

modifiedq-Bernstein polynomials of several variables by
using the degree evaluation formulae and mathematical
induction method.

For k ∈ N0, the Bernoulli polynomials of degreek are
defined by
(

t
et −1

)(
t

et −1

)

×·· ·×
(

t
et −1

)

︸ ︷︷ ︸

k−times

ext =

(
t

et −1

)k

ext

=
∞

∑
n=0

B(k)
n (x)

tn

n!
,

andB(k)
n = B(k)

n (0) are called then-th Bernoulli numbers
of orderk. It is well known that the second kind Stirling

numbers are defined by(e
t−1)k

k! :=
∞

∑
n=0

S(n,k) tn
n! for k ∈ N

(see [19],[40]). By using the above relations, we can give
the following theorem:

Theorem 7.For ki ,ni ,∈N0 and xi ∈D with i= 1,2, · · · ,w,
we have

Bk1,k2,··· ,kw;n1,n2,··· ,nw
(x1,x2, · · · ,xw;q)

=
n1

∑
l1=0

n2

∑
l2=0

· · ·
nw

∑
lw=0

w

∏
i=1

[xi ]
l i
q

(
ni

l i

)

B(ki )
l i

(

[1−xi ]q

)

S(ni − l i ,ki) .

Proof.By using the generating function of modified
q-Bernstein polynomials of several variables, we have

w

∏
i=1

(
t[xi ]q

)ki

ki !
e
t

(
w

∑
i=1

[1−xi ]q

)

=

w

∏
i=1

[xi ]
ki
q

(
∞

∑
n1=0

S(n1,k1)
tn1

n1!

)

· · ·
(

∞

∑
nw=0

S(nw,kw)
tnw

nw!

)

×
(

∞

∑
l1=0

B(k1)
l1

(
[1−x1]q

) t l1

l1!

)

· · ·
(

∞

∑
lw=0

B(kw)
lw

(
[1−xw]q

) t lw

lw!

)

.

By using the Cauchy product for sums given above

Bk1,k2,··· ,kw;n1,n2,··· ,nw
(x1,x2, · · · ,xw;q)

=
n1

∑
l1=0

n2

∑
l2=0

· · ·
nw

∑
lw=0

w

∏
i=1

[xi ]
l i
q

(
ni

l i

)

B(ki )
l i

(

[1−xi ]q

)

S(ni − l i ,ki) .

By comparing the last two relations, we have the desired
result.

Let ∆ be the shift difference operator defined by
∆ f (x) = f (x+1)− f (x). By using the mathematical
induction method we have

∆n f (0) =
n

∑
k=0

(
n
k

)

(−1)n−k f (k) , (12)

for n ∈ N and using (12) in the generating function of
second kind Stirling numbers,

∞

∑
n=0

S(n,k)
tn

n!
=

1
k!

k

∑
l=0

(
k
l

)

(−1)k−l elt

=
∞

∑
n=0

(

1
k!

k

∑
l=0

(
k
l

)

(−1)k−l ln
)

tn

n!
. (13)

By comparing the coefficients on both sides, we have

S(n,k) =
1
k!

k

∑
l=0

(
k
l

)

(−1)k−l ln. (14)

When we compared Eq. (12) and Eq. (14), becomes

S(n,k) =
∆k0n

k!
. (15)

Forni,ki ∈N, by using the equation (15), we obtain the
relation

Bk1,k2,··· ,kw;n1,n2,··· ,nw (x1,x2, · · · ,xw;q)

=
n1

∑
l1=0

n2

∑
l2=0

· · ·
nw

∑
lw=0

w

∏
i=1

[xi ]
l i
q

(
ni

l i

)

B(ki)
l i

(

[1− xi]q

) ∆ki 0ni−l i

ki !

which is the relation of theq-Bernstein polynomials of
several variables in terms of Bernoulli polynomials of
orderk and second Stirling numbers with shift difference
operator.

Let (Eh)(x) = h(x+1) be the shift operator. Then the
q-difference operator is defined by

∆n
q =

n−1

∏
i=0

(
E−qiI

)
(16)

whereI is the identity operator (see [19]).
For f ∈C([0,1]) andn∈ N, we have

∆n
q f (0) =

n

∑
k=0

(
n
k

)

q
(−1)k q(

n
2) f (n− k), (17)

where
(n

k

)

q is the Gaussian binomial coefficient defined by

(
n
k

)

q
=

[n]q[n−1]q · · · [n− k+1]q
[k]q!

. (18)

Theorem 8.For ni , l i ∈N0 and xi ∈D for i = 1,2, ...,w, we
have

w

∏
i=1

1
(

[1− xi]q+[xi ]q

)ni−l i

n1

∑
k1=m

n2

∑
k2=m

· · ·
nw

∑
kw=m

(
w

∏
i=1

(ki
m

)

(ni
m

)

)

×Bk1,k2,··· ,kw;n1,n2,··· ,nw (x1,x2, · · · ,xw;q)

=
m

∑
l1=0

m

∑
l2=0

· · ·
m

∑
lw=0

q

w

∑
i=1

(li
2) w

∏
i=1

(
xi

l i

)

[l i ]q!S(m, l i ;q) .
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Proof.To prove this theorem, we letFq (t) be the
generating function of theq-extension of the second kind
Stirling numbers as follows:

Fq(t) :=
q−(

k
2)

[k]q!

k

∑
i=0

(−1)k−i
(

k
i

)

q
q(

k−i
2 )e[i]qt =

∞

∑
n=0

S(n,k;q)
tn

n!

From the above, we have

S(n,k;q) =
q−(

k
2)

[k]q!

k

∑
i=0

(−1)i q(
i
2)
(

k
i

)

q
[k− i]nq

=
q−(

k
2)

[k]q!
∆k

q0n (19)

where[k]q! = [k]q[k−1]q · · · [2]q[1]q. It is easy to see that

[x]nq =
n

∑
k=0

q(
k
2)
(

x
k

)

q
[k]q!S(n,k;q) (20)

and in similar way that

(
w

∏
i=1

[xi ]q

)m

=
m

∑
l1=0

m

∑
l2=0

· · ·
m

∑
lw=0

q

w

∑
i=1

(l i
2) w

∏
i=1

(
xi

l i

)

[l i ]q!S(m, l i ;q) .

(21)
Then, we obtain the desired result from (20) and (21).

3 Interpolation Function of Modified
q-Bernstein Polynomials for Functions of
Several Variables

The classical Bernoulli numbers interpolate by Riemann
zeta function, which has profound effect on Analytic
numbers theory and complex analysis. The values of the
negative integer points, also found by Euler, are rational
numbers and play a vital and important role in the theory
of modular forms. Many generalization of the Riemann
zeta function, such as Dirichlet series, Dirichlet
L-functions andL-functions, are known in [18], [24],
[25], [26], [9], [10]. So, we construct interpolation
function of modifiedq-Bernstein polynomials of several
variables.

For s∈ C andxi 6= 1 with i = 1,2, ...,w, by applying
Mellin transformation to Eq. (3), we procure

Dq(s,k1,k2 · · ·kw;x1,x2 · · ·xw)

=
1

Γ (s)

∫ ∞

0
ts−(k1+k2+···+kw)−1Fk1,k2,··· ,kw

(−t,q;x1,x2, · · · ,xw)dt

=
1

Γ (s)

∫ ∞

0
ts−(k1+k2+···+kw)−1

w

∏
i=1

(

−t [xi ]q

)ki

ki !
e
−t

w

∑
i=1

[1−xi ]q
dt

= (−1)

w

∑
i=1

ki w

∏
i=1

[xi ]
ki
q

ki !

(
1

Γ (s)

∫ ∞

0
ts−1e−t[1−xi ]qdt

)

= (−1)

w

∑
i=1

ki w

∏
i=1

[xi ]
ki
q

ki !
[1−xi ]

−s
q .

From the above, we give the definition of interpolation
function for Corollary1 as follows:

Definition 3.Let s∈ C and xi 6= 1 with i = 1,2, ...,w. We
define interpolation function of the polynomials
Bk1,k2,··· ,kw;n1,n2,··· ,nw (x1,x2, · · · ,xw;q) as

Dq(s,k1,k2 · · ·kw;x1,x2 · · ·xw)= (−1)

w

∑
i=1

ki w

∏
i=1

[xi ]
ki
q

ki !

(

[1−xi ]q

)−s
.

(22)

Remark.By substitutingw= 1 into (22), we get

Dq (s,k1) = (−1)k1
[x1]

k1
q

k1!
[1− x1]

−s
q

whereDq (s,k1) is introduced by Simsek and Acikgoz cf.
[40].

Substitutings= −(n1+n2+ · · ·+nw) into Eq. (22),
we have

Dq(−n1−n2−·· ·−nw,k1,k2 · · ·kw;x1,x2 · · ·xw)

= (−1)

w

∑
i=1

ki w

∏
i=1

[xi ]
ki
q

ki !
[1−xi ]

ni
q

=
w

∏
i=1

(−1)ki ni !
(ni +ki)!

w

∏
i=1

(
ni +ki

ki

)

[xi ]
ki
q [1−xi ]

(ni+ki )−ki
q

=
w

∏
i=1

(−1)ki ni !
(ni +ki)!

Bk1,k2,··· ,kw;n1+k1,n2+k2,··· ,nw+kw
(x1,x2, · · · ,xw;q) .

So, we arrive at the following theorem.

Theorem 9.The following equality holds true:

Dq (−n1−n2−·· ·−nw,k1,k2 · · ·kw;x1,x2 · · ·xw)

=
w

∏
i=1

(−1)ki ni !
(ni +ki)!

Bk1,k2,··· ,kw;n1+k1,n2+k2,··· ,nw+kw
(x1,x2, · · · ,xw;q) .

By using (22), we have

Dq (s,k1,k2 · · ·kw;x1,x2 · · ·xw)→ D

(s,k1,k2 · · ·kw;x1,x2 · · ·xw) asq→ 1.

Thus one has

D(s,k1,k2 · · ·kw;x1,x2 · · ·xw)= (−1)

w

∑
i=1

ki w

∏
i=1

xki
i

ki !
(1− xi)

−s.

(23)
By substitutingxi = 1 with i = 1,2, ...,w within the

above, we have

D(s,k1,k2 · · ·kw;x1,x2 · · ·xw) = ∞.
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We now evaluate the i-th s-derivative of
D(s,k1,k2 · · ·kw;x1,x2 · · ·xw) as follows: Forx j 6= 1 with
i = 1,2, ...,w

∂ i

∂si D(s,k1,k2 · · ·kw;x1,x2 · · ·xw)

= logi
(

1
1− xi

)

D(s,k1,k2 · · ·kw;x1,x2 · · ·xw) (24)

which seems to be interesting.

Remark.By taking w = 1, q → 1− into (23), we arrive at
the following relation which was proved by Simsek and
Acikgoz [40],

∂ i

∂si D(s,k1;x1) = logi
(

1
1− x1

)

D(s,k1;x1) .

4 p-adic Integral Representation of
q-Bernstein-type polynomials

Throughout this section, we will use the following
notations:Zp denotes the ring ofp-adic rational integers,
Qp denotes the field ofp-adic rational numbers,Cp
denotes the completion of algebraic closure ofQp. Let vp
be the normalized exponential valuation ofCp with
|p|p = p−vp(p) = p−1. When we mention about
q-extension, we say thatq is considered in many ways
such as an indeterminate, a complex numberq ∈ C, or
p-adic numberq∈Cp. If q∈ C we assume that|q|< 1. If

q∈ Cpwe normally assume that|q−1|p < p−
1

p−1 so that
qx = exp(xlogq) for |x|p ≤ 1 cf. [4], [5], [7], [8], [9],
[10], [31], [13], [14]. Let UD(Zp) be the set of uniformly
differentiable function. For f ∈ UD(Zp), the p-adic
q-integral onZp was originally defined by Kim [31] as
follows:

Iq ( f ) =
∫

Zp

f (x)dµq (x)

= lim
n→∞

pn−1

∑
x=0

f (x)µq (x+ pnZp)

= lim
n→∞

1
[pn]q

pn−1

∑
x=0

f (x)qx.

As q tends to 1− in (??), we get known identity (p-adic
Volkenborn Integral) as

∫

Zp

f (x)dµ1 (x) = lim
n→∞

1
pn

pn−1

∑
x=0

f (x) (see [13], [14]).

As I−q( f ) = limq→−q Iq ( f ) symbolically, which
yields, forp an odd prime, to

I−q( f )=
∫

Zp

f (x)dµ−q (x) = lim
n→∞

1
[pn]−q

pn−1

∑
x=0

(−1)x f (x)qx

(25)

is known as fermionicp-adic q-invariant integral in the
p-adic integer ring. And also, lettingq to 1− in (25), it
reduces to

∫

Zp

f (x)dµ−1 (x) = lim
n→∞

pn−1

∑
x=0

(−1)x f (x) (26)

(see [12], [13], [22]).

The Bernoulli numbers was generated by the following
generating function: Fort ∈ C (with |t|< 2π)

∞

∑
n=0

Bn
tn

n!
=

t
et −1

(see [13], [14], [15], [23]).

Next, it was shown that the Bernoulli numbers can be
generated byp-adic Volkenborn integral as follows

Bn =

∫

Zp

xndµ1 (x) for n∈ Z+ := N∪{0}

, whereN is the set of natural numbers.

The following may be defined as a newq-extension of
Bernoulli numbers

β n (q) =
∫

Zp

qx [x]nqdµq (x) .

Observe that

lim
q→1−

β n (q) = Bn.

Recall that

∞

∑
n=k

Bk,n (x;q)
tn

n!
=

(

t [x]q

)k

k!
et[1−x]q

is calledq-Bernstein-type polynomials. From this, we have

Bk,n (x;q) =

(
n
k

)

[x]kq [1− x]n−k
q .

Throughout this section, we will assume thatx∈ (0,1).
So we can write

[x]kq=
qxBk,n(x;q)

(n
k

)(

1− [x]q

)n−k
=

qx
(n

k

)Bk,n(x;q)
∞

∑
l=0

(
n−k+ l −1

l

)

[x]lq .

Further
(n

k

)

Bk,n (x;q)
=

∞

∑
l=0

(
n− k+ l −1

l

)

qx [x]l−k
q . (27)

Applying p-adicq-integral onZp in the both sides of
(27), it yields to

∫

Zp

(n
k

)

Bk,n (x;q)
dµq (x) =

∞

∑
l=k

(
n− k+ l −1

l

)

β l−k (q) .

Therefore we get the following theorem.
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Theorem 10.For k= 0,1,2, · · · ,n and n∈ Z+, we have

∫

Zp

(
n
k

)

B−1
k,n (x;q)dµq (x) =

∞

∑
l=k

(
n− k+ l −1

l

)

β l−k (q)

where B−1
k,n (x;q) is the inverse of Bk,n (x;q).

As q tends to 1− in Theorem10, we have the following
Corollary.

Corollary 3.For k= 0,1,2, · · · ,n and n∈ Z+, we have

∫

Zp

(
n
k

)

B−1
k,n (x)dµ (x) =

∞

∑
l=k

(
n− k+ l −1

l

)

Bl−k

where B−1
k,n (x) is the inverse of Bk,n (x).

The generating function of Euler polynomials has the
following series expansion att = 0 :

∞

∑
n=0

En (x)
tn

n!
=

2
et +1

ext (|t|< π) .

The Euler numbers are defined byEn (1/2) = 2nEn.
The Euler polynomials can be generated through Equation
(26)

En (x) =
∫

Zp

(x+ y)ndµ−1 (y) (28)

(for details, see [6], [8], [9], [13], [15], [22], [28], [29],
[30]).

In [22], Kim defined the followingq-Euler numbers

En,q =

∫

Zp

q−x [x]nqdµ−q (x) .

It is clear that

lim
q→1−

En,q = En (0) .

By (25) and (27), we arrive at the following theorem.

Theorem 11.For k= 0,1,2, · · · ,n and n∈ Z+, we have

∫

Zp

(
n
k

)

B−1
k,n (x;q)dµ−q(x) =

∞

∑
l=k

(
n− k+ l −1

l

)

El−k,q

where B−1
k,n (x;q) is the inverse of Bk,n (x;q).

As q tends to 1− in Theorem11, we have the following
Corollary.

Corollary 4.For k= 0,1,2, · · · ,n and n∈ Z+, we have

∫

Zp

(
n
k

)

B−1
k,n (x)dµ−1 (x) =

∞

∑
l=k

(
n− k+ l −1

l

)

El−k (0)

where B−1
k,n (x) is the inverse of Bk,n (x).

5 Conclusion

In the paper, we have investigated a new approach to
modified q-Bernstein polynomials for functions depend
on the several variables, and then derived the recurrence
formulas related to the second Stirling numbers and
generalized Bernoulli polynomials. Moreover, the
interpolation function of these polynomials depend on the
several variables and the derivatives of these polynomials
and also their generating function are given. Final part of
this paper, we have got new interesting identities of
modified q-Bernoulli numbers andq-Euler numbers by
applying p-adic q-integral representation onZp and
p-adic fermionicq-invariant integral onZp, respectively,
to the inverse ofq-Bernstein polynomials.
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