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Abstract: Although several publications have been appeared about thecommutativity of linear time-varying systems, no researchhas
appeared so far on the evaluation of higher order commutative pairs of a low-order system. The attempt in this paper is to fill this
vacancy partially by giving the explicit results for findingall the second order commutative pairs of a first order lineartime-varying
system. The derived theoretical results are verified by an example.
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1 Introduction

Many engineering systems contain series or
cascade-connected subsystems of smaller orders, which is
a common approach for network synthesis in
electrical-electronics engineering [1,2]. These subsystems
need to be either the functionally time-varying type as in
communication systems [3,4] or time-varying property
gets involved as a non-ideal case [5]. It is known that the
change of the sequence of the cascade interconnection of
two subsystems does not change the functional relation
between the input and output of the combined system,
which is defined to be commutativity, under certain
conditions whilst the system performance concerning
sensitivity and disturbance gets better in one of the
specific sequence with respect to the other [6]. Hence the
role of the commutativity gets importance in system
design [7,8].

The concept of commutativity is first introduced in
the literature by E. Marshall in 1982 [9]. Later, the
commutativity results obtained for first order systems are
extended for the second order systems by M. Koksal [10]
with the contribution of S.V. Saleh [11]. The explicit
commutativity conditions for the first and second order
systems are presented in these references [9,10,11]
including the important fact that for the commutativity of
two linear systems, it is required that either both systems
time-invariant or both systems are time-varying.

The research on the commutativity of linear
time-varying systems had been continued after 1982 until
1988, when the first exhaustive study on the subject was
published [12]. This work has been the basic reference for
years since it includes the most general necessary and
sufficient conditions for systems of any order but without
initial conditions. All the previous results containing the
commutativity conditions were shown to be deduced from
the main theorem in that paper; namely those for the first
order [9], second order [10,11], third order [13], and forth
order systems [14].

Further, [12] includes some special results concerning
the commutativity of identical time-varying systems with
arbitrary time-invariant forward and feedback path gains,
which is originally proved for second order systems [7],
and the commutativity of Euler systems originally treated
in the undistributed report [14].

Later some new results concerning the commutativity
conditions for systems having nonzero initial conditions
[15] and the role of commutativity on system sensitivity
[7] have been appeared. It is shown that two initially
relaxed commutative systems may not be commutative
when they have nonzero initial conditions and
commutativity with arbitrary initial conditions requires
additional constraints on the parameters of the
time-varying systems. Further, one specific sequence of
connection may be more robust than the other when
sensitivity and disturbance or noise effects are considered.
Although these results are important from both theoretical
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and application points of views, they had not been widely
and sufficiently announced at least in an international
journal paper until the appearance of the review paper
published in 2011 [6]. That tutorial paper originally
covers the explicit commutativity conditions of fifth order
systems as well.

Due to the new developments in digital technology,
especially in the communication area [16,17,18], the
research on the commutativity of analogue systems has
extended to the area of discrete time systems as well [19].

In the above mentioned literature so far otherwise, no
research has appeared on the investigation of higher order
commutative pairs of a low order system. This paper aims
to fulfil this vacancy by exploring the second order
commutative pairs of a first order linear time-varying
system. After this introductory section, Section II
summarizes the previous results necessary for the
reduction of the equations, which is the subject of Section
III, for finding the second order commutative pairs of a
first order linear time-varying system. Section IV includes
an example illustrating and verifying the results obtained
in the previous section. Finally the paper ends with its
conclusion in Section V.

2 General Commutativity Conditions for
Second-order Systems

Consider the linear time-varying systemA described by
the second order differential equation

a2(t)
··
yA(t)+ a1(t)

·
yA(t)+ a0(t)yA(t) = xA(t); t ≥ 0 (1)

with arbitrary initial conditionsyA(0) and
·
yA(0). Where

a2(t),a1(t),a0(t) are the time-varying coefficients with
a2(t) 6= 0; xA(t) andyA(t) being the input and output of
the system, respectively; and the dot and doublet dots on
the top denote the first and second order derivatives,
respectively.

The first set of necessary and sufficient conditions that
this systemA is commutative with another second or lower
order systemB are expressed explicitly by





b2
b1
b0



=







a2 0 0
a1 a0.5

2 0

a0 a−0.5
2

(

2a1−
·
a2

)

/4 1











c2
c1
c0



 (2a)

−a0.5
2

d
dt



a0−
4a2

1+3
·
a

2
2−8a1

·
a2+8

·
a1a2−4a2

··
a2

16a2
c1



= 0,

(2b)
whereb2(t),b1(t),b0(t) are the time-varying coefficients
of the systemB described by

b2(t)
··
yB(t)+ b1(t)

·
yB(t)+ b0(t)yB(t) = xB(t); t ≥ 0 (3)

with the initial conditionsyB(0) and
·
yB(0); xB(t) andyB(t)

are the input and output of the systemB, respectively[14].

Note that in Eq. 2, c2,c1,c0 are arbitrary constants with
c1 satisfying (2b); further withc2 = 0, (2a) leads tob2(t) =
0 and the systemB becomes a first order system. The case
of c2 = 0, c1 = 0 simultaneously is trivial since it leads that
B is a time-invariant algebraic system with the constant
gain 1

c0
, c0 6= 0.

For the case of nonzero initial conditions, Eqs. 2a, b are
not sufficient for the commutativity and in this case, the
second set of necessary and sufficient conditions should
hold. These conditions are expressed by

(n)
(m)

[

yA

A−1
2 (yB −A1yA)

]

=

[

yB

B−1
2 (yA −B1yB)

]

(m)
(n) (4a)

for an n-th order systemA and an m-th order(m ≤ n)
systemB [6]. Where

yA =
[

yA(0)
·
yA(0) · · · y(n−1)

A (0)
]T

, (4b)

yB =
[

yB(0)
·
yB(0) · · · y(m−1)

B (0)
]T

(4c)

are the initial conditions ofA andB, respectively; and the
entries of constant matricesA1,A2,B1,B2 of orderm× n,

m×m, n×m, n× n are given by

āi j =
i−1

∑
s=max(0,i− j)

(i−1)!
s!(i−1− s)!

a(s)j−i+s, for
i = 1,2, · · ·,m,
j = 1,2, · · ·,n,

(5a)

¯̄ai j =
i− j

∑
j=0

(i−1)!
s!(i−1− s)!

a(s)j−i+n+s, for
i = 1,2, · · ·,m,
j = 1,2, · · ·, i,

= 0 for i = 1,2, · · ·,m−1, j = i+1, i+2, · · ·,m, (5b)

b̄i j =
i−1

∑
s=max(0,i− j)

(i−1)!
s!(i−1− s)!

b(s)j−i+s, for
i = 1,2, · · ·,n,
j = 1,2, · · ·,m,

(5c)

¯̄bi j =
i−1

∑
j=0

(i−1)!
s!(i−1− s)!

b(s)j−i+m+s = 0, for
i = 1,2, · · ·,n,
j = 1,2, · · ·, i,

= 0, for i = 1,2, · · ·,n−1, j = i+1, i+2, · · ·,n, (5d)

respectively[6]. In (5), all the coefficientsak(t) andbk(t)
are evaluated at the initial timet = 0.

In particular for the second order system (1) wheren=
2 and for a first order systemB wherem = 1 described by

b1(t)
·
yB(t)+ b0(t)yB(t) = xB(t); t ≥ 0 (6)

with the initial conditionyB(0), Eq. 5 yields

A1 =
[

a0 a1
]

, A2 = [a2] , (7a, b)
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B1 =

[

b0
·

b0

]

, B2 =

[

b1 0
·

b1+ b0 b1

]

, (7c, d)

and Eqs. 4b, c are written as

yA =

[

yA(0)
·
yA(0)

]

; yB = [yB(0)] . (7e, f)

Inserting these equations in Eq. 4a, we obtain







yA(0)
·
yA(0)

1
a2

[

yB(0)− a0yA(0)− a1
·
yA(0)

]






=

1

b2
1





b2
1yB(0)

b1 [yA(0)− b0yB(0)]

b1(
·
yA(0)−

·

b0yB(0))− (
·

b1+ b0)(yA(0)− b0yB(0))





(8)
where all time-varying coefficients and their derivatives
are evaluated at the initial timet = 0.

3 Explicit Formulas for the Second-order
Systems

With the aid of the commutativity requirements presented
in the previous section for a second order system with an
order second or lower one, the explicit formulas for
finding all the second order commutative pairs of a first
order linear time-varying system are derived in this
section.

Let the first order system be defined as in Eq. 6. Since
b2(t) = 0 the constantc2 in Eq. (2a) is identically zero.
The remaining 2 equations in (2a) can be solved for the
constantsc1 andc0 as

[

c1
c0

]

=

[

a0.5
2 0

a−0.5
2

(

2a1−
·
a2

)

1

]−1
[

b1
b0

]

=

[

a−0.5
2 b1

−a−1
2

(

0.5a1−0.25
·
a2

)

b1+ b0

]

. (9)

The first row of this equation implies

a2 =
b2

1

c2
1

. (10)

Using this equation and its first derivative in the second
equality of (9),a1 is evaluated as

a1 =
b1

c2
1

[

2b0+
·

b1−2c0

]

(11)

which is the second explicit equation for the coefficients
of the second order system A.

Finally, to find the remaining coefficienta0(t) Eq. 2b
is used. Since the second order commutative pair is looked
for, a2(t) 6= 0 and hence Eq. 2b can be written as

a0 = K +
4a2

1+3
·
a

2
2−8a1

·
a2+8

·
a1a2−4a2

··
a2

16a2
(12a)

whereK is the arbitrary constant of integration. At last,
substituting the values ofa2 and its first and second
derivatives obtained from Eq. 10, and the values ofa1 and
its derivative obtained from (11) into the equation (12a),
we obtain the last coefficient

a0 = K +
1
c1

[

c2
0+ b2

0−2c0b0+ b1

·

b0

]

(12b)

which is also expressed explicitly in terms of the
coefficients of the first order differential equation (6)
defining the subsystemB. Note that all the constantsc1,c0
and K in Eqs. 10-12 can be arbitrarily chosen to obtain
second order commutative pairsA described by Eq. 1 of
the first order systemB described by Eq. 6. However, the
commutativity property involved here is valid when the
subsystemB and its commutative pairsA are relaxed or at
their zero-states, that is; when all the initial conditionsare
zero.

To obtain the commutativity conditions with non-zero
initial conditions, Eq. 8 is used. The first line obviously
requires the same initial statesyA(0) = yB(0), with which

the second line gives the expression for
·
yA(0). Hence the

initial conditions of the subsystemA must be expressed in
terms of the initial condition ofB as follows;

yA(0) = yB(0), (13a)

·
yA(0) =

1− b0(0)
b1(0)

yB(0). (13b)

For the commutativity ofA andB a final equation is
required which is implied by the third line in Eq. 8. In fact,
inserting the values ofyA(0) and

·
yA(0) as expressed in Eqs.

13a and 13b in the third line and organizing the terms, we
obtain the constraint equation

1− a0

a2
−

a1

a2

1− b0

b1
=

(

1− b0

b1

)2

+
d
dt

(

1− b0

b1

)

(14)

that must be satisfied att = 0 for nonzero initial conditions.

So far, the coefficients of the second order system A
and its initial conditions are all expressed in terms of
those ofB as seen in Eqs. 10-12 and 13, respectively.
Using (10) and (11), the constraint equations (14) can
also be expressed for the constantK by using the
parameters ofB only; the result is

K = 1−

(

1− c0

c1

)2

+
1− c1

c2
1

[

(c0− b0)
2+ b1

·

b0

]

(15)
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whereb1,b0,
·

b0 are evaluated att = 0.
We now summarize the results obtained in this section

in the form of a theorem.
Theorem (Koksal 3) All the second order linear

time-varying pairs(A′s) as described by the differential
equations in (1) of a first order linear time-varying system
(B) described by the differential equation in (6) can be
obtained by using Eqs. 10, 11, 12 for the coefficients ofA,
Eqs. 13a and 13b for the initial conditions ofA, where
c1 6= 0 andc0 are arbitrary constants andK is satisfying
the constraint equations in (15) at the initial timet = 0. If
B is initially relaxed so must beA′s, that is, the constraint
relation (15) between the arbitrary constants is not
needed, that isK is also arbitrary.

4 Example

To illustrate the concepts introduced in this paper and to
verify the obtained results consider the first order system
described by

(1+ t)
·
yB(t)+2(1− sint)yB(t)= xB(t); yB(0)=−2, t ≥ 0

(16)
Choosing the arbitrary constantsc1 = 1,c0 = 1; andK = 1
as to satisfy Eq. 15 for the commutativity with nonzero
initial conditions, the following commutative pairA of B
is obtained by using Eqs. 10, 11, 12;

(1+ t)2
··
yA(t)+ (1+ t)(3−4sint)

·
yA(t)

+
[

2+4sin2 t −4sint −2(1+ t)cost
]

yA(t) = xA(t),
(17a)

yA(0) =−2,
·
yA(0) = 2. (17b)

Note that the initial conditions ofA are chosen as to satisfy
Eq. 13.

When the interconnectionsAB andBA are excited by
a unit step function, it is observed that both of the outputs
AB andBA are identical as shown in Fig. 1 (OutputAB,
BA). WhenyA(0) = −2,

·
yA(0) = 2, the initial conditions

in Eq. 13 are not satisfied. Therefore, the commutativity is
not valid anymore, as shown in Fig. 1 (OutputAB, Output
BA).

To illustrate the case where the initial conditions ofA
are chosen as in Eq. 13, but the choice ofK does not satisfy
Eq. 15, the example is simulated by choosingK = 2. This
changesa0(t) by unity. Hence withyA(0) = yB(0) = −2,
·
yA(0) = 2 anda0 increased by 1, it is observed thatA and
B do not commute at all as shown in Fig. 2 (OutputAB,
OutputBA). When the initial conditions are zero, Eq. 15
need not be satisfied for commutativity. Hence with zero
initial conditions andK = 2, AB andBA gives the same
output response as shown in Fig. 2 (OutputAB, BA).

Fig. 1: The outputs ofAB andBA fort the systems in Example 1,
K = 1.

Fig. 2: The outputs ofAB andBA fort the systems in Example 1,
K = 2
.

The example verifies that with zero initial conditions,
the second order commutativity pairs ofB can be found
by choosing all the constantsc1,c0,K arbitrarily.
However, when the initial conditions are nonzero, both
Eq. 13 imposing constraints on the choice of initial
conditions ofA and Eq. 15 specifying the value of the
constantK must be satisfied for the commutativity ofA
andB.

Before concluding the section it might deserve to note
that only very few classes of linear time varying systems
have compact analytic solutions. These are known to be
solvable classes [20]; among themA1 class has constant
eigenvalues, Ah class has eigenvalues of constant
multiples of a common functionh(t). In a recent
publication, another solvable class having eigenvalues in
certain types of polynomials has been reported [21]. Since
both Eq. 17 describing SystemA and the third order
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system resulting by cascading it with systemB defined by
Eq. 16 do not belong to any one of the known solvable
classes, the results obtained by MATLAB Simulink
toolbox cannot be verified by obtaining compact
analytical solutions. To meet this aim partially, the series
solution of the cascaded systemAB (or BA) for the case

yA(0) = yB(0) = −2,
·
yA(0) = 2, and unit step excitation

is obtained by using routine series solution techniques.
The explicate result for the output containing the first six
terms is

y(t)∼=−2+2t−4t2+
35
6

t3−
17
2

t4+
481
40

t5−
3961
240

t6.

(18)
With this solution, the simulation results are shown to be
well verified for small values oft; namely fort = 0,0.1,0.2
the series solution yieldsy =−2,−1.8349,−1.7241 while
the simulation results arey = −2,−1.8349,−1.7239. For
higher values oft, the results of the series solution deviate
from those of the simulations, which is natural due to the
truncation at the sixth term in the series solution of Eq. 18.

5 Conclusions

The explicit formulas are derived to find all the second
order commutative pairs of a first order linear
time-varying system. The time-varying coefficients of the
second order system are obtained from those of the first
order system by using three constants which can all be
arbitrarily chosen in case of zero initial conditions. For
the case of the non-zero initial condition of the first order
system, however, both of the initial conditions of the
second order system and one of the above mentioned
constants are not arbitrary anymore and they should be
chosen, so as to satisfy the constraints developed in this
paper so that both systems are commutative. The results
are verified by an example.
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