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Abstract: In this paper, evolutions of ruled surfaces that are generated by the normal and binormal vector fields of space curve (normal
and binormal surfaces) are presented. These evolutions of the ruled surfaces depend on the evolutions of their directrices. Geometric
visualization of these ruled surfaces are presented. In addition, the conditions which make these surfaces of types inextensible,
developable and minimal are obtained.
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1 Introduction

Recently, the study of the motion of inelastic plane curves
has arisen in a number of diverse engineering
applications. Chirikjian and Burdick [1] described the
motion of a planar hyperredundant (or snake-like) robot
as the flow of a plane curve, while Brockett [2] explicitly
proposed the idea of an inelastic string machine as a
robotic device. Inelastic plane curves, i.e., plane curves
whose lengths are preserved. Inextensible curve and
surface flows also arise in the context of many problems
in computer vision [3], [4] and computer animation [5],
and even structural mechanics [6].

There are many applications in image processing and
computer vision, such as scale space by linear and
nonlinear diffusions [7–10], image enhancement through
anisotropic diffusions [9], [11–14] and image
segmentation by active contours [15–18]. The level set
formulation [19] has provided good means to implement
these flows. Extending these motions to manifolds
embedded in spaces of higher dimensions can be
beneficial for many applications.

The Subject of how space curves evolve in time is of
great interest and has been investigated by many authors.
in [20], Hasimoto showed that the nonlinear Schrödinger
equation describing the motion of an isolated
non−stretching thin vortex filament. Lamb [21] used the
Hasimoto transformation to connect other motions of
curves to the mKdV and sine−Gordon equations.

Nakayama, et al [22] obtained the sine−Gordon equation
by considering a nonlocal motion. Also, Nakayama and
Wadati [23] presented a general formulation of evolving
curves in two dimensions and its their connection to
mKdV hierarchy. Nassar, et al [24–27] studied the
evolution of plane curves, the motion of hypersurfaces
and the evolution of space curves inRn. R. Mukherjee and
R. Balakrishnan [28] applied their method to the
sine-Gordon equation and obtained links to five new
classes of space curves in addition to the two which were
found by Lamb [21]. For each class, they displayed the
rich variety of moving curves associated with the
one−soliton, the breather, the two−soliton and the
soliton−antisoliton solutions. In the case of the motion of
surfaces, K. Nakayama and M. Wadati [29] formulated
the motion of surfaces in 3-dimensional space using
differential geometry. They obtained the time evolutions
of the metric and the curvature tensor. D. Y. Kwon and F.
C. Park [30], studied the evolution of inelastic plane
curves. Also D. Y. Kwon and F.C. Park [31], studied
inextensible flows of curves and developable surfaces. T.
Körpinar et al [32] studied new inextensible flows of
tangent developable surfaces in Euclidian 3−spaceE3.

In this paper, we shall derive a pair of coupled
nonlinear partial differential equations (CNLPDEs)
governing the time evolution of the curvature and torsion
of the evolving curve. Applications to some curves are
presented. Then we construct normal and binormal
surfaces associated to these curves. Geometric
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visualization of the normal and binormal surfaces are
displayed via solving the Gauss-Weingarten equations for
a specified coefficients of the first and second
fundamental forms using fundamental theorem of
surfaces. The essence of this paper is that, we linked the
motion of surfaces with the motion of curves, i.e., if the
curve moves, then the normal and binormal surfaces
move.

The article is organized as follows. In section1.1, we
introduce the time−evolution equations that are satisfied
by the intrinsic quantities of curves. Also, we derive
CNPDEs which formulate the problem directly in terms
of the curvatures and obtained the exact solution for them.
In subsection1.2, we determine the curve from its
curvatures. In section1.3, we introduce some applications
of the curve evolution specified by its local geometry. In
section2, we introduce differential geometry of surfaces.
In section3, we introduce the geometric properties of
normal and binormal surfaces. In section4, we
reconstruct the surfaces from the coefficients of the the
first and second fundamental forms via numerical
integration of the Gauss-Weingarten equations and
plotted them.

1.1 Time-evolution equations

In this section we briefly review the main results for the
evolution of space curves as presented in [28], and extend
these results to derive time−evolution equations that is
satisfied by the intrinsic quantities of the curve. Let us
consider a curve embedded in three-dimensional space
described in parametric form by a position vector
r = r(s), s being the usual arclength variable. The unit
tangent vectort = r s, the principal normaln and the
binormalb form an orthonormal triad of unit vectors that
satisfy the Frenet–Serret equations [33]:

ts = κn,
ns = −κ t + τb, (1)

bs = −τn.

Here and hereafter, the subscripts denote partial
derivatives.κ andτ are the curvature and torsion of the
curve.

If this curve moves with timet, then all quantities in
Eq. (1) become functions of boths and t. The general
temporal evolution in which the triad{t,n,b} remains
orthonormal adopts the following form [34]

tt = αn+βb,
nt = −αt + γb, (2)

bt = −β t − γn.

As is clear, the parametersα, β and γ (which are the
velocities of the moving frame{t,n,b}) determine the
motion of the curve.

On requiring the compatibility conditions

tts = tst, nts = nst, bts = bst. (3)

Apply the compatibility conditions Eq. (3) to the systems
(1), (2), then

κt = αs− τβ ,
τt = γs+κβ , (4)

βs = κγ − τα.

The temporal evolution of the curvatureκ and the torsion
τ of the curve may now be expressed in terms of the
components of velocity{α,β} which can be written as
coupled nonlinear partial differential equations as follows,

κt = αs−β τ,

τt = (
βs+ τα

κ
)s+κβ .

(5)

From these equations we note that the componentγ in Eq.
(2) does not affect the final shape of the evolving curve.
For a given {α,β ,γ}, the motion of the curve is
determined from these equations. Mathematica package
software (computational software program used in
scientific, engineering, mathematical fields and other
areas of technical computing) was used for solving the
Eqs.(5) which applies the tanh−and sech−methods [35].
The outline for given{α,β ,γ} is that we get{κ ,τ}.

1.2 Determining a parametrized curve from its
curvature and torsion

One of the basic problems in geometry is to determine
exactly the geometric quantities which distinguish one
figure from another. For example, line segments are
uniquely determined by their lengths, circles by their
radii, triangles by side-angle-side, etc. It turns out that
this problem can be solved in general for sufficiently
smooth regular curves. We will see that a regular curve is
uniquely determined by two scalar quantities, called
curvature and torsion, as functions of the natural
parameter, which follows from the next theorem.

Theorem 1(Fundamental existence and uniqueness
theorem for space curves). Let κ(s) and τ(s) be
arbitrary continuous functions on a≤ s ≤ b. then there
exists, except for position in space , one and only one
space curve C for whichκ(s) is the curvature,τ(s) is the
torsion and s is a natural parameter along C [36].

In the next subsection, we shall show how to recreate
curves in the space from their curvature and torsion via
numerical integration of Frenet−Seret equations up to its
position in space.
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1.3 Applications

In this subsection, we consider some applications of the
curve evolution specified by its local geometry. The set of
five geometric parameters{κ ,τ,α,β ,γ} appearing in the
intrinsic Frenet-triad evolution equations (1) and (2)
essentially describes a moving curve.

1.3.1 Case (1)

For a curve moving in the space by the velocities

{α,β ,γ}= {κ ,κs,
κss+ τκ

κ
}. (6)

The evolution equations for the curvature and the torsion
of the curve given from Eq. (5) as follows,

κt = κs−κsτ,

τt = (
κss+ τκ

κ
)s+κκs.

(7)

The general solutions to this system are given by

κ1(s, t) = 2c2sech(c1t + c2s+ c3),

τ1(s, t) =
c2− c1

c2
, c2 ≥ 0,

(8)

κ2(s, t) = c4,

τ2(s, t) = c5 f (c6t + c6s+ c7),
(9)

whereci ,(i = 1, ...,7) are arbitrary real constants andf
is an arbitrary function. As the first solution, it is easily
verified that the set{κ ,τ,α,β ,γ} satisfies Eq. (4).

The figures1, 4, 7 and10 represent snapshots of the
evolving space curve obtained by solving the
Frenet−Serret Eq. (1) for a specified curvature and
torsion using Mathematica [37]. Any moving space curve
can be studied from two perspectives, namely the shape
of the curve and the evolution of the curve. At every fixed
time t, we clearly have a representation of the
corresponding static space curve at that instant. The
program [37], as it stands, generates static space curves. It
was extended slightly to generate the evolution of the
space curves with timet.

In all the figures1, 4, 7 and10, we have used the total
curve length of 20 (−10≤ s≤ 10). In practice, the range
of variation oft must remain much smaller than that ofs
so that the length of the curve suffices to display the
complete geometric structure corresponding to the
solution concerned.

If we putc1 = 0.4,c2 = 0.5,c3 = 0 in Eq. (8), thenκ =
sech(0.4t +0.5s),τ = 0.2. we see thatκ → 0 ass→±∞.
Thus, for large values of s, the curve straightens out at both
ends as shown in Fig.1.

1.3.2 Case (2)

We consider the case that the velocities are given by

{α,β ,γ}= {0,κ ,
κs

κ
}. (10)

From Eq. (5) it follows that the evolution equations for the
curvature and the torsion of the curve are given as follows,

κt =−κτ,

τt = (
κs

κ
)s+κ2.

(11)

The general solution to this system is given by

κ(s, t) =
√

c2
1+ c2

2sech(c1t + c2s+ c3),

τ(s, t) = c1 tanh(c1t + c2s+ c3).
(12)

wherec1,c2,c3 are arbitrary real constants. If we takec1 =
1,c2 = 1 andc3 = 0 in Eq. (12), thenκ =

√
2sech(t + s)

andτ(s, t) = tan(t +s). We see thatκ → 0 ass→±∞ and
τ →±1 ass→±∞. Thus, for large values ofs, the curve
straightens out at both ends as shown in Fig.10.

In the next section we mention some basic facts in the
general theory of surfaces useful for the rest of the paper.

2 Differential geometry of surfaces

Let x = x(s, t) denote the position vector of a generic
point P on a surface S inR3. Then, the vectorsxs andxt
are tangential toS at P, at such points at which they are
linearly independent,

N =
xs∧xt

|xs∧xt |
, (13)

determines the unit normal vector toS. The first and
second fundamental forms ofSare defined by

I = 〈dx.dx〉= g11ds2+2g12dsdt+g22dt2,
II = 〈−dx.dN〉= L11ds2+2L12dsdt+L22dt2,

(14)

where,

g11= 〈xs,xs〉, g12 = 〈xs,xt〉, g22 = 〈xt ,xt〉
L11= 〈xss,N〉, L12= 〈xst,N〉, L22= 〈xtt ,N〉,

(15)
where〈,〉 is the Euclidean scaler product.

The Gauss equations associated withsare [33]:

xss= Γ 1
11xs+Γ 2

11xt +L11N,

xst = Γ 1
12xs+Γ 2

12xt +L12N,

xtt = Γ 1
22xs+Γ 2

22xt +L22N.

(16)

The Weingarten equations are

Ns =
g12L12−g22L11

g
xs+

g12L11−g11L12

g
xt ,

Nt =
g12L22−g22L12

g
xs+

g12L12−g11L22

g
xt ,

(17)
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where

g= det(gi j ) = g11g22−g2
12. (18)

The quantitiesΓ k
i j are called the Christoffel symbols of the

second kind, and they are given by

Γ k
i j =

1
2

gkl(
∂

∂ui gl j +
∂

∂u j gil −
∂

∂ul gi j ), (19)

wherex1 = s , x2 = t ,

I = gikdx jdxk (20)

and

g jkgkl = δ i
j . (21)

In the above, the Einstein convention of summation over
repeated indices has been adopted.

The Gaussian curvatureκg and the mean curvatureκm
are

κg =
L
g
=

L11L22−L2
12

g11g22−g2
12

, (22)

κm =
L11g22−2L12g12+L22g11

2g
, (23)

where

L = det(Li j ) = L11L22−L2
12. (24)

Applying the compatibility conditions(xss)t = (xst)s
and(xst)t = (xtt)s to the linear Gauss system (16). Then
we have the Gauss and Mainardi-Codazzi system

L = g11((Γ 1
22)s− (Γ 1

12)t +Γ 1
22Γ 1

11+Γ 2
22Γ 1

12−Γ 1
12Γ 1

12−Γ 2
12Γ 1

22)

+g12((Γ 2
22)s− (Γ 2

12)t +Γ 1
22Γ

2
11−Γ 1

12Γ
2

12),

(25)

∂L11

∂ t
− ∂L12

∂s
= L11Γ 1

12+L12(Γ 2
12−Γ 1

11)−L22Γ 2
11,

∂L12

∂ t
− ∂L22

∂s
= L11Γ 1

22+L12(Γ 2
22−Γ 1

12)−L22Γ 2
12.

(26)

Theorem 2.(Fundamental existence and uniqueness
theorem Of Surfaces) Let g11,g12 and g22 be functions of s
and t of class C2 and let L11,L12 and L22 be functions of s
and t of class C1 all defined on an open set containing
(s0, t0) such that for all (s, t),
(i) g11g22−g2

12> 0, g11 > 0, and g22 > 0
(ii) g11,g12,g22,L11,L12 and L22 satisfy the compatibility
equations (25),(26). Then there exists a patchx = x(s, t)
of class C3 defined in a neighborhood of(s0, t0) for which
g11,g12,g22,L11,L12 and L22 are the first and second
fundamental coefficients. The surface represented by
x = x(s, t) is unique except for position in space [36].

3 Geometric properties of the normal and
binormal surfaces

A ruled surface is a surface that can be swept out by
moving a line in space. It therefore has a parameterization
of the form

x(s,u) = r(s)+uℓ(s), (27)

wherer is called the ruled surface directrix (also called
the base curve) andℓ is the director curve. The straight
lines themselves are called rulings. The rulings of a ruled
surface are asymptotic curves. Furthermore, the Gaussian
curvature on a ruled regular surface is everywhere
nonpositive. If the curvesr = r(s) andℓ= ℓ(s) move with
time t, then Eq. (27) becomes

x(s,u, t) = r(s, t)+uℓ(s, t) (28)

3.1 Normal surface

We may take each of the frame vectors of the curver and
reapply it as the vectorℓ to describe a ruled surface
uniquely determined by the shape of the curve and its
variations in space. If the generatrix vectorℓ is the normal
n of the curver , then Eq. (28) define a normal surface
with the parametric representation

x(s,u, t) = r(s, t)+un(s, t). (29)

Definition 1.A surface evolutionx(u,s, t) and its flow∂x
∂ t

are said to be inextensible if its first fundamental quantities
{g11,g12,g22} satisfies [31]

∂g11

∂ t
=

∂g12

∂ t
=

∂g22

∂ t
= 0. (30)

The tangent vectors for the surfaceSare

xs(s,u, t) = (1−uκ)t(s, t)+ τub(s, t),
xu(s,u, t) = n(s, t).

(31)

Using Eqs. (13) and (31), then the unit normal vector field
onShas the form

N =
xu∧xs

|xu∧ r s|
=

(uκ −1)b+ τut
√

(uκ −1)2+ τ2u2
. (32)

Using Eq. (15), then the coefficients of the first
fundamental form are

g11 = (1−uκ)2+(τu)2,

g12 = 0, (33)

g22 = 1.

Using the above system and Eq. (30), one can see that the
normal surface is inextensible if

−2uκt(1−uκ)+2u2ττt = 0. (34)
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Using Eq. (15), then the coefficients of the second
fundamental form are

L11 =
−u2κsτ +uτs(uκ −1)
√

(uκ −1)2+u2τ2
,

L12 =
−τ

√

(uκ −1)2+u2τ2
, (35)

L22 = 0.

So, the Gaussian curvatureκg and the mean curvatureκm
are

κg =
−τ2

((1−uκ)2+u2τ2))2 ,

κm =
−u2κsτ +uτs(uκ −1)

2((1−uκ)2+ τ2u2)3/2
.

(36)

From the above equations, the normal surfacex(s,u, t) is
developable (κg = 0) if

τ = 0, (37)

and minimal(κm = 0) if

−u2κsτ +uτs(uκ −1) = 0, (38)

a short calculation shows that the above equation can be
written as

u2 ∂
∂s

(
τ
κ
)− τs

κ2 = 0 (39)

3.2 Binormal surface

If the generatrix vectorℓ is the binormalb of the curver ,
then from Eq.28, we get the binormal surface. The
parametric representation for this surface is

x(s,v, t) = r(s, t)+ vb(s, t). (40)

The tangent vectors forSare

xs(s,v, t) = t(s, t)− τvn(s, t),
xv(s,v, t) = b(s, t).

(41)

The unit normal vector field on the surfaceS is given by

N =
n+ τvt√
1+ τ2v2

. (42)

A short calculation shows that the coefficients of the first
fundamental form are

g11 = 1+ v2τ2, g12= 0, g22 = 1.

Using the above system and Eq. (30), one can see that the
binormal surface is inextensible if

∂τ
∂ t

= 0, so τ = τ0 = constant (we chooseτ0 = 0).

(43)

Using Eq. (15), then the coefficients of the second
fundamental form are

L11 =
τ2v2κ +κ − τsv√

1+ v2τ2
, L12 =

−τ√
1+ v2τ2

, L22 = 0.

So, the Gaussian curvatureκg and the mean curvatureκm
are

κg =
−τ2

(1+ τ2v2)2 , κm =
τ2v2κ +κ − τsv

2(1+ τ2v2)3/2
. (44)

From the above equations, the binormal surfacex(s,v, t) is
developable (κg = 0) iff

τ = 0, (45)

and minimal (κm = 0) iff

τ2v2κ +κ − τsv= 0 (46)

4 Geometric visualization of the normal and
binormal surfaces and its generator

In this section, we shall display the evolution of Normal
and Binormal Surfaces depends on the evolution of their
directrices. The surfaces below represent snapshots of the
evolving normal and binormal surfaces obtained by
solving the Gauss-Weingarten Eqs. (16) for specified first
and second fundamental forms using Mathematica [38].
Any moving surface can be studied from two
perspectives, namely, the shape of the surface and the
evolution of the surface. At every fixedt, we clearly have
a representation of the corresponding (static) surface at
that instant. The program [38] as it stands generates static
surfaces. It was extended slightly to generate the
evolution of the surfaces witht. We used the curvature
and torsion of the curves which obtained in section (1)
which represents the base curves of the normal and
binormal surfaces.

(a) t=0 (b) t=1 (c) t=2 (d) t=3

Fig. 1: Time evolution of the curveκ = sech(0.4t +
0.5s),τ = 0.2
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(a) t=0 (b) t=1 (c) t=2 (d) t=3

Fig. 2: Time evolution of the normal surfaces

(a) t=0 (b) t=1 (c) t=2 (d) t=3

Fig. 3: Time evolution of the binormal surfaces

(a) t=0 (b) t=1 (c) t=2 (d) t=3

Fig. 4: Time evolution of the curveκ = 0.5,τ = sin(t + s)

(a) t=0 (b) t=1 (c) t=2 (d) t=3

Fig. 5: Time evolution of the normal surfaces

5 Discussion

1.In Figure 1, we obtained the time evolution of the curve
κ = sech(0.4t+0.5s),τ = 0.2. We found thatκ → 0 as
t →±∞ andτ →±1 ast →±∞. Thus, for large values
of t, the curve straightens out at both ends.

2.In Figure 4, we obtained the time evolution of the curve
κ = 0.5,τ = sin(t + s). We found that thatτ →±1 as

(a) t=0 (b) t=1 (c) t=2 (d) t=3

Fig. 6: Time evolution of the binormal surfaces

(a) t=0 (b) t=1 (c) t=2 (d) t=3

Fig. 7: Time evolution of the curveκ = 1,τ = tanh(t + s)

(a) t=0 (b) t=1 (c) t=2 (d) t=3

Fig. 8: Time evolution of the normal surfaces

(a) t=0 (b) t=1 (c) t=2 (d) t=3

Fig. 9: Time evolution of the binormal surfaces

t →±∞. Thus, for large values oft, the curve collapses
into helix.

3.In Figure 7, we obtained the time evolution of the curve
κ = 1,τ = tanh(t + s). We found that thatκ → 1 as
t →±∞ andτ →±1 ast →±∞. Thus, for large values
of t, the curve collapses into helix.

4.In Figure 10, we obtained the time evolution of the
curve κ =

√
2sech(t + s),τ = tanh(s+ t). We found

thatκ → 0 ast →±∞ andτ →±1 ast →±∞. Thus,

c© 2016 NSP
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(a) t=0 (b) t=1 (c) t=2 (d) t=3

Fig. 10: Time evolution of the curveκ =
√

2sech(t +
s),τ = tanh(s+ t)

(a) t=0 (b) t=1 (c) t=2 (d) t=3

Fig. 11: Time evolution of the normal surfaces

(a) t=0 (b) t=1 (c) t=2 (d) t=3

Fig. 12: Time evolution of the binormal surfaces

for large values oft, the curve straightens out at both
ends.

6 Conclusions

In this paper, we conclude that the componentγ in Eqs.
(2) does not affect the final shape of the evolving curve.
For ruled surfaces, we present an evolution of the ruled
surfaces generated by the normal and binormal of space
curve. This evolution depends on the evolution of the
directrix. The results that we obtained are:

1.Normal surfaces are developable ifτ = 0, minimal if
−u2κsτ + uτs(uκ − 1) = 0, and inextensible if
−2uκt(1−uκ)+2u2ττt = 0.

2.Binormal surfaces are developable ifτ = 0, minimal if
τ2v2κ + κ − τsv = 0, τ = 0, and inextensible if∂τ

∂ t =
0, soτ = τ0 = constant (we choseτ0 = 0).

In Fig.(10), (11) and (12), we found thatκ → 0 ass→±∞,
τ →±1 ass→±∞. When we solve the system of Frenet-
Serret, the torsion does not affect on the final shape of the
evolving curve as shown in Fig.(10). But when we solve
the system of Gauss-Weingarten, the curvature does not
affect on the final shape of the evolving surface as shown
in Figs. (11) and (12).

We linked the motion of surfaces with the motion of
curves i.e., if the curve moves, then the normal and
binormal surfaces moves. Geometric visualization of
these surfaces are displayed.
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