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Abstract: In this paper, evolutions of ruled surfaces that are geediay the normal and binormal vector fields of space curvenfabr
and binormal surfaces) are presented. These evolutiongatited surfaces depend on the evolutions of their dictriGeometric
visualization of these ruled surfaces are presented. litiaddthe conditions which make these surfaces of typestémsible,
developable and minimal are obtained.
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1 Introduction Nakayama, et ald2] obtained the sineGordon equation
by considering a nonlocal motion. Also, Nakayama and
Recently, the study of the motion of inelastic plane curvesVadati P3| presented a general formulation of evolving
has arisen in a number of diverse engineeringcUrves in two dimensions and its their connection to
applications. Chirikjian and Burdick1] described the ~MKdV hierarchy. Nassar, et al24-27] studied the
motion of a planar hyperredundant (or snake-like) robot€velution of plane curves, the motion of hypersurfaces
as the flow of a plane curve, while Brocke®{ Explicitly and the evplut|on of space c.urvesRh. R. Mukherjee and
proposed the idea of an inelastic string machine as & Balakrishnan 28] applied their method to the

robotic device. Inelastic plane curves, i.e., plane curvesine-Gordon equation and obtained links to five new
whose lengths are preserved. Inextensible curve an@lasses of space curves in addition to the two which were
surface flows also arise in the context of many problemgound by Lamb P1]. For each class, they displayed the

in computer vision 3], [4] and computer animatiors], rich variety of moving curves assoqated with the

and even structural mechani@.[ one-soliton, the breather, the twesoliton and the

There are many applications in image processing an&oliton—antisoliton solutions. In the case of the motion of
computer vision, such as scale space by linear angurfaces, K. Nakayama and M. Wada#9] formulated

nonlinear diffusions -10], image enhancement through th.f? motjo|r1 of surface.; in 3-di'mens;]ona'1l spacel using
anisotropic  diffusions 9], [11-14] and image di tralrentla .george:]ry. They obtained the time evo ungns
segmentation by active contours5-18). The level set of the metric and the curvature tensor. D. Y. Kwon and F.

formulation [L9] has provided good means to implement & Park B0, studied the evolution of inelastic plane
19 P d P curves. Also D. Y. Kwon and F.C. Park]], studied

these flows. Extending these motions to manifolds. !
embedded in spaces of higher dimensions can extensible flows of curves and developable surfaces. T.
orpinar et al B2] studied new inextensible flows of

beneficial for many applications. - " 3
The Subject of how space curves evolve in time is of tangent developable surfaces in EuclidiarspaceE".

great interest and has been investigated by many authors. In this paper, we shall derive a pair of coupled
in [20], Hasimoto showed that the nonlinear Schrodingernonlinear partial differential equations (CNLPDES)
equation describing the motion of an isolated governing the time evolution of the curvature and torsion
non-—stretching thin vortex filament. Lami2f] used the  of the evolving curve. Applications to some curves are
Hasimoto transformation to connect other motions ofpresented. Then we construct normal and binormal
curves to the mKdV and sinegGordon equations. surfaces associated to these curves. Geometric
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visualization of the normal and binormal surfaces areApply the compatibility conditions Eq23j to the systems
displayed via solving the Gauss-Weingarten equations fo(1), (2), then

a specified coefficients of the first and second

fundamental forms using fundamental theorem of

surfaces. The essence of this paper is that, we linked the _ , 8

. . . . . S )
motion of surfaces with the motion of curves, i.e., if the 4
curve moves, then the normal and binormal surfaces™ — ¥+ KB, )
move. Bs = Ky—10.

The article is organized as follows. In sectibri, we
introduce the time-evolution equations that are satisfied The temporal evolution of the curvatukeand the torsion
by the intrinsic quantities of curves. Also, we derive T of the curve may now be expressed in terms of the
CNPDEs which formulate the problem directly in terms components of velocitfa,8} which can be written as
of the curvatures and obtained the exact solution for themcoupled nonlinear partial differential equations as foko
In subsection1.2, we determine the curve from its

curvatures. In sectioh.3 we introduce some applications

of the curve evolution specified by its local geometry. In Kt = as— BT,

section2, we introduce differential geometry of surfaces. Bs+ 1 (5)
In section3, we introduce the geometric properties of = )s+KB-

normal and binormal surfaces. In sectiofh, we

reconstruct the surfaces from the coefficients of the the h . hat th .
first and second fundamental forms via numerical’ "o these equations we note that the compopemtq.

integration of the Gauss-Weingarten equations and2) d0€s not affect the final shape of the evolving curve.
plotted them. For a given {a,3,y}, the motion of the curve is

determined from these equations. Mathematica package

software (computational software program used in

1.1 Time-evolution equations scientific, engineering, mathematical fields and other
areas of technical computing) was used for solving the

In this section we briefly review the main results for the EQs.6) which applies the tanhand sech-methods 89.
evolution of space curves as presented?®,[and extend  The outline for give{a, B, v} is that we gef{k, }.
these results to derive timevolution equations that is
satisfied by the intrinsic quantities of the curve. Let us
consider a curve embedded in three-dimensional spaci 2D L ized f .
described in parametric form by a position vector ~ etermining a_parametrlze curve from its
r =r(s), s being the usual arclength variable. The unitcurvature and torsion

tangent vectort = rg, the principal normaln and the
binormalb form an orthonormal triad of unit vectors that

satisfy the Frenet—Serret equatioBs]] One of the basic problems in geometry is to determine

exactly the geometric quantities which distinguish one
ts = kn, figure from another. For example, line segments are
ns = —Kt+ 1b, (1) uniquely determined by their lengths, circles by their
be — radii, triangles by side-angle-side, etc. It turns out that
s = —Tn. ) ; .

) _ this problem can be solved in general for sufficiently
Here and hereafter, the subscripts denote partiakmooth regular curves. We will see that a regular curve is
derivatives.k and t are the curvature and torsion of the uniquely determined by two scalar quantities, called
curve. curvature and torsion, as functions of the natural

If this curve moves with time, then all quantities in parameter, which follows from the next theorem.
Eqg. () become functions of botk andt. The general

temporal evolution in which the triadt,n,b} remains

orthonormal adopts the following forr3 4] Theorem 1(Fundamental existence and uniqueness

theorem for space curves).Let k(s) and 1(s) be

t = an+fb, arbitrary continuous functions on & s < b. then there
n = —at+yb, (2) exists, except for position in space , one and only one
b = —Bt—yn. space curve C for whick(s) is the curvaturer(s) is the

. ) torsion and s is a natural parameter alon .
As is clear, the parameters, 3 and y (which are the P geq

velocities of the moving framdt,n,b}) determine the
motion of the curve.
On requiring the compatibility conditions

In the next subsection, we shall show how to recreate
curves in the space from their curvature and torsion via
numerical integration of FreneSeret equations up to its
tis=1tst, Nis=nNg, bs=bgt. 3) position in space.
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1.3 Applications

In this subsection, we consider some applications of th
curve evolution specified by its local geometry. The set of

five geometric parametefs, 1,a,,y} appearing in the
intrinsic Frenet-triad evolution equationd)(and @)
essentially describes a moving curve.

1.3.1 Case (1)

For a curve moving in the space by the velocities

Kss+ TK

{avﬁay} = {KaK&

}- (6)

1.3.2 Case (2)

eWe consider the case that the velocities are given by

{G,B,V}Z{O,K,%}. (10)

From Eq. ) it follows that the evolution equations for the
curvature and the torsion of the curve are given as follows,

Kt = —KT,
Ks 2 (12)
= ")stK
The general solution to this system is given by
K(s,t) = 1/ %+ c3sech{cit + o5+ C3), (12)

1(s,t) = cytanh(cyt + CpS+C3).

The evolution equations for the curvature and the torSior\Nhere(:LCZ’C?’ are arbitrary real constants. If we tm@:

of the curve given from Eq5)] as follows,

Kt = Ks— KsT,

Kss+ TK (1)
Tt = (——)s+ KKs.
The general solutions to this system are given by
K1(s,t) = 2cosechcit + cps+ c3),
c—C 8
Tl(S,t) = ga C2 > 07 ( )
C2
Ko(s,t) = Ca,
_ 9)
T2(st) = csf(Cet + C6S+ C7),

wherec;, (i = 1,...,7) are arbitrary real constants arid
is an arbitrary function. As the first solution, it is easily
verified that the sefk, 1,a, 3, y} satisfies Eq.4).

The figuresl, 4, 7 and 10 represent snapshots of the

1,c, = 1 andcz = 0 in Eq. (12), thenk = v/2seclft +s)
andr(s,t) =tanlt +s). We see thak — 0 ass— + and
T — £1 ass— +. Thus, for large values & the curve
straightens out at both ends as shown in E.

In the next section we mention some basic facts in the
general theory of surfaces useful for the rest of the paper.

2 Differential geometry of surfaces

Let x = x(s,t) denote the position vector of a generic
point P on a surface S iR%. Then, the vectorss andx
are tangential t&® at P, at such points at which they are

linearly independent,
Xs/\Xt
=— 13
[Xs A Xt | (13)

determines the unit normal vector & The first and
second fundamental forms Bfare defined by

evolving space curve obtained by solving the | = (dx.dx) = g11dS + 2g;2dsdt+ goodt?, (14)
Frenet-Serret Eq. {) for a specified curvature and Il = (—dx.dN) = L1102 + 2L1odsdt+ Loodt2,
torsion using Mathematic&}]. Any moving space curve

can be studied from two perspectives, namely the shap¥/Nere.

of the curve and the evolution of the curve. At every fixed  g;; = (xs,Xs), g12 = (Xs, Xt ), g22 = (Xt, %)
time t, we clearly have a representation of the |,,= (XssN), L12= (Xst, N), Loz = (Xet,N),
corresponding static space curve at that instant. The (15)
program B7], as it stands, generates static space curves. lvhere(, ) is the Euclidean scaler product.

was extended slightly to generate the evolution of the  The Gauss equations associated gittie B3):
space curves with time 1 )

In all the figuresl, 4, 7 and10, we have used the total Xss= l11Xs + 3% + L1aN,
curve length of 20410 < s < 10). In practice, the range Xst = MoXs+ 5% + L1oN, (16)
of variation oft must remain much smaller than thatf 1 2
so that the length of the curve suffices to display the it = [5pXs 4 T39% 4 L2oN.
complete geometric structure corresponding to therpe Weingarten equations are
solution concerned.

If we putc; = 0.4,c, = 0.5,c3 = 0in Eq. @), thenk = Ng = J2biz— Gl | Grobi —gubiz
sech{0.4t +0.5s), T = 0.2. we see that — 0 ass— . g g ’ 17)
Thus, for large values of s, the curve straightens out at both O1oLloo — gool 12 O12L12—011l22
ends as shown in Fig. Ne = 9 Xs+ 9 Xt
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where 3 Geometric properties of the normal and
g=det(gij) = 911922 — 93> (18)  binormal surfaces
The quantities; ¥ are called the Christoffel symbols ofthe A ruled surface is a surface that can be swept out by
second kind, and they are given by moving a line in space. It therefore has a parameterization
of the form
1 7] 0 7] X(s,u) =r(s)+ uf(s), 27
ri'k: Egkl(Fglj +ﬁ9il - ngj)v (19) ) (su) ©) © . ) @
u u u wherer is called the ruled surface directrix (also called
1 ) the base curve) andis the director curve. The straight
wherex™ =s, x“=t, lines themselves are called rulings. The rulings of a ruled
ok surface are asymptotic curves. Furthermore, the Gaussian
| = gidx’dx (20)  curvature on a ruled regular surface is everywhere
nonpositive. If the curves=r(s) and? = £(s) move with
and timet, then Eq. 27) becomes
kg = a1 21
979 =9 (1) X(s,u,t) = r(s,it)+ul(st) (28)

In the above, the Einstein convention of summation over
repeated indices has been adopted.
The Gaussian curvaturg and the mean curvaturg, 3.1 Normal surface

are
L Lplxp—L3, We may take each of the frame vectors of the curead
9=~ Gt & (22)  reapply it as the vectof to describe a ruled surface
118227 512 uniquely determined by the shape of the curve and its
L oL L variations in space. If the generatrix vectas the normal
Ky = —11922— 212012 22911, (23)  n of the curver, then Eq. 28) define a normal surface
29 with the parametric representation
where X(s,u,t) =r(s,t) +un(st). (29)
L =det(Lij) = L1aLop— L%,. (24)

Definition 1.A surface evolutiox(u,s,t) and its flow‘;—;‘
are said to be inextensible if its first fundamental quaasditi

{011,012, 922} satisfies B1]

Applying the compatibility conditiongxss)t = (Xst)s
and (Xst)t = (Xt )s to the linear Gauss systeri). Then
we have the Gauss and Mainardi-Codazzi system

0011 0012 002
L= 001((Fh)s— (MY + MM+ Ml s — Ml — M555) at ot ot =0. (30)

+012((FB)s — (Mo + Msl i — M5 3).

(25)  The tangent vectors for the surfaSare

t) = (1— uk)t(s,t) + Tub(st)
0'_11 ale XS(Sv u, J L) 1
5 s Laalh+ Laa(r3 — 1) — Lool 13, 26) Xu(s,u,t) = n(st). (31)
Il Il = Lyl + Laa(FA— ) — Lol 3. Using Egs. {3) and 1), then the unit normal vector field
ot Js on Shas the form
XuAXs (UK —1)b+ Tut (32)

Theorem 2(Fundamental existence and uniqueness - IXuATs| /(UK — 1)2+ T2u2
theorem Of Surfaces) Letggi» and @ be functions of s

and t of class € and let 31,12 and Lyy be functions of s Using Eqg. (5), then the coefficients of the first
and t of class ¢ all defined on an open set containing fundamental form are

(s0,to) such that for all (s, t), — (1—uk)? 2

. =(1- + (Tu)?,

(i) 911022 — 03, > O, 011> 0, and g2 >0 Gu1 = ( )7+ (1)
(i) g11,012,922,L11,L12 and Ly, satisfy the compatibility 012=0, (33)
equations 25),.(26)._Then t_here exists a patoh= x(s_,t) O =1

of class C defined in a neighborhood ¢%,to) for which Using the above system and E§Q), one can see that the

911,012, 922, L1, Laz and Lo are the first and second . s rface is inextensible if
fundamental coefficients. The surface represented by

x = X(s,t) is unique except for position in spacgq. —2uk(1—uK) +2u°TT; = 0. (34)

(@© 2016 NSP
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Using Eg. (5), then the coefficients of the second Using Eq. (5), then the coefficients of the second

fundamental form are
—U2KsT + UTs(UK — 1)

L1y = ,
H (UK —1)2 + U212
-1
Lip = : 35
1 (uk —1)2+u?t? (33)
Lo =0.

So, the Gaussian curvatukg and the mean curvature,
are

2

T

o= (T—wzr w2’ -
—U2KsT + UTs(UK — 1)

Km -

2((1—uk)2+12U2)%/2°

From the above equations, the normal surfagu,t) is
developableKy = 0) if

T=0, (37)
and minimal(km = 0) if
—UPKsT 4 Uts(uk — 1) = 0, (38)
a short calculation shows that the above equation can be
written as
22 (-0 (39)

3.2 Binormal surface

If the generatrix vectof is the binormab of the curver,

then from EqR8 we get the binormal surface. The

parametric representation for this surface is
X(s,vt) =r(s,t) +vb(st). (40)
The tangent vectors f@are

Xs(s,vt) =t(s;t) — Tvn(s;t),

(s t) =b(st). (41)

The unit normal vector field on the surfaBés given by

n+ ™™
N= Ao (42)

A short calculation shows that the coefficients of the first

fundamental form are

O11=1+V1% 012=0, gp=1.

Using the above system and E§Q), one can see that the

binormal surface is inextensible if

ot
—=0,s0 T=rT1p=constant (we choosap=0).

ot
(43)

fundamental form are

L TA2K + K — TV -7 L0
11= ——F——=—, Lio= ——==, L22=0.
V1+v212 V14+V2T

So, the Gaussian curvatukg and the mean curvature,
are

—12 TV K — TV

= . 44
1+ 1222 M7 B 2R (“44)

Kg:

From the above equations, the binormal surfaev,t) is
developableKy = 0) iff

T=0, (45)
and minimal km = 0) iff

T2VPK+K—Tv=0 (46)

4 Geometric visualization of the normal and
binormal surfaces and its generator

In this section, we shall display the evolution of Normal
and Binormal Surfaces depends on the evolution of their
directrices. The surfaces below represent snapshots of the
evolving normal and binormal surfaces obtained by
solving the Gauss-Weingarten Eq$6) for specified first

and second fundamental forms using Mathemat8&. [
Any moving surface can be studied from two
perspectives, namely, the shape of the surface and the
evolution of the surface. At every fixddwe clearly have

a representation of the corresponding (static) surface at
that instant. The progran3§] as it stands generates static
surfaces. It was extended slightly to generate the
evolution of the surfaces with We used the curvature
and torsion of the curves which obtained in section (1)
which represents the base curves of the normal and
binormal surfaces.

(d) t=3

(@) =0 (b) t=1 (© =2
Fig. 1: Time evolution of the curve = sech{0.4t +

0.5s),7 = 0.2
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(a) t=0 (b) t=1 (c) t=2 (d) t=3 (a) t=0 (b) t=1 (c) t=2 (d) t=3
Fig. 2: Time evolution of the normal surfaces Fig. 6: Time evolution of the binormal surfaces
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i “ i “ i

i B i B i

| | |

@=0  OEl @2 (@) 3 @0 OEl @2 (@) =3

Fig. 3: Time evolution of the binormal surfaces Fig. 7: Time evolution of the curve = 1,7 = tanf(t + s)

- - ,,/ ,,,,/ -
/]
/ /
( ¢ | / 1
| _/ |
| [ |
I \ Y 4J \ |
/ | \ ) \
| \V | \V
% %
. | ~ | ~ |
- | ~ | ~ |
~ | ~ | ~ |

. | L‘/ [ / ~\ // |
(2) t=0 (b) t=1 (©) t=2 (d) t=3 @t= (b) t=1 (©) =2 (d) =3
Fig. 4: Time evolution of the curve = 0.5, T = sin(t + s) Fig. 8: Time evolution of the normal surfaces

(b) t=1 (c) t=2

‘\7//~

(b) t=1 (© =2 (@) =3

(a) t=0

Fig. 5: Time evolution of the normal surfaces Fig. 9: Time evolution of the binormal surfaces

t — +o0. Thus, for large values of the curve collapses
into helix.
3.In Figure 7, we obtained the time evolution of the curve
1.In Figure 1, we obtained the time evolution of the curve Kk = 1,7 = tani(t +s). We found that thak — 1 as

5 Discussion

K = sech0.4t +0.5s), 7 = 0.2. We found thak — 0 as t — +oo andt — +1 ast — +o. Thus, for large values
t — £ andr — +1 ast — . Thus, for large values of t, the curve collapses into helix.
of t, the curve straightens out at both ends. 4.In Figure 10, we obtained the time evolution of the
2.In Figure 4, we obtained the time evolution of the curve  curve k = v/2seclit +s), T = tanh(s+t). We found
K = 0.5,7 = sin(t +s). We found that that — +1 as thatk — 0 ast — £ andt — +1 ast — +. Thus,
@© 2016 NSP
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(a) t=0 (b) t=1 ©) t=2 ) t=3

Fig. 10: Time evolution of the curve = v/2seclhit +
s),T =tanhs+t)

(@) =0 (b) =1 ©) =2 (d) =3

Fig. 11: Time evolution of the normal surfaces

(a) t:O (b) t:1 (c) t:2 (d) t:3

Fig. 12: Time evolution of the binormal surfaces

for large values of, the curve straightens out at both
ends.
6 Conclusions

In this paper, we conclude that the componginh Eqs.
(2) does not affect the final shape of the evolving curvi

For ruled surfaces, we present an evolution of the rule
surfaces generated by the normal and binormal of spac
curve. This evolution depends on the evolution of the

directrix. The results that we obtained are:

1.Normal surfaces are developablaif= 0, minimal if
—U’ksT + Uts(uk — 1) = 0, and inextensible if
—2uk;(1—uK) +2uTT; = 0.

2.Binormal surfaces are developable & 0, minimal if
122K + K — Tv =0, T = 0, and inextensible i =
0, sor = 1p = constant (we choserg = 0).

In Fig.(10), (11) and (12), we found that— 0 ass— =+,

T — £1 ass — +. When we solve the system of Frenet-
Serret, the torsion does not affect on the final shape of the
evolving curve as shown in Fig.(10). But when we solve
the system of Gauss-Weingarten, the curvature does not
affect on the final shape of the evolving surface as shown
in Figs. (11) and (12).

We linked the motion of surfaces with the motion of
curves i.e., if the curve moves, then the normal and
binormal surfaces moves. Geometric visualization of
these surfaces are displayed.
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