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Abstract: In this paper, we introduce and consider a new class of haoaln convex function which is called harmonically
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1 Introduction some new Hermite-Hadamard type inequalities for
harmonically logarithmich-convex functions. Several

Let f:1 CR — R be a convex function witlk < b and  new results for other classes of harmonically convex

a,b € I. Then the following double inequality is known as functions are obtained as special cases of our results. This

Hermite-Hadamard inequality in the literature illustrates the significance of our new results. It is
b expected that interested readers may explore novel and
a+b 1 f(a)+ f(b) innovative applications of the main results in other fields.
f <T) < m/ fxjdx< ———=- (1) This s the main motivation of this paper.
a

named after C. Hermite and J. Hadamard. Interested o

readers may find useful details on Hermite-Hadamard2 Preliminaries

type of integral inequalities in2[3,4,5,7,8,9,10,11,12,

13,14,15,16,17,19,20,21,22,23,24]. Recently convexity | this section, we recall some basic previously known
has been extended in different directions using novel an¢oncepts and define the concept of harmonically
innovative ideas, (seel[2,3,4,6,7,8,9,11,12,1317,18  |ggarithmic h-convex functions. We also define some
19,21,22,23). Iscan [1] investigated and studied a new gther new classes of harmonically convex functions.

class of convex functions, which are called harmonicallyThroughout the paperc R\ {0} and[0,1] C J be the
convex functions. In 7] author has obtained some jniervals, unless otherwise specified. T

Hermite-Hadamard type inequalities via harmonically

convex functions. Zhang et al2] have defined and Definition 1([7]). A function f : | — R is said to be

investigated the concept of harmonically quasi-convexharmonically convex function, if

functions. Noor et al. I1] and Noor et al. 12] have

defined and studied the classes of harmonidaitypnvex Xy

functions and harmonically log-convex functions (m) <(@A-HFfC)+tf(y), vxyelteo1].

respectively. 1)
Inspired by the ongoing research, we introduce a new

class of harmonically convex function which is called Noor et al. L2] noticed that fort = % we have the

harmonically logarithmich-convex functions. We derive definition of Jensen type of harmonic convex functions,
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that is Note that
2xy f(x)+ f(y) ( xy )

< . logf | ———— ) <h(1-t)logf(x)+h(t)logf(y).

((22) <07 wyer @ oot (i) < - logt 09+ h()log )
(7
Definition 2([22)). A function f : 1 C R, — R, issaidto Note_ that if f be harmonically Iog'arithmidq—convex
be harmonically quasi-convex function on [, if function. Therh(t) +h(1—t) > 1 implies f(x) > 1. And

similarly h(t) + h(1—t) < 1 impliesf(x) < 1.
Xy

f (tx+ (1—t)y> <sup{f(x), f(y)}, Wxyelte[01]. For suitable and appropriate choice of theonvex

() function, we now obtain several new classes of
) ~ harmonically convex functions. For example, for
In [22] authors proved that harmonically convex functions h(t) = s h(t) = 1 and h(t) = f1 we obtain the new

on | is a harmonically quasi-convex function, but not definitions of harmonically logarithmic s-convex

conversely. ] ) functions, harmonically logarithmicP-functions and
Noor et al. 2] introduced the concept of harmonically harmonically logarithmicQ-functions respectively. For
log-convex functions. the sake of completeness and to convey the main ideas,
Definition 3([12). A function f : | — R is said to be e State these results.

harmonically log-convex function, if Definition 6.A function f : | — R is said to be

harmonically logarithmic s-convex function, if
f (%) <(FOO)Y(f(y)', wxyelte[o1].

1_ _t\S S
1=ty @ (i) < (1)), vayel,te[ovgj
From (1), (3) and (4) it follows that . h N
rom this, we have
Xy 1-t t
f (tx+(1—t)y> < (Ty(T ) log f (ﬁ) < (1-t)%logf (x) + tSlog f (y).
< (1-1)F(x) +tf(y) Y
< sup{f(x), f(y)}.
= SUPLTRO T Definition 7.A function f : | — R is said to be

This implies that harmonically log-convex function harmonically logarithmic P-convex function, if

implies harmonically convex function which implies

harmonically quasi-convex function, but the converse Xy ) <

may not be true. f tx+(1-t)y ) — f)fly), vxyelte[01]
We now recall the concept of harmonicallyconvex 9)
functions, which is mainly due to Noor et al]]. Thus

Definition 4([11]). Let h: J — R be a non-negative Xy

function, h # 0. A function f : | — R is said to be log (7> <logf(x)+logf(y).
harmonically h-convex function, if f is non-negative tx+(1-t)y

function, and

Definition 8.A function f : I — R is said to be
f (ﬁ) <h@@-t)f(x)+ht)f(y), xyel,te(0,1).  harmonically logarithmic Q-convex function, if
(5) N L
For other properties and special cases of harmonitally f (tX+(1ft)y) < (fp)=(fy)T, vxyelte(01].
convex functions seel[]. (10)

Now we define the concept of harmonically logarithmic £rom which. we have
h-convex functions, which appears to be new one. ’

Xy
(1-t)y

In [5] Dragomir et al. established a very novel result.
Xy h(1_t) h(t) Since then number of authors have utilized this result
f(m) S (FOYMH (Y™, vxyel,te(0,1).  directly and indirectly to derive several new

(6) Hermite-Hadamard type of inequalities.

Definition 5.Let h: J — R be a non-negative function, log f (
h = 0. A function f : 1 — R is said to be harmonically X+
logarithmic h-convex function, if

1 1
> < 1_tlogl‘(x)+?|ogf(y).
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Lemma 1([5]). Let f : (a,b) C R — R be a differentiable Combining (12) and (13), we have

mapping with a < b. If f’ € L[a,b], then the following

equality holds: 1 }hmdt
0

b 1

1 b—a

T a/f x= 22 0/1 20)'(ta+ (1 t)b)dt.
a

Lemma 2For a,be 1, t € [0,1] witha < b, we have

ab

A-taith <ta+(1-t)b.

3 Main Results

In this section, we prove our main results for the new class

of harmonically logarithmi&-convex functions.
Theorem 1Let f : | — R be harmonically logarithmic h-
convex function, wherea,b € | anda < b. Then
b _jl'h(t)dt
< exp s log (1) | < (t(apto)s
(11)

Proof.Let f be harmonically logarithmich-convex
function. Fort = 3 in (6), we have

(22) <Hnm?.

This implies that

(@) <[ () He (i)}

From this it follows that

|ogf< Zibb> h(3) {logf (W%) Flogf (ﬁ)]

Integrating above inequality with respecttton [0, 1], we
have

log f ( Zibb> <h(%)

This implies that

2h?%>'°gf(2ab)—b— /' ()& a2

Also integrating inequality (7) with respect toon [0, 1],
we have

bﬂf g(*%) dx< (|og<f(a))+|og<f<b>))§ h(t)dt = log(f() ()0

1 1
0/Iogf (M%)) dt+0/logf (Mafm))dt} .

This completes the proof.

Forh(t) =t5, h(t) = 1 andh(t) = % we obtain the new
results for harmonically logarithmis-convex functions,
harmonically logarithmicP-functions and harmonically
ogarithmicQ-functions respectively.

Corollary 1.Let f : | — R be harmonically logarithmic s-
convex function, where a,b € | witha<band se (0,1).
Then

251 1

<exp[bﬂf ( )dx}(f(a)f(b))sﬂ.

Corollary 2.Let f : 1 — R be harmonically logarithmic P-
function, wherea,b € | with a < b. Then

f(%)%g [bﬂf ( )dx] (f(a)f(b)).

Corollary 3.Let f : | — R be harmonically logarithmic Q-
convex function, wherea,b € | with a < b. Then

(325 <ol o))

Theorem 2Let f,g: 1 — R be harmonically logarithmic
h-convex function, where a,b € | with a < b. Then

Proof.Let f be harmonically logarithmich-convex
function. Then using inequality
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ab < 7(a+b)? Va,be R, we have

()l )

{(a(a) ™Y (g(b))™) } dt+

1
R( O/ 0 (b)g()" .

This completes the proof.

Theorem 3Let f,g: 1 — R be harmonically logarithmic
h-convex function, wherea,b € I witha< b. Ifa+f =1,
then

ba_ba/b<f(x))(§(x))dx< a/l[(f(a))h(lat)(f(b))hg)}dt
a 0

w8 ol
0

I — R be harmonically logarithmic
Then using inequality

a,B>0,a+ B =1, we have

g(b))hf?“] .

Proof.Let f,g :
h-convex function.

1
ab < aad + BbA,

- /" (1)

This completes the proof.

Theorem 4Let f : 1 — R beadifferentiable such that f' €
[a,b]. If |f/|9 is decreasing and harmonically logarithmic

h-convex function on I, whereq > 1 and h(t) +h(1—
1. Then we have

t) =

(st

Proof.Using Lemma 1, well known power mean
inequality and the fact thatf’|% is decreasing and
harmonically logarithmich-convex function. Then, we
have

b

g e

a

(b—a)|f'(b)|
2q1

b—a '
= Ja-
) o
/|1 2tdt) (/(1—2t)f’(ta+(l—t)b)th)
0 0

(ta+ (1—t)b)dt

q

IN
U
N
g:

al-

1-

)
.
)

nh—l

U
[<}]

ab

—t)a+tb) th)

-2 (g

IN
N‘
NI -

nh—l
al-

IN
U
N
g.)
NI =

1
1— q

nh—l

b-a
2

9)

1
/
1
Ja-ar >|q“<t>f'<b>|q<“<“>>dt)
0
[

1
2

2
2
2
<

This completes the proof.

Remark.We would like to make a remark here that for
different suitable choices df function, we have results
for harmonically logarithmic convex function,
harmonically logarithmic s-convex function and
harmonically logarithmid>-convex function.

Remark.Note that forg = 1 in Theorem 4, we have

Corollary 4.Let f : 1 — R bea differentiablesuchthat ' €
[a,b]. If | '] isdecreasing and harmonically logarithmic h-
convex function on |. Then we have
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Theorem 5Let f : | — R beadifferentiable such that f' €
[a,b]. If |f/|9 is decreasing and harmonically logarithmic
h-convex functionon I, whereq > 1, £ + ¢ = Lland h(t) +
h(1—t) = 1. Then we have

b
1
b_a/f(x)olx
a

EORIE

Proof.The proof directly follows from the proof of
Theorem 4.

f(a)+ f(b)
5 _

q
1

p+1

_ (b-2)|f'(b)
2

[f'(2)]
/(D)
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