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Abstract: In this paper, we introduce and consider a new class of harmonically convex function which is called harmonically
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1 Introduction

Let f : I ⊆ R → R be a convex function witha < b and
a,b ∈ I. Then the following double inequality is known as
Hermite-Hadamard inequality in the literature

f

(

a+ b
2

)

≤
1

b− a

b
∫

a

f (x)dx ≤
f (a)+ f (b)

2
. (1)

named after C. Hermite and J. Hadamard. Interested
readers may find useful details on Hermite-Hadamard
type of integral inequalities in [2,3,4,5,7,8,9,10,11,12,
13,14,15,16,17,19,20,21,22,23,24]. Recently convexity
has been extended in different directions using novel and
innovative ideas, (see [1,2,3,4,6,7,8,9,11,12,13,17,18,
19,21,22,23]. Iscan [7] investigated and studied a new
class of convex functions, which are called harmonically
convex functions. In [7] author has obtained some
Hermite-Hadamard type inequalities via harmonically
convex functions. Zhang et al. [22] have defined and
investigated the concept of harmonically quasi-convex
functions. Noor et al. [11] and Noor et al. [12] have
defined and studied the classes of harmonicallyh-convex
functions and harmonically log-convex functions
respectively.

Inspired by the ongoing research, we introduce a new
class of harmonically convex function which is called
harmonically logarithmich-convex functions. We derive

some new Hermite-Hadamard type inequalities for
harmonically logarithmich-convex functions. Several
new results for other classes of harmonically convex
functions are obtained as special cases of our results. This
illustrates the significance of our new results. It is
expected that interested readers may explore novel and
innovative applications of the main results in other fields.
This is the main motivation of this paper.

2 Preliminaries

In this section, we recall some basic previously known
concepts and define the concept of harmonically
logarithmic h-convex functions. We also define some
other new classes of harmonically convex functions.
Throughout the paperI ⊂ R \ {0} and [0,1] ⊆ J be the
intervals, unless otherwise specified.

Definition 1([7]). A function f : I → R is said to be
harmonically convex function, if

f

(

xy
tx+(1− t)y

)

≤ (1−t) f (x)+t f (y), ∀x,y∈ I, t ∈ [0,1].

(1)

Noor et al. [12] noticed that for t = 1
2, we have the

definition of Jensen type of harmonic convex functions,
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that is

f

(

2xy
x+ y

)

≤
f (x)+ f (y)

2
, ∀x,y ∈ I. (2)

Definition 2([22]). A function f : I ⊆ R+ → R+ is said to
be harmonically quasi-convex function on I, if

f

(

xy
tx+(1− t)y

)

≤ sup{ f (x), f (y)}, ∀x,y∈ I, t ∈ [0,1].

(3)

In [22] authors proved that harmonically convex functions
on I is a harmonically quasi-convex function, but not
conversely.
Noor et al. [12] introduced the concept of harmonically
log-convex functions.

Definition 3([12]). A function f : I → R is said to be
harmonically log-convex function, if

f

(

xy
tx+(1− t)y

)

≤ ( f (x))1−t( f (y))t
, ∀x,y∈ I, t ∈ [0,1].

(4)

From (1), (3) and (4) it follows that

f

(

xy
tx+(1− t)y

)

≤ ( f (x))1−t ( f (y))t

≤ (1− t) f (x)+ t f (y)

≤ sup{ f (x), f (y)}.

This implies that harmonically log-convex function
implies harmonically convex function which implies
harmonically quasi-convex function, but the converse
may not be true.
We now recall the concept of harmonicallyh-convex
functions, which is mainly due to Noor et al. [11].

Definition 4([11]). Let h : J → R be a non-negative
function, h 6= 0. A function f : I → R is said to be
harmonically h-convex function, if f is non-negative
function, and

f
(

xy
tx+(1−t)y

)

≤ h(1− t) f (x)+ h(t) f (y), ∀x,y ∈ I, t ∈ (0,1).

(5)

For other properties and special cases of harmonicallyh-
convex functions see [11].
Now we define the concept of harmonically logarithmic
h-convex functions, which appears to be new one.

Definition 5.Let h : J → R be a non-negative function,
h 6= 0. A function f : I → R is said to be harmonically
logarithmic h-convex function, if

f
(

xy
tx+(1−t)y

)

≤ ( f (x))h(1−t)( f (y))h(t), ∀x,y ∈ I, t ∈ (0,1).

(6)

Note that

log f

(

xy
tx+(1− t)y

)

≤ h(1− t) log f (x)+ h(t) log f (y).

(7)

Note that if f be harmonically logarithmich-convex
function. Thenh(t)+ h(1− t)≥ 1 implies f (x) ≥ 1. And
similarly h(t)+ h(1− t)≤ 1 implies f (x) ≤ 1.

For suitable and appropriate choice of theh-convex
function, we now obtain several new classes of
harmonically convex functions. For example, for
h(t) = ts, h(t) = 1 and h(t) = 1

t , we obtain the new
definitions of harmonically logarithmic s-convex
functions, harmonically logarithmicP-functions and
harmonically logarithmicQ-functions respectively. For
the sake of completeness and to convey the main ideas,
we state these results.

Definition 6.A function f : I → R is said to be
harmonically logarithmic s-convex function, if

f
(

xy
tx+(1−t)y

)

≤ ( f (x))(1−t)s
( f (y))ts

, ∀x,y ∈ I, t ∈ [0,1].

(8)

From this, we have

log f

(

xy
tx+(1− t)y

)

≤ (1− t)s log f (x)+ ts log f (y).

Definition 7.A function f : I → R is said to be
harmonically logarithmic P-convex function, if

f
(

xy
tx+(1−t)y

)

≤ f (x) f (y), ∀x,y ∈ I, t ∈ [0,1].
(9)

Thus

log f

(

xy
tx+(1− t)y

)

≤ log f (x)+ log f (y).

Definition 8.A function f : I → R is said to be
harmonically logarithmic Q-convex function, if

f
(

xy
tx+(1−t)y

)

≤ ( f (x))
1

1−t ( f (y))
1
t , ∀x,y ∈ I, t ∈ [0,1].

(10)

From which, we have

log f

(

xy
tx+(1− t)y

)

≤
1

1− t
log f (x)+

1
t

log f (y).

In [5] Dragomir et al. established a very novel result.
Since then number of authors have utilized this result
directly and indirectly to derive several new
Hermite-Hadamard type of inequalities.
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Lemma 1([5]). Let f : (a,b)⊆ R→ R be a differentiable
mapping with a < b. If f ′ ∈ L[a,b], then the following
equality holds:

f (a)+ f (b)
2

−
1

b−a

b
∫

a

f (x)dx =
b−a

2

1
∫

0

(1−2t) f ′(ta+(1− t)b)dt.

Lemma 2.For a,b ∈ I, t ∈ [0,1] with a < b, we have

ab
(1− t)a+ tb

≤ ta+(1− t)b.

3 Main Results

In this section, we prove our main results for the new class
of harmonically logarithmich-convex functions.

Theorem 1.Let f : I → R be harmonically logarithmic h-
convex function, where a,b ∈ I and a < b. Then

f
(

2ab
a+b

)

1
2h( 1

2 ) ≤ exp

[

ab
b−a

b
∫

a
log

(

f (x)
x2

)

dx

]

≤ ( f (a) f (b))

1
∫

0
h(t)dt

.

(11)

Proof.Let f be harmonically logarithmich-convex
function. Fort = 1

2 in (6), we have

f

(

2xy
x+ y

)

≤ [( f (x))( f (y))]h(
1
2 ).

This implies that

f

(

2ab
a+b

)

≤

[{

f

(

ab
(1− t)a+ tb

)}{

f

(

ab
ta+(1− t)b

)}]h( 1
2 )

.

From this it follows that

log f

(

2ab
a+b

)

≤ h(
1
2
)

[

log f

(

ab
(1− t)a+ tb

)

+ log f

(

ab
ta+(1− t)b

)]

.

Integrating above inequality with respect tot on [0,1], we
have

log f

(

2ab
a+b

)

≤ h(
1
2
)





1
∫

0

log f

(

ab
(1− t)a+ tb

)

dt +

1
∫

0

log f

(

ab
ta+(1− t)b

)

dt



 .

This implies that

1

2h(1
2)

log f

(

2ab
a+ b

)

≤
ab

b− a

b
∫

a

log

(

f (x)
x2

)

dx. (12)

Also integrating inequality (7) with respect tot on [0,1],
we have

ab
b−a

b
∫

a
log

(

f (x)
x2

)

dx ≤ (log( f (a))+ log( f (b)))
1
∫

0
h(t)dt = log( f (a) f (b))

1
∫

0
h(t)dt

.

(13)

Combining (12) and (13), we have

log f
(

2ab
a+b

)

1
2h( 1

2 ) ≤ ab
b−a

b
∫

a
log

(

f (x)
x2

)

dx ≤ log( f (a) f (b))

1
∫

0
h(t)dt

.

From which, we obtain

f
( 2ab

a+b

)

1
2h( 1

2 ) ≤ exp

[

ab
b−a

b
∫

a
log

(

f (x)
x2

)

dx

]

≤ ( f (a) f (b))

1
∫

0
h(t)dt

.

This completes the proof.

For h(t) = ts, h(t) = 1 andh(t) = 1
t , we obtain the new

results for harmonically logarithmics-convex functions,
harmonically logarithmicP-functions and harmonically
logarithmicQ-functions respectively.

Corollary 1.Let f : I → R be harmonically logarithmic s-
convex function, where a,b ∈ I with a < b and s ∈ (0,1).
Then

f
(

2ab
a+b

)2s−1

≤ exp

[

ab
b−a

b
∫

a
log

(

f (x)
x2

)

dx

]

≤ ( f (a) f (b))
1

s+1 .

Corollary 2.Let f : I →R be harmonically logarithmic P-
function, where a,b ∈ I with a < b. Then

f
( 2ab

a+b

)
1
2 ≤ exp

[

ab
b−a

b
∫

a
log

(

f (x)
x2

)

dx

]

≤ ( f (a) f (b)).

Corollary 3.Let f : I →R be harmonically logarithmic Q-
convex function, where a,b ∈ I with a < b. Then

f

(

2ab
a+ b

) 1
4

≤ exp





ab
b− a

b
∫

a

log

(

f (x)
x2

)

dx



 .

Theorem 2.Let f ,g : I → R be harmonically logarithmic
h-convex function, where a,b ∈ I with a < b. Then

ab
b− a

b
∫

a

(

f (x)g(x)
x2

)

dx

≤
1
4





1
∫

0

{

( f (a))2h(1−t)( f (b))2h(t)
}

dt

+

1
∫

0

{

(g(a))2h(1−t)(g(b))2h(t)
}

dt

+2

1
∫

0

{

( f (a)g(a))h(1−t)( f (b)g(b))h(t)
}

dt



 .

Proof.Let f be harmonically logarithmich-convex
function. Then using inequality
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ab ≤ 1
4(a+ b)2, ∀a,b ∈R, we have

ab
b−a

b
∫

a

(

f (x)g(x)

x2

)

dx

=

1
∫

0

f

(

ab
ta+(1− t)b

)

g

(

ab
ta+(1− t)b

)

dt

≤
1
4

1
∫

0

[

f

(

ab
ta+(1− t)b

)

+g

(

ab
ta+(1− t)b

)]2

dt

≤
1
4

1
∫

0

[{

( f (a))h(1−t)( f (b))h(t)
}

+
{

(g(a))h(1−t)(g(b))h(t)
}]2

dt

=
1
4

1
∫

0

{

( f (a))2h(1−t)( f (b))2h(t)
}

dt

+
1
4

1
∫

0

{

(g(a))2h(1−t)(g(b))2h(t)
}

dt+

1
2

1
∫

0

{

( f (a)g(a))h(1−t)( f (b)g(b))h(t)
}

dt.

This completes the proof.

Theorem 3.Let f ,g : I → R be harmonically logarithmic
h-convex function, where a,b ∈ I with a < b. If α +β = 1,
then

ab
b− a

b
∫

a

(

f (x)g(x)
x2

)

dx ≤ α
1

∫

0

[

( f (a))
h(1−t)

α ( f (b))
h(t)
α
]

dt

+β
1

∫

0

[

(g(a))
h(1−t)

β (g(b))
h(t)
β

]

dt.

Proof.Let f ,g : I → R be harmonically logarithmic
h-convex function. Then using inequality

ab ≤ αa
1
α +β b

1
β , α,β > 0,α +β = 1, we have

ab

b−a

b
∫

a

(

f (x)g(x)

x2

)

dx

=

1
∫

0

f

(

ab
ta+(1− t)b

)

g

(

ab
ta+(1− t)b

)

dt

≤

1
∫

0



α
{

f

(

ab
ta+(1− t)b

)} 1
α
+β

{

g

(

ab
ta+(1− t)b

)} 1
β



dt

≤

1
∫

0

{

α [( f (a))h(1−t)( f (b))h(t)]
1
α +β [(g(a))h(1−t)(g(b))h(t)]

1
β
}

dt

= α
1

∫

0

[

( f (a))
h(1−t)

α ( f (b))
h(t)
α

]

dt +β
1

∫

0

[

(g(a))
h(1−t)

β (g(b))
h(t)
β

]

dt.

This completes the proof.

Theorem 4.Let f : I →R be a differentiable such that f ′ ∈
[a,b]. If | f ′|q is decreasing and harmonically logarithmic

h-convex function on I, where q > 1 and h(t)+ h(1− t) =
1. Then we have

∣

∣

∣

∣

∣

∣

f (a)+ f (b)
2

−
1

b−a

b
∫

a

f (x)dx

∣

∣

∣

∣

∣

∣

≤
(b−a)| f ′(b)|

2
2q−1

q





1
∫

0

(1−2t)

(

| f ′(a)|
| f ′(b)|

)qh(t)

dt





1
q

.

Proof.Using Lemma 1, well known power mean
inequality and the fact that| f ′|q is decreasing and
harmonically logarithmich-convex function. Then, we
have
∣

∣

∣

∣

∣

∣

f (a)+ f (b)
2

−
1

b−a

b
∫

a

f (x)dx

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

b−a
2

1
∫

0

(1−2t) f ′(ta+(1− t)b)dt

∣

∣

∣

∣

∣

∣

≤
b−a

2





1
∫

0

|1−2t|dt





1− 1
q




1
∫

0

(1−2t)| f ′(ta+(1− t)b)|qdt





1
q

≤
b−a

2

(

1
2

)1− 1
q





1
∫

0

(1−2t)| f ′
(

ab
(1− t)a+ tb

)

|qdt





1
q

≤
b−a

2

(

1
2

)1− 1
q





1
∫

0

(1−2t)| f ′(a)|qh(t)| f ′(b)|q(h(1−t))dt





1
q

=
b−a

2

(

1
2

)1− 1
q





1
∫

0

(1−2t)| f ′(a)|qh(t)| f ′(b)|q(1−h(t))dt





1
q

=
(b−a)| f ′(b)|

2
2q−1

q





1
∫

0

(1−2t)

(

| f ′(a)|
| f ′(b)|

)qh(t)

dt





1
q

.

This completes the proof.

Remark.We would like to make a remark here that for
different suitable choices ofh function, we have results
for harmonically logarithmic convex function,
harmonically logarithmic s-convex function and
harmonically logarithmicP-convex function.

Remark.Note that forq = 1 in Theorem 4, we have

Corollary 4.Let f : I →R be a differentiable such that f ′ ∈
[a,b]. If | f ′| is decreasing and harmonically logarithmic h-
convex function on I. Then we have

∣

∣

∣

∣

∣

∣

f (a)+ f (b)
2

−
1

b− a

b
∫

a

f (x)dx

∣

∣

∣

∣

∣

∣

≤
(b− a)| f ′(b)|

2





1
∫

0

(1−2t)

(

| f ′(a)|
| f ′(b)|

)h(t)

dt



 .
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Theorem 5.Let f : I →R be a differentiable such that f ′ ∈
[a,b]. If | f ′|q is decreasing and harmonically logarithmic
h-convex function on I, where q > 1, 1

p +
1
q = 1 and h(t)+

h(1− t) = 1. Then we have
∣

∣

∣

∣

∣

∣

f (a)+ f (b)
2

−
1

b− a

b
∫

a

f (x)dx

∣

∣

∣

∣

∣

∣

≤
(b− a)| f ′(b)|

2

(

1
p+1

) 1
p





1
∫

0

(

| f ′(a)|
| f ′(b)|

)qh(t)

dt





1
q

.

Proof.The proof directly follows from the proof of
Theorem 4.
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