
Appl. Math. Inf. Sci.8, No. 1, 321-326 (2014) 321

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080139

A Two-Tier Distributed Full-Text Indexing System
Wei-Zhe Zhang∗, Hui-Xiang Chen, Hui He and Gui Chen

School of Computer Science and Technology, Harbin Institute of Technology, Harbin150001, China

Received: 22 Jun. 2013, Revised: 29 Oct. 2013, Accepted: 30 Oct. 2013
Published online: 1 Jan. 2014

Abstract: The performance of indexing systems is very important for a search engine. Usually, indexing systems on large-scale clusters
can provide high search efficiency, but it brings expensive hardware costs. The costs would be greatly reduced if a distributed indexing
system runs on small-scale clusters connected by the Internet. Two current inverted file partitioning schemes: document partitioning and
term partitioning, have their merits individually. A two-tier distributed full-text indexing system is implemented, which uses document
partitioning among the clusters and term partitioning inside each cluster. Our experiments show that the system performs well in search
efficiency, resource consuming and load balance.

Keywords: Distributed indexing, document partitioning, term partitioning, search efficiency, load balance

1 Introduction

With the development of Internet, search engines have
become essential tools for information retrieval from
huge amounts of web Information Ocean [1]. Short
response time and accurate search results are basic needs
for users. However, large-scale clusters which have
sufficient processing ability and adequate storage are
needed to meet the requirements above. Commerce
search engines can achieve this, but cause expensive
hard-ware cost. The question is put forward from the idea
that if a distributed search engine that runs on small-scale
clusters connected by the Internet can be designed.

The structure of the index is very important for a
search engine. Good index structure makes accurate and
quick search. However, data on the Internet is dynamic,
so index need to be updated to ensure accurate query. The
easiest way of index updating is to rebuild the index,
however, the web page set is so huge that it takes several
days to finish and query requests are not available while
rebuilding. If query requests were permitted using the old
index, recall and precision of the search engine would not
be ensured since the web set has changed. Nowadays,
most search engines use incremental index updating
strategy [2]. This paper is related to the Internet
connection among clusters. Thus, burden of network
transmission among clusters is a factor we need to
consider.

Current two different distributed inverted file

partitioning schemes: document partitioning and term
partitioning [3]. The former is easier to implement, has
higher parallelism and better load balancing. The latter is
quicker in query routing, but worse in load balance. This
paper introduces a two-tier distributed full-text indexing
system, which combines advantages of document
partitioning and term partitioningand provides good
trade-off between search efficiency, resource consuming
and load balance.

The rest of the paper is organized as follows. Section
2 introduces and compares the two current inverted file
partitioning scheme for distributed index. Section 3
describes the network environment and implementation of
the two-tier distributed full-text indexing system.
Experimental results and analysis are shown in section 4
and finally, conclusion is presented in section 5.

2 Two Inverted File Partitioning Scheme for
Distributed Index

An inverted index is an index data structure mainly
storing a mapping from content, mainly words and also
numbers, to its location in a database file, or a document,
or a set of documents. All the words occurred in all web
documents make up the vocabulary. The relationship of
an inverted index can be represented using a matrix
(T × D). T = {t1, t2, ..., tn} means vocabulary, and
D = {d1,d2, ...,dm}is the document set.(T × D)i j is

∗ Corresponding author e-mail:wzzhang@hit.edu.cn

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080139


322 W. Z. Zhang et al: A Two-Tier Distributed Full-Text Indexing System

positive if word(i.e. term)ti occurs in documentd j. The
value of (T × D)i j is decided by the frequency thatti
occurs ind j, and also the frequency thatti occurs in the
whole document set.

To build distributed index[4,5], the matrix should be
partitioned, and then each sub matrix is distributed to
each index server. Currently, there are two partitioning
schemes for distributed inverted files. Document
partitioning: partitionsD by document id horizontally.
D = {D1,D2, ...,Dp}. Then each subset ofD is distributed
to each index server. Term partitioning: partitionsT by
word id vertically. T = {T1,T2, ...Tq}. Then each index
server is in charge of each subset ofT .

As for index building, a good partitioning method
should be selected whether for document partitioning or
term partitioning. The simplest way is to allocate each
document or word randomly to each index server, which
causes heavy network burden. For document partitioning,
the index can be built by partitioning documents
according to subjects. By this way, queries related to one
subject will be forwarded directly to a specific index
server. For term partitioning, the whole index is built on
one server and then allocated to each index server. If web
dataset is huge, large amounts of index files are
transmitted on the Internet. Overall, document
partitioning is easier to implement index building and has
good expansibility because a new index server can be
allocated to handle the index of new document. But term
partitioning has not because the whole index needs to be
rebuilt when the web document set is updated.

On the other hand, the two schemes are different in
searching process. For document partitioning, each index
server stores relationT × Di. A keyword in a query is
possible to occur in any index server, so the query request
of the word should be forwarded to all index servers.
Then they all search in their index files and return search
results to search servers. Therefore, searching based on
document partitioning has good balance. However, it also
brings high network burden and resource consuming. The
more index servers are, the slower response time is due to
larger network traffic and more time in returning results.
For term partitioning, each index server stores relation
Tj ×D. Therefore, the query request of a keyword will be
directly forwarded to the specific index server that stores
the word’s inverted list, so network overhead and resource
consuming is low. The drawback is bad load balance.
Based on the discussion, term partitioning is superior to
document partitioning in search efficiency.

3 Two-Tier Distributed Full-Text Indexing
System

3.1 Network Environment

Our indexing system applies to small-scale clusters
connected by the Internet. Inside each cluster, it is

connected by high-speed LAN. Among the clusters, it is
connected by the low-speed Internet, so the indexing
system should minimize network transmissions among
the clusters. See Figure 1.

Considering that network transmission among the
clusters should be as small as possible, large data
transmission can be confined inside the clusters, so term
partitioning inside each cluster is a good choice. Besides,
different clusters are connected by the low-speed Internet,
using document partitioning ensures load balance among
the clusters. Based on the discussion above, this paper
proposes a two-tier partitioning scheme, which is using
document partitioning among the clusters and term
partitioning inside each cluster. And the two-tier
distributed full-text indexing system is implemented
using this scheme.

3.2 Implementation

D is the complete web document set and each cluster
stores a subset ofD,D1,D2,D3, D = {D1,D2,D3}.
Document partitioning is used among the clusters. Each
cluster build its local index files based on its web
document set inde-pendently. Cluster1 builds index ofD1,
Cluster2 builds index ofD2 and Cluster3 builds index of
D3. Inside each cluster, term partitioning is used. Take
Cluster1 for example, it consists of n index servers.

Definition of symbols:∀t ∈ T, p(t) represents the
frequency thatt occurs in all queries.P is a specified
threshold to decide whethert is a high frequency word or
not. If p(t) > p, then t is added intoPT , i.e. high
frequency word set.pt1∀PT ∧ pt2 ∈ PT,c(pt1, pt2) is the
frequency thatpt1 and pt2 both occur in the same query,
i.e. How many queries contain bothpt1 and pt2.C is a
specified threshold to determine whetherpt1 and pt2
should be in the same group. In the following, the term
partitioning algorithm inside Cluster1 is given.

Document partitioning among the clusters avoids
large data transmission because each cluster builds its
local index files. Moreover, term partitioning inside each
cluster has good load balance, because low frequency
words and the m groups of high frequency words are
distributed averagely to index servers. Besides, partition
of PT based on concurrence considers combination of
high frequency words, thus improves search efficiency by
reducing the relating index servers when a query is
executed.

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 1, 321-326 (2014) /www.naturalspublishing.com/Journals.asp 323

Fig. 1: Structure of the two-tier indexing system

Algorithm 1: Term Partitioning Algorithm in-side
One Cluster (TPAOC)
1)sort vocabulary into two categories: high frequency
words and low frequency words and allocate low
frequency words to index servers
2) for eacht ∈ T
3) if p(t)< p then
4) randomly select an index server using consistent
hash function

5) else ifp(t)> p4 thenPT = PT ∪{t}
6) end for
7) partition words in PT into m groups based on
co-occurrence
8) for each(pta, ptb) ∈ PT
9) if c(pta, ptb)>C then
10) if pta andptb are not in any group
11) then create a new groupci
12) p(ci) = max{p(pta),(ptb)}
13) else ifpta is in groupc j and ptb is not in any
group before

14) then addptb into c j
15) p(c j) = max{p(c j), p(ptb)}
16) else ifpta is not in any group before andptb is in
groupc j
17) then addpta into c j
18) p(c j) = max{p(ca), p(pt j)}
19) else ifpta is in groupci andptb is in groupc j
20) then mergeci andc j into ci
21) p(ci) = max{p(ci), p(c j)}
22) end if
23) end if
24) end for
25) //assign these m groups of words to n index servers
26) distribute PT = c1,c2,c3...cm to n index servers
averagely byp(ci)

3.3 Search Process

There are four kinds of roles in this system: Centralized
search engine, cluster search engine, index server and

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


324 W. Z. Zhang et al: A Two-Tier Distributed Full-Text Indexing System

Fig. 2: Architecture of the two-tier distributed full-text indexing
system

index updating server.
When a user sends query request, the search process

in the system is as follows: first, the cen-tralized search
engine receives the query request, and then forwards the
request to all cluster search engines; second, each cluster
search engine receives the request, and segments the
query into keywords. Then it forwards each keyword to
its corresponding index server, based on the term
partitioning scheme and addressing of consistent hash;
then each index server receives its keywords, and search
in its inverted list to get results. Then each returns
searching results to its cluster search engine; later each
cluster search engine sorts all the searching results
received and return sorted results to the centralized search
engine; finally, the centralized search engine merges and
passes the final results to the user.

The index updating server solves the complexity of
rebuilding the whole index inside each cluster caused by
dynamic web document set. It ensures normal query
service even if the web document set has been updated.
The whole index is rebuilt periodically or when the index
updating server is fully loaded.

4 Experimental Results and Analysis

We use three computers(Configuration: Intel(R)
Xeon(TM) 3.20GHz Quad-Core CPU, 280G HDD, 4G
Memory) to simulate three clusters, and another
computer(Configuration: Intel(R) Xeon Duo-Core CPU,
4G Memory) to represent centralized search engine. Then
set the bandwidth among the clusters 2Mbs, and
bandwidth inside each cluster 100Mbs. Assuming that the
three clusters have 6, 8, 6 numbers of index servers
respectively, and each has a cluster search engine. In this
simulation environment, we implement three systems for
the document partitioning and term partitioning. We use

the full version of query log of users released by Sougou
Lab(i.e. SougouQ) as input query set, internet thesaurus
of Sougou Lab(SougouW) as the main vocabulary,
randomly select 500,000,000 webs after content
extraction from over 1 billion webs in internet
corpus(SougouT) as the test document set. After
segmented into keywords using
IKAnalyz-er(http:code.google.compik-analyzer),each
query contains three keywords on average(see Table 1).

p(t) is calculated by making statistics of the number

Table 1: Distribution of number of keywords each query contains

How many keywords each
query contains on average Percentage
1 12.88%
2 28.91%
3 26.39%
4 15.40%
5 8.15%
>5 8.27%

of queries each keyword appears in.PT consists of the
top 3000 words which have higherp(t). Then PT is
partitioned using TPAOC algorithm. Later, we select 5
groups of queries (each group has 5000 queries) based on
the distribution in Table 1. The 5 groups of queries are
input serially into the centralized search engine. We
record total response time for each group, then the
throughput of each index system is got:
throughput = total response time5000. See Table 2.

For each query, calculate the amount of index servers
which receive query request in the search process, we call
this value QM QM is the mean value of QM for one
group of queries.QM of the 5 groups of queries are as
follows. In Table 2, the mean value of TDIS is the 66.5,
which is higher than 64.3 and 47.0. As group varies,
throughput changes only a little. And except in group
2(TDIS 60.7, DP 65.3), the throughput of TDIS is always
the highest. Therefore, we conclude that TDIS do best in

Table 2: Experiment results of throughput for three systems

Group
of queries

System
type

Two-tier
distributed
indexing

system(qps)

Document
partitio-

ning(qps)

Term
partitio-

ning(qps)

1 67.3 64.9 48.4
2 60.7 65.3 49.5
3 73.5 66.1 47.4
4 61.4 59.3 44.1
5 69.8 65.7 45.2
mean value 66.5 64.3 47.0

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 1, 321-326 (2014) /www.naturalspublishing.com/Journals.asp 325

Table 3: QM of the 5 groups of queries

Group
of queries

System
type TDIS(qps) DP(qps) TP(qps)

1 4.69 20 1.67
2 4.31 20 1.58
3 5.35 20 2.31
4 4.37 20 1.73
5 4.25 20 1.59
mean value 4.80 20 1.78

throughput, which indicates the highest search efficiency.
In Table 3, the mean value of TDIS is 4.80, which is not
much bigger than 1.78, but much smaller than 20. As
group differs, the fluctuation ofQM is small. QM of
TDIS always not much bigger than TP but much smaller
than DP. Thus, TDIS behaves well in resource
con-suming (i.e. low resource consuming).

Moreover, we make statistics of load balance of each
index server, which is represented byLBI: LBI=the
amount o f queries that one index server has processed
the amount o f queries in the whole query set. Then, for
each partitioning scheme, we calculate the coefficient of
variance (CV )based on theLBIs of all twenty index
servers, as is shown in Table 4.

Table 4: CV of twenty index servers in load balancing for 3
systems

System type CV of all twenty index servers
in load balancing
TDIS 8.80
DP 0
TP 22.32

5 Conclusions

This paper proposes a two-tier partitioning scheme
combining the strengths of document partitioning and
term partitioning, and implement the two-tier distributed
full-text indexing system based on this. Experiment
results show that the system has behaves well in search
efficiency and resource consuming, load balance.
Efficiency of our system will be greatly improved if
caching and parallelization are used. Our future research
will focus on the aspect.

Acknowledgement

This work was supported in part by NSFC under Grant
Nos. 61173145, National High Technology Research and
Development Program of China under Grant No.
2011AA010705, National Basic Research Program of
China under Grant No.G2011CB302605.
The authors are grateful to the anonymous referee for a
careful checking of the details and for helpful comments
that improved this paper.

References

[1] GlebSkobeltsyny, ToanLuuy, etc. Web Text Retrieval
with a P2P Query-Driven Index. Amsterdam:30th annual
international ACM SIGIR conference on Research and
development in information retrieval, 686 (2007).

[2] Nicholas Lester, Alistair Moffat, Justin Zobel. Fast On-Line
Index Construction by Geometric Partitioning. Ap-plications
of Digital Information and Web Technologies, 90-95 (2008).

[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information
Retrieval. Addison-Wesley-Longman, (1999).

[4] Melnik, S. Raghavan, S. Yang, B. Garcia-Molina, H.
Building a Distributed Full-Text Index for the Web. ACM
ASSOCIATION FOR COMPUTING MACHINERY, 19,
217-241 (2001).

[5] Marco Hentschel, Maozhen Li, Mahesh Ponraj, etc. Dis-
tributed Indexing for Resource Discovery in P2P Net-
works. ShangHai: 9th IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid, 2009,Volume
00550–555M. Stojanovic, Low complexity OFDM detector
for underwateracoustic channels. Proceedings of the IEEE
Oceans Conference, 1-6 (2006).

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


326 W. Z. Zhang et al: A Two-Tier Distributed Full-Text Indexing System

Wei-Zhe Zhang
received the B.S., M.S.
and Ph.D. degree in computer
science from Harbin Institute
of Technology, Harbin,
China. Since August 2003,
he has been with the School
of Computer Science and
Technology, Harbin Institute
of Technology, Harbin,

China, where he became a Professor in December 2012.
His research interests include network computing,
parallel computing. He is the corresponding author of this
paper. His email is wzzhang@hit.edu.cn

Hui-Xiang Chen was
born in He Nan in 1989. He
received the B.S. degree from
the Department of Computer
and Communication
Engineering, Jilin University,
Jilin, China, in 2011. He is
currently M.S. student of the
School of Computer Science
and Technology, Harbin

Institute of Technology, Harbin, China, in 2011. His
research interests include parallel computing, cloud
computing

Hui He received
the B.S., M.S. and Ph.D.
degree in computer science
from Harbin Institute of
Technology, Harbin, China.
Since September 1999,
she has been with the School
of Computer Science and
Technology, Harbin Institute
of Technology, Harbin,

China, where she became an Associate Professor in
October 2007. Her research interests include network
computing, network security

Gui Chen now studies the
Bachelor degree at School of
Software in Harbin Institute
of Technology, China.
His research interests include
parallel and distributed
system, cloud computing.

c© 2014 NSP
Natural Sciences Publishing Cor.


	Introduction
	Two Inverted File Partitioning Scheme for Distributed Index
	Two-Tier Distributed Full-Text Indexing System
	Experimental Results and Analysis
	Conclusions

