Appl. Math. Inf. Sci.8, No. 1, 321-326 (2014) N=) 321

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080139

A Two-Tier Distributed Full-Text Indexing System
WEi-Zhe Zhang*, Hui-Xiang Chen, Hui He and Gui Chen
School of Computer Science and Technology, Harbin Institute of Téoby, Harbin150001, China

Received: 22 Jun. 2013, Revised: 29 Oct. 2013, Accepted: 30 @L3. 2
Published online: 1 Jan. 2014

Abstract: The performance of indexing systems is very important for a seagine. Usually, indexing systems on large-scale clusters
can provide high search efficiency, but it brings expensive hala@sts. The costs would be greatly reduced if a distributed indexing
system runs on small-scale clusters connected by the Internet. Tvemtimvrerted file partitioning schemes: document partitioning and
term partitioning, have their merits individually. A two-tier distributed full-texdéxing system is implemented, which uses document
partitioning among the clusters and term partitioning inside each clusterxperiments show that the system performs well in search
efficiency, resource consuming and load balance.

Keywords: Distributed indexing, document partitioning, term partitioning, searchiefffay, load balance

1 Introduction partitioning schemes: document partitioning and term
partitioning B]. The former is easier to implement, has
higher parallelism and better load balancing. The latter is
‘ﬁuicker in query routing, but worse in load balance. This
paper introduces a two-tier distributed full-text indexin
jgtem, which combines advantages of document

become essential tools for information retrieval from
huge amounts of web Information Oceaf].[Short
response time and accurate search results are basic ne

for Jusers. However, Iar_ge-scale clusters which hav rade-off between search efficiency, resource consuming
sufficient processing ability and adequate storage are 4 load balance

needc—;d to meet the rﬁqU|rertrr11¢ntsb ?bove. Commer_ce The rest of the paper is organized as follows. Section
search engines can achieve (his, bul cause expensig;.iqqyces and compares the two current inverted file
hard.-wartla COSL. The guestion IS put forward from the ide artitioning scheme for distributed index. Section 3
that if a distributed search engine that runs on small-scal escribes the network environment and implementation of
clusters connected by the Internet can be designed. the two-tier distributed full-text indexing system.

Thﬁ strgcturé ofdthed mdetx 'St very Tportant fotr a perimental results and analysis are shown in section 4
search engine. £500d INdex Structure makes accurate ang, finally, conclusion is presented in section 5.

quick search. However, data on the Internet is dynamic,
so index need to be updated to ensure accurate query. The
easiest way of index updating is to rebuild the index, . e
however, th{;\ web page get is go huge that it takes severd 1WO Inverted File Partitioning Scheme for
days to finish and query requests are not available whildistributed I ndex
rebuilding. If query requests were permitted using the old
index, recall and precision of the search engine would notAn inverted index is an index data structure mainly
be ensured since the web set has changed. Nowadaystoring a mapping from content, mainly words and also
most search engines use incremental index updatingumbers, to its location in a database file, or a document,
strategy P]. This paper is related to the Internet or a set of documents. All the words occurred in all web
connection among clusters. Thus, burden of networkdocuments make up the vocabulary. The relationship of
transmission among clusters is a factor we need taan inverted index can be represented using a matrix
consider. (T x D). T = {t1,t,...,tn} means vocabulary, and
Current two different distributed inverted file D = {d;,do,...,dm}is the document set(T x D);; is

titioning and term partitioningand provides good

* Corresponding author e-mailizzhang@hit.edu.cn

© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080139

322 NS 2 W. Z. Zhang et al: A Two-Tier Distributed Full-Text Indexing System

positive if word(i.e. term}; occurs in documendj. The connected by high-speed LAN. Among the clusters, it is
value of (T x D);; is decided by the frequency thgt connected by the low-speed Internet, so the indexing
occurs indj, and also the frequency thatoccurs in the system should minimize network transmissions among
whole document set. the clusters. See Figure 1.

To build distributed indeX, 5], the matrix should be
partitioned, and then each sub matrix is distributed to Considering that network transmission among the
each index server. Currently, there are two partitioningclusters should be as small as possible, large data
schemes for distributed inverted files. Documenttransmission can be confined inside the clusters, so term
partitioning: partitionsD by document id horizontally. partitioning inside each cluster is a good choice. Besides,
D = {D1,D>,...,Dp}. Then each subset &fis distributed different clusters are connected by the low-speed Internet
to each index server. Term partitioning: partitiofisby using document partitioning ensures load balance among
word id vertically. T = {T1,T>,...Tq}. Then each index the clusters. Based on the discussion above, this paper
server is in charge of each subseflof proposes a two-tier partitioning scheme, which is using

As for index building, a good partitioning method document partitioning among the clusters and term
should be selected whether for document partitioning orpartitioning inside each cluster. And the two-tier
term partitioning. The simplest way is to allocate eachdistributed full-text indexing system is implemented
document or word randomly to each index server, whichusing this scheme.
causes heavy network burden. For document partitioning,
the index can be built by partitioning documents
according to subjects. By this way, queries related to one3,2 |mplementation
subject will be forwarded directly to a specific index
server. For term partitioning, the whole index is built on p js the complete web document set and each cluster
one server and then allocated to each index server. If wetores a subset oD,Di,D,,D3, D = {D;,D,D3}.
dataset is huge, large amounts of index files arepocument partitioning is used among the clusters. Each
transmitted on the Internet. Overall, documentcjyster build its local index files based on its web
partitioning is easier to implement index building and has gocument set inde-pendently. Clusterl builds indeRqf

good expansibility because a new index server can be|yster2 builds index oD, and Cluster3 builds index of
allocated to handle the index of new document. But termp, |nside each cluster, term partitioning is used. Take

partitioning has not because the whole index needs to bgyster1 for example, it consists of n index servers.
rebuilt when the web document set is updated.

)) Definition of symbols:vt € T,p(t) represents the
On the other hand, the two schemes are different infrequency thatt occurs in all queriesP is a specified
searching process. For document partitioning, each indexyreshold to decide whetheis a high frequency word or
server stores relatiofl x Dj. A keyword in a query is npot. |f p(t) > p, then t is added intoPT, i.e. high
possible to occur in any index server, so the query requestequency word setpt; YPT A pt, € PT,c(pt1, pt) is the
of the word should be forwarded to all index servers. frequency thatpt; and pt, both occur in the same query,
Then they all search in their index files and return search e, How many queries contain boift; and pt,.C is a
results to search servers. Therefore, searching based @fpecified threshold to determine whethet and pty

document partitioning has good balance. However, it alsashould be in the same group. In the following, the term
brings high network burden and resource consuming. Th?Jartitioning algorithm inside Cluster1 is given.

more index servers are, the slower response time is due to

larger network traffic and more time in returning results. pocument partitioning among the clusters avoids
For term partitioning, each index server stores relationjarge data transmission because each cluster builds its
Tj x D. Therefore, the query request of a keyword will be |ocal index files. Moreover, term partitioning inside each
directly forwarded to the specific index server that storesc|yster has good load balance, because low frequency
the word's inverted list, so network overhead and resourceyords and the m groups of high frequency words are
consuming is low. The drawback is bad load balance gistributed averagely to index servers. Besides, pantitio
Based on the discussion, term partitioning is superior t0of PT based on concurrence considers combination of

document partitioning in search efficiency. high frequency words, thus improves search efficiency by
reducing the relating index servers when a query is
executed.

3 Two-Tier Distributed Full-Text Indexing
System

3.1 Network Environment

Our indexing system applies to small-scale clusters
connected by the Internet. Inside each cluster, it is

© 2014 NSP
Natural Sciences Publishing Cor.

m.\xl
T

Appl. Math. Inf. Sci.8, No. 1, 321-326 (2014)Wwww.naturalspublishing.com/Journals.asp N 323

Index Index Index Index i
I
serverl SErverd server3 serverd,

partitioning g h
Searc
1 Server

1

1

1

;

Term Cluxtmrl;

| :
| 1
i i
!]
! I

Term

term Term
partitioning £ 4 i = partitioning
= =
Cluster? Cluster3

Fig. 1. Structure of the two-tier indexing system

Algorithm 1: Term Partitioning Algorithm in-side 14) then addpty, into c;
One Cluster (TPAOC) 15) p(cj) = max{p(c;), p(ptp) }
1)sort vocabulary into two categories: high frequency16) else ifpts is not in any group before angty, is in
words and low frequency words and allocate low groupc;

frequency words to index servers 17) then addt, into c;
2)foreacht e T 18) p(cj) = max{p(ca), p(ptj)}
3) if p(t) < pthen 19) else ifpt, is in groupc; andpty, is in groupc;
4) randomly select an index server using consistent20) then merge; andc;j into ¢
hash function 21) p(ci) = max{p(ci), p(cj)}
22) end if
: o 23) endif
5) elseifp(t) > p4 thenPT = PT U {t} 24) end for

6) end for
7) partition words inPT into m groups based on
co-occurrence

25) /lassign these m groups of words to n index servers
26) distribute PT = ¢3,Cp,C3...C,y t0 n index servers

8) for each(pt,, ptp) € PT averagely byp(ci)

9) if c(pta, ptp) > C then

10) if pta andpt, are not in any group

11) then create a new groap 3.3 Search Process

12) p(ci) = max{p(pta), (Pto) }

13) else ifpty is in groupcj and pt, is notin any ~ There are four kinds of roles in this system: Centralized
group before search engine, cluster search engine, index server and

© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

324 W. Z. Zhang et al: A Two-Tier Distributed Full-Text Indexing System

the full version of query log of users released by Sougou
Lab(i.e. SougouQ) as input query set, internet thesaurus
of Sougou Lab(SougouW) as the main vocabulary,
randomly select 500,000,000 webs after content
extraction from over 1 bilion webs in internet
corpus(SougouT) as the test document set. After
segmented into keywords using
IKAnalyz-er(http:code.google.compik-analyzer),each
guery contains three keywords on average(see Table 1).
p(t) is calculated by making statistics of the number

Lentral {zeil
Search E

Frdes Updating [
Sarvers

uster §
o Uluster Search
Engined

Rosult Detnstrosn

Table 1: Distribution of number of keywords each query contains

Guery Dalastream

How many keywords each
Fig. 2: Architecture of the two-tier distributed full-text indexing guery contains on average

system

Percentage
12.88%
28.91%
26.39%
15.40%

8.15%
8.27%

O wWN P

index updating server.

When a user sends query request, the search process
in the system is as follows: first, the cen-tralized search
engine receives the query request, and then forwards the
request to all cluster search engines; second, each clustéf queries each keyword appears Rl consists of the
search engine receives the request, and segments tfi@p 3000 words which have highegs(t). Then PT is
guery into keywords. Then it forwards each keyword to partitioned using TPAOC algorithm. Later, we select 5
its corresponding index server, based on the termgroups of queries (each group has 5000 queries) based on
partitioning scheme and addressing of consistent hastthe distribution in Table 1. The 5 groups of queries are
then each index server receives its keywords, and seardhput serially into the centralized search engine. We
in its inverted list to get results. Then each returnsrecord total response time for each group, then the
searching results to its cluster search engine; later eaciroughput of each index system is got:
cluster search engine sorts all the searching resultshroughput = total response time5000. See Table 2.
received and return sorted results to the centralizedlsearc ~ For each query, calculate the amount of index servers
engine; finally, the centralized search engine merges an#hich receive query request in the search process, we call
passes the final results to the user. this value QMQM is the mean value of QM for one

The index updating server solves the complexity of group of queriesQM of the 5 groups of queries are as
rebuilding the whole index inside each cluster caused byfollows. In Table 2, the mean value of TDIS is the 66.5,
dynamic web document set. It ensures normal quenywhich is higher than 64.3 and 47.0. As group varies,
service even if the web document set has been updatedhroughput changes only a little. And except in group
The whole index is rebuilt periodically or when the index 2(TDIS 60.7, DP 65.3), the throughput of TDIS is always
updating server is fully loaded. the highest. Therefore, we conclude that TDIS do best in

4 Experimental Resultsand Analysis

Table 2: Experiment results of throughput for three systems

We use three computers(Configuration: Intel(R) S Two-tier

Xeon(TM) 3.20GHz Quad-Core CPU, 280G HDD, 4G YSIM - stributed DOCUMeNnt - Term
Memory) to simulate three clusters, and another G'OUP WPE indexing ~ Partitio- - partitio-
computer(Configuration: Intel(R) Xeon Duo-Core CPU, ©°fdueries system(gps) "n9(@ps) ning(qps)
4G Memory) to represent centralized search engine. Themq 67.3 64.9 484
set the bandwidth among the clusters 2Mbs, and » 60.7 65.3 49.5
bandwidth inside each cluster 100Mbs. Assuming that the 3 735 66.1 47.4
three clusters have 6, 8, 6 numbers of index servers 4 61.4 59.3 44.1
respectively, and each has a cluster search engine. In thiss 69.8 65.7 45.2
simulation environment, we implement three systems for mean value 66.5 64.3 47.0

the document partitioning and term partitioning. We use

© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 1, 321-326 (2014)Wwww.naturalspublishing.com/Journals.asp NS 2 325

Table3: QM of the 5 groups of queries Acknowledgement
System
Group type TDIS(gps) DP(gps) TP(gps) This work was supported in part by NSFC under Grant
of queries Nos. 61173145, National High Technology Research and
1 269 20 167 Development Program of China under Grant No.
2 431 20 1.58 2011AA010705, National Basic Research Program of
3 5.35 20 231 China under Grant No.G2011CB302605.
4 4.37 20 1.73 The authors are grateful to the anonymous referee for a
5 4.25 20 1.59 careful checking of the details and for helpful comments
mean value 4.80 20 1.78 that improved this paper.
References

throughput, which indicates the highest search efficiency[1] GlebSkobeltsyny, ToanLuuy, etc. Web Text Retrieval
In Table 3, the mean value of TDIS is 4.80, which is not ~ with a P2P Query-Driven Index. Amsterdam:30th annual
much bigger than 1.78, but much smaller than 20. As international _A(_ZM SIG_IR con_ference on Research and
group differs, the fluctuation oQM is small. QM of dgvelopment in |nfqrm{itl0n retrleval,.686 (2007). '
TDIS always not much bigger than TP but much smaller[2] Nicholas Lester, Alistair Moffat, Justin Zobel. Fast On-Line
than DP. Thus, TDIS behaves well in resource Index Construction by Geometric Partitioning. Ap-plications
con-suming (i.e. low resource consuming). of Digital Information and V_\/eb_ Technologies, 90-95 (200%_3).

Moreover, we make statistics of load balance of each®] R- Baeza-vates and B. Ribeiro-Neto, Modern Information
index server, which is represented hBI: LBl=the Retrieval. Addison-Wesley-Longman, (1999).

. ! [4] Melnik, S. Raghavan, S. Yang, B. Garcia-Molina, H.
amount of queries that one index server has processed Building a Distributed Full-Text Index for the Web. ACM

the amount of queriesin the whole query set. Then, for ASSOCIATION FOR COMPUTING MACHINERY. 19
each partitioning scheme, we calculate the coefficient of 51541 (2001). T
variance (CV)based on thelBls of all twenty index [5]marco Hentschel, Maozhen Li, Mahesh Ponraj, etc. Dis-
servers, as is shown in Table 4. tributed Indexing for Resource Discovery in P2P Net-
works. ShangHai: 9th IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid, 2009,Volume
00550-555M. Stojanovic, Low complexity OFDM detector
Table 4: CV of twenty index servers in load balancing for 3 for underwateracoustic channels. Proceedings of the IEEE

systems Oceans Conference, 1-6 (2006).
System type CV of all twenty index servers
in load balancing
TDIS 8.80
DP 0
TP 22.32

5 Conclusions

This paper proposes a two-tier partitioning scheme
combining the strengths of document partitioning and
term partitioning, and implement the two-tier distributed
full-text indexing system based on this. Experiment
results show that the system has behaves well in search
efficiency and resource consuming, load balance.
Efficiency of our system will be greatly improved if
caching and parallelization are used. Our future research
will focus on the aspect.

© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

326 W. Z. Zhang et al: A Two-Tier Distributed Full-Text Indexing System

Wei-Zhe Zhang

received the B.S., M.S.

and Ph.D. degree in computer

science from Harbin Institute

e of Technology, Harbin,

s China. Since August 2003,

- he has been with the School

‘ of Computer Science and
Technology, Harbin Institute

of Technology, Harbin,
China, where he became a Professor in December 2012,
His research interests include network computing,
parallel computing. He is the corresponding author of this
paper. His email is wzzhang@bhit.edu.cn

Hui-Xiang Chen was
born in He Nan in 1989. He
received the B.S. degree from
the Department of Computer
and Communication
Engineering, Jilin University,
Jilin, China, in 2011. He is
currently M.S. student of the
School of Computer Science
and Technology, Harbin
Institute of Technology, Harbin, China, in 2011. His
research interests include parallel computing, cloud
computing

Hui He received
the B.S., M.S. and Ph.D.
degree in computer science
from Harbin Institute of
Technology, Harbin, China.
Since September 1999,
she has been with the School
of Computer Science and
Technology, Harbin Institute
of Technology, Harbin,
China, where she became an Associate Professor in
October 2007. Her research interests include network
computing, network security

Gui Chen now studies the
Bachelor degree at School of
Software in Harbin Institute
of Technology, China.
His research interests include
parallel and distributed
system, cloud computing.

© 2014 NSP
Natural Sciences Publishing Cor.

	Introduction
	Two Inverted File Partitioning Scheme for Distributed Index
	Two-Tier Distributed Full-Text Indexing System
	Experimental Results and Analysis
	Conclusions

