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Abstract: In this paper, we propose a distributed rendering mechanismfor image data using multiple servers. Since line extraction of
large images requires high computation overhead to render an image, a client divides it into several image pieces. Each piece is sent to
a different server, which then performs the rendering. A client then merges the rendered pieces into one output image. The proposed
method enables large image data to be rendered by a collaboration of multiple servers with reasonable processing and communication
cost.
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1 Introduction

With the advancement of computing devices and Internet
technologies, we can easily create and obtain varying
multimedia content. Due to the proliferation of mobile
devices with embedded cameras, users have even more
chance to manipulate 2D image data with a variety of
applications. As recent high-end devices provide
sufficient computing and rendering resources, users want
to process, transform, and visualize higher quality 2D
image data.

However, normal desktop PCs and mobile devices
still lack sufficient rendering power due to hardware
limitations. To address this issue, various studies have
been performed using remote rendering, especially for 3D
content [1,2,3,4,5,6,7]. The remote rendering method
enables low-end devices to display images that have been
rendered by a remote server, but it has an intrinsic
problem. Although a single server has the role of
surrogate renderer of a client, it can become overloaded in
terms of rendering time if the server performs rendering
for a large amount of content. As the content size
increases, it takes a longer time to process it. To overcome
the limitation of a single server, some existing approaches
use parallel processing on a multi-core graphics card [8].
However, this approach requires expensive hardware and
sufficient knowledge of parallel programming [9]. In

addition, it is difficult to add more graphics cards if a
single card is not sufficient to complete the processing of
an input image with an acceptable delay.

In this paper, we aim to distribute the rendering
overhead of a single server to multiple servers in order to
reduce the overall delay of image stylization. In
particular, we focus on the line extraction process, which
represents one of the image stylization methods. To this
end, a client is in charge of dividing an input image into
several small pieces, if the image size is greater than a
threshold value. Since the stylization of a pixel is affected
by its surrounding pixels in our stylization method, an
input image splits such that the boundary pixels of the
pieces overlap. Otherwise, the stylization result at the
boundary pixels of two image pieces cannot be merged
seamlessly. Each image piece is then sent to a different
server so that multiple servers handle only the separated
image piece instead of the whole input image. Multiple
servers conduct the line extraction from the received input
image piece independently and in parallel. The servers do
not interact with each other, and just send their resulting
image pieces back to the requesting client. While
receiving result image pieces from servers, a client
assembles them into one stylized image, which is then
displayed on the client screen. The proposed distributed
stylization approach addresses the bottleneck problem of
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a single server rendering with modest changes on the
client side, making it possible to stylize even a large input
image with reasonable delay.

The remainder of this paper is organized as follows.
Sec. 2 discusses the literature survey of the existing
remote rendering and image stylization schemes. In Sec.
3, we describe the main problem and the fundamental
idea of our proposed approach. In Secs.4 and 5, we
introduce a previous local stylization technique and its
extension to the distributed manner of stylization.
Communication aspects of the proposed distribution
model benefit from communication middleware (CM),
which is described in Secs.6 and7. In Sec.8, we analyze
our method to measure the performance in terms of the
processing and communication overhead. Finally, we
conclude our paper in Sec.9.

2 Related Work

In this section, we discuss existing research on 2D image
stylization techniques and remote rendering approaches.

For 2D image stylization, which is a target of this
paper, there have been various mechanisms that require
high rendering computation. For real-time processing,
many image stylization methods have been designed to be
highly parallel and have been implemented on the
Graphics Processing Unit (GPU) [10,11,12,13]. Pixel
operations are performed on the neighborhood around a
pixel, and the operations for each pixel are independent of
the other pixels. The locality and independence of the
computations are suitable for our distributed rendering
framework.

Shi et al. [1] proposed a real-time remote rendering
system for mobile devices. In their approach, a server
sends the selected depth images to the mobile client,
which then runs 3D image warping on the received depth
images to synthesize an updated image at the current
viewpoint. They reduce the interaction latency by
separating the rendering process between a client and a
server. Doellner et al. [2] devised a server-based rendering
scheme for large 3D scenes using G-buffer cube maps.
Their approach also splits the rendering process between
a server and a client. A server is responsible for the
rendering of virtual panoramas which are represented by
G-buffer cube maps, and a client uses these maps to
reconstruct the 3D scene. Diepstraten et al. [3] developed
a remote rendering method for 2D image generation tasks
from a 3D model in mobile devices. A server extracts 2D
line primitives from arbitrary 3D scenes, and a client
receives and renders only 2D line primitives. There are
also other similar remote 3D visualization approaches [4,
5], as well as a multitude of real-time rendering [6], and
image-based rendering schemes [7]. Yoo et al. [8]
presented a parallel design of the proxy server in the
remote rendering framework. Using Compute Unified
Device Architecture (CUDA) [9], they developed parallel
rendering on GPUs in the proxy server.

In summary, most existing approaches focus on remote
rendering for 3D content using a single server. Although
some of this research lightens the burden on the server, a
complicated parallel programming model is required for
high-performance graphics hardware.

3 Design Consideration

Remote rendering is used to address the limitations of a
device which does not have sufficient computing
resources for processing input content. The remote
rendering method was developed for displaying 3D
content on a low-end device that has no 3D graphics
accelerating capability. Even though a device has a 3D
accelerator, it can delegate rendering tasks to a
high-performance machine in order to reduce the
processing delay. The same thing happens in 2D image
stylization because it also requires a great deal of
rendering computation on a GPU.

While the remote rendering method lessens the
processing overhead, it causes another overhead:
communication delay between a client and a server.
Communication delay occurs when a client sends source
content to a server, and when a server sends
transformation results back to a requester. The delay is
affected by the available network bandwidth and content
size. Connection speeds of several Mbps surely cause a
longer delay than Gbps networks with the same content
size, and it takes a longer time to send larger content.
Therefore, the remote rendering method has a
performance benefit only if the communication and server
process overhead is lower than the overall cost in the case
of only local rendering.

In addition to the communication delay, a server may
suffer from high processing overhead if the input content
size is greater than the acceptable size due to the
limitations of the graphics hardware. In this case, a
graphics engine needs multiple rendering iterations
because the buffer cannot read all of the bytes of the
content at a time. Server performance can be improved by
using a multi-core graphics card and parallel
programming model. However, this requires
high-performance hardware with parallel GPU
architecture and knowledge of a parallel computing
platform such as CUDA. Furthermore, a single GPU may
have the same problem if the quality or the size of the
input image goes beyond the expected capability, and it is
difficult to extend the performance by adding more
graphics cards. An alternative, more cost-effective
approach is distributed rendering, in which parallel
processing is conducted by multiple servers, as shown in
Fig. 1. A client divides an image into several image
pieces, and sends each piece to a different server. A server
takes on the same role as that of remote rendering, but it
lessens the burden of the rendering cost as it handles only
a separate part of the whole image. Rendered image
pieces are sent back to the client, which then collects the
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results and generates a rendered image. This approach can
be easily extended by adding more servers, as the image
size increases.

Fig. 1: Distributed rendering

In order to realize distributed rendering, a client must
be able to partition an image into independent pieces, and
rendered pieces must be reassembled such that the
boundary pixels of the pieces are seamlessly connected.
In other words, the recreated image must have the same
quality as an input image stylized by one server. Another
aspect to consider is the additional overhead incurred by
distributed rendering. The overall overhead of distributed
rendering consists of the partitioning and assembling
process, as well as communication delay. Distributed
rendering could be a reasonable scheme if the additional
processing overhead is marginal and does not
significantly affect the overall performance.

4 Stylization of Image Data

To stylize 2D image data in our system, we use a
GPU-based line drawing method proposed by Lee et
al. [12]. Although this line drawing method renders a 3D
mesh as a line drawing, it can be applied to any scene
representation such as a point set, implicit surface, or
image-based representation because the method extracts
lines from a shaded rendering of a scene. Therefore, it
also works quite well using a 2D image as an input, as in
Fig. 2. In Fig. 2(b), dark lines are drawn along thin dark
areas of tone and along boundaries between dark and light
regions, and highlight lines are drawn along thin bright
areas of tone. In addition, the method can capture the tone
variations in a broad region by combining toon shading
with the lines. We can draw lines with various line widths
as shown in Fig.3, and the line widths are controlled
according to the desired level of detail.

(a) input image (b) line drawing and shading results

Fig. 2: 2D Image stylization

(a) detailed lines (b) abstracted lines

Fig. 3: Control of line width

Viewing the tone image as a height field, highlight
lines and dark lines correspond to ridges and valleys,
respectively, as shown in Fig.4. To extract lines along
thin areas, we apply a ridge detection method using a
polynomial fitting. At each pixel, we fit a 2nd-degree
polynomial
f (x,y) = a0x2+2a1xy+ a2y2+ a3x+ a4y+ a5 to the tone
values near the pixel using a least squares approximation.
In practice, we use 9 sample points arranged in a 3× 3
grid around the pixel location, with spacing set to half the
desired line width. With pixel positions(xi,yi) and tone
valuesti of sample pointspi, we can obtain the unknown
coefficients of the polynomial by solving the equation like
Eq. (1).
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We can determine if a pixel is on a ridge or valley
using geometric properties computed from a fitted
polynomial. Denoting the point(x,y) by x and a constant
term by C, polynomial f (x) can be expressed as
f (x) = (x− c)T M(x− c)+C, where

M =

[

a0 a1
a1 a2

]

, andc =−
1
2

M−1(a3a4)
T . (2)

The principal curvatures and directions of the
polynomial atc are the eigenvalues and eigenvectors of
M. Here, the line throughc in the low-curvature direction
is the ridge or valley inf (x).

Fig. 4: Ridges and valleys in the height field

However, since we use a 2nd-degree polynomial, we
cannot distinguish two cases: a pixel near a ridge or valley
(Fig. 5(a)) and a pixel on an edge (Fig.5(b)). To
distinguish such cases, we use an iterative search method,
which moves the point sampling toward the detected
ridge or valley line, fits a polynomial with new samples,
and measures the curvature and the distance to the new
ridge or ridge line. In our implementation, the iterations
are repeated at most five times. In case (b), the new
computed curvature falls below a threshold or the new
location moves outside the fitted region. Details of the
approach are described in [12].

Fig. 5: Ridge searching

The line extraction process consists of two passes: the
first is used to generate a tone image, which is a shaded

rendering of a scene, and the second is used to detect
ridges and valleys in the tone image. In the case of a 2D
image as an input, the input image itself can be used as a
tone image and only a blurring step is performed to
reduce noise in the image or sampling artifacts in the
second pass. After the line extraction process, we can
augment lines with toon shading to stylize tone variations
in broad regions. The whole process can be performed on
a GPU using a fragment shader, which uses pixels only in
a local region around each pixel over all passes. However,
a GPU is not available in small mobile devices, which
increases the processing time dramatically with a single
CPU. In addition, a single GPU also has the limitations of
parallel processing, as the quality and size of an input
image increases. Algorithms1 and 2 show the pseudo
codes of the first and second passes in the line extraction
process performed by a fragment shader.

Algorithm 1 1st pass of the line extraction: blurring step
// 1st pass: Blurring step for pixelx
tsum← 0, wsum← 0
for each pixelp in a Gaussian kernel of sizek do

tsum← tsum +G(p) · tp
// G(p) is a Gaussian weight at pixelp
// tp is the tone of pixelp
wsum← wsum +G(p)

end for
blurred tone← tsum/wsum

Algorithm 2 2nd pass of the line extraction: ridge
searching step

// 2nd pass: Ridge searching step for pixelx
for i:=1 to 5do

a = compute coe f f icent(x) // solve Eq. (1)
// a is a vector of coefficents
[c,d] = compute curvature and distance(a)
// compute by Eq. (2)
// c is a principal curvature
// d is a distance to a ridge or valley line
if c < thr or x+ s ·d is outside the fitted regionthen

break
end if
// thr is a threshold
// s is a constant value between 0 and 1
x← x+ s ·d // move the pixel position

end for

5 File Partition for Distributed Rendering

For our distributed content stylization, we separate the
required processes between a client and a server. A client
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is responsible for dividing an input image, merging the
resulting sub-images into one output image, and
visualizing an output image. The server takes on the role
of the main processes for stylizing an image piece
received from a client. At the client side for the
distributed rendering, we have to consider how to
partition an input image. In this step, we need to allow the
boundary regions between the sub-images to be shared in
order to provide the same inputs to a pixel shader for the
pixels around the boundaries as the inputs in the local
content stylization. For each pixel, a fragment shader uses
9 pixels sampled around the pixel location to fit a
polynomial in the second pass of the stylization. The
sampling center can move inside the initial sampling
region in the iterative search process, and we sample 9
pixels around a new sampling center for each iteration. As
shown in Fig.6, if the spacing between samples isw and
the initial sampling center is at(x,y), the maximum
horizontal or vertical distance from(x,y) to the pixels
used by the fragment shader in the second pass is 2w. As
the pixel values are blurred by a Gaussian kernel of sizek
in the first pass of the stylization, we need a
(2(2w + k) + 1)(2(2w + k) + 1) region centered at each
pixel from an input image to determine if a pixel is
rendered as a line or not.

Fig. 6: A local region required for the processing

In the image division step, we add a region of width
2w + k or height 2w + k along the boundary of each
sub-image. Fig.7 shows an example where an input
image is divided into two sub-images horizontally. The
dashed regions are added to each sub-image in order to
compute pixel values correctly around the boundary
between the two sub-images. Each sub-image is then sent
to a different server and processed independently. The
solid-colored regions of the sub-images (I0 and I1) from
different servers are sent back to a client, and are
combined into the final line drawing result of the input
image.

Fig. 7: Image partitioning

6 Communication Middleware

The proposed distributed stylization system is developed
by separating the visualization process and rendering
process between a client and servers, and the
communication between participating nodes is realized by
our communication middleware (CM) [14]. In this
section, we introduce the supporting functionalities and
modification of the CM for the development of the
distributed stylization system.

The CM originally aims to provide an easy and
efficient way of developing distributed applications. It
supports various functionalities with options for different
developer requirements. The middleware deals with
communication methods which have to be implemented
by developers if they have only fundamental networking
support. Our system plays the role of a bridge between an
application and the underlying network infrastructure. A
fundamental element of this is to deliver messages and
content between these two entities, by which
communicating nodes can interact with one another. With
Application Programming Interfaces (APIs) provided by
the CM, application developers can create, send, receive,
and process a remote event. In addition to dealing with
events, it supports other operations which detect a
specialized event and conduct a dedicated service
according to the event type. To support them, we follow
the layered approach to design the middleware. Fig.8
shows the overall architecture of the CM. From the
application’s point of view, the CM consists of four main
modules in the following order: CM stub, collaboration
manager, event manager, and communication manager.
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We describe the details of each module in the following
sub-sections. To support the proposed distributed
processing of the image data, the CM is extended to
enable a multi-server-based client-server architecture.
Additional processing servers can be dynamically added
or removed to/from the current server network according
to the developer requirements.

Fig. 8: CM architecture

6.1 CM stub

The CM stub is a core module which provides
communication interfaces to an application. A developer
can access most of the supporting functionalities of the
middleware using this module. In general, it provides
APIs to start and stop the CM, register and deregister an
event to be used among CM nodes, send an event, and
assign an event handling callback function which is called
by the CM whenever it receives an event from a remote
node.

In addition to these fundamental operations,
depending on the application type (a client or a server)
and the communication architecture (client/server,
peer-to-peer, or hybrid), which are assigned in a
configuration file by a developer, the CM stub provides
appropriate useful functions with various options. For
example, if the application is a client type in the
client/server architecture, the CM stub offers a function to
connect to a server. What a developer has to do is to set
the server information like the IP address and port
number in the configuration file and call the simple
connection function.

6.2 Collaboration manager

The collaboration manager manages a different level of
user interaction area according to the application
requirement. It defines the number and relation of
sessions and groups in a hierarchical structure. As
illustrated in Fig.8, the collaboration manager contains
session managers, each of which handles a session, and a
session manager can have more than one group manager,
which manages a client (or a user) group. The developer
can organize the structure of sessions and groups using
the configuration file or APIs provided by the manager
modules. In the CM architecture, we need at least one
session and group to allow users to interact with each
other. This means that the minimal unit of interaction is a
group. A user always has to belong to a group. For the
proposed distributed stylization system, we use the
default session and group which is the minimum
requirement, because there is only one client for
visualizing stylized images.

An event passing through the CM stub module from
the application layer stops by the collaboration manager
which then checks the destination users in sessions or
groups, and the event is delivered to the event manager
before being sent. All inbound events from the network
are also delivered to the collaboration manager. It checks
the event header and conducts internal processes if it is
required. If the target of an event is a session manager or
a group manager, the collaboration manager delivers it to
an appropriate manager which processes the event.

6.3 Event manager

The event manager is in charge of an event in the system.
An event is a high-level form of a message between
application nodes. As it includes semantics to be
exchanged so that it can be understandable at the
application layer, high-level manager modules (the
collaboration manager, session manager, and group
manager) and the application uses an event as a way to
exchange information. One of the key roles of the event
manager is to change an event to a low-level message
(sequence of byte array) which is delivered to the
underlying communication manager, and vice versa. The
event manager provides several send functions which
treat an event as a parameter and transform it into a
message so that it can be sent via the communication
manager. To the contrary, an incoming message given by
the communication manager is converted to an event in
the event manager which then delivers it to the
collaboration manager for internal operation. The event
manager also forwards the converted event to the CM stub
module, which eventually delivers it to an application for
the event process at that layer.
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6.4 Communication manager

The communication manager controls messages and
provides APIs to manage the communication channels.
The main role is to send and receive messages to/from the
underlying network. To support this, the communication
manager runs a separate thread which waits for every
incoming message. Whenever it receives a message from
the network, the communication manager forwards it to
the event manager. It also uses its own send functions
embedded in each channel when a message to be sent is
delivered from the event manager. If an application
creates a channel, it is maintained in the communication
manager as a channel list. Every event channel in the list
is checked by the receiving thread, and the event manager
is notified of any received message. The communication
manager provides different dedicated communication
sockets which wrap the native socket APIs and make it
easily possible to open and close a channel depending on
the requirement. Supported socket types are a server
socket, a stream socket (TCP), datagram socket (UDP),
and a multicast socket. For the proposed distributed
stylization system, we use the server and stream socket
between a server and a client application, because our
system requires reliable communication of the input and
output image pieces.

6.5 File manager

The main role of the file manager is to transfer files
between communicating nodes such as a client and a
server. Using the APIs of the file manager, an application
can set a directory where a received file or a source file is
located. A client or a server can then send/receive a file
to/from a target node with one of two transmission
modes, using the pull and push mode. The two modes are
different in terms of the node that triggers the file transfer.
In the pull mode, a requester node asks for a file from a
source node, and the file transfer starts. On the other hand,
in the push mode, a source node notifies a target node of
its intention to send a file, and then the file transfer starts.

As the file transmission functionality is considered to
be one of the most crucial features of the CM for the
proposed distributed rendering mechanism, a detailed
procedure of the file transfer in each mode is described as
in the following. Fig.9 shows the flow of the pull mode.
When an application of a requester node (a receiver) calls
therequestFile() function of the CM with two parameters
(a file name and a name of source node), the CM sends a
control event (REQUEST FILE TRANSFER) to the
source node (a sender) in order to indicate its intention to
receive a file. If the requested file is available, the source
node adds the request information (requester name, file
name, and file size), and replies to the request event
(REPLY FILE TRANSFER). The source node then sends
a control event (START FILE TRANSFER), which asks
the requester if it is ready to receive the file or not. As a

reply, the receiver sends a control event
(START FILE TRANSFER ACK) to the sender. The
sender then starts the file transfer by creating a new thread
which is dedicated to opening the target file and sending
file blocks to the receiver (CONTINUE FILE TRANSFE
R). While the receiver receives file blocks, it writes them
to a new local file. After it sends the last file block, the
sender thread closes the source file, stops the dedicated
thread, and sends a control event (END FILE TRANSFE
R) to notify the receiver of the completion of the file
transfer. When the receiver receives the end event, it
closes the written file and sends back a reply event
(END FILE TRANSFER ACK) to the sender, which then
finalizes the file transfer.

In push mode, as shown in Fig.10, most steps are the
same as that of the pull mode except that the first request
and its reply events are omitted. In this mode, a sender first
asks a receiver if it is ready for receiving a file, because
the sender application starts the file transfer by calling the
pushFile() function of the CM with two parameters (a file
name and a name of the target node).

Fig. 9: Pull mode transmission

Fig. 10: Push mode transmission
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7 Multi-Server Support of the CM

A distributed application can benefit from the CM by
simply organizing communication nodes and calling
communication-related APIs in order to interact with
other nodes. However, one limitation of the previous CM
was that it supported only one server in the client/server
model. To realize the distributed rendering mechanism,
we extend the CM to let a client application connect to
multiple servers.

The organization process of multiple servers is shown
in Fig. 11. As there can be more than one server in a
system, we classify them with a default server and an
additional server. To this end, the configuration file of a
server CM has fields for the address of a default server
and its own address. The server CM can identify its
application whether it is a default server or not by
comparing the two addresses in the configuration file. If
they are equal, a server is a default server. Otherwise, it is
regarded as an additional server. By default, a client
establishes a connection with a default server.

Fig. 11: Multi-sever organization process

In the previous CM, the server was connected only
with clients. However, now an additional server can also
make a connection with a default server. Thus, the
initialization phase of the server CM has changed such
that it makes a connection with a default server if it is not
the default server. If a system administrator wants to add
an additional server to the currently running system, a
server application can request its registration to a default
server by calling the connection function and registration
function of the server CM. In the registration request, an
additional server can designate its name which will be
used by other servers and clients as a target name. This
name and the address information such as the IP address
and the port number are transferred to the CM of a default
server. When a default server receives a registration
request from another server, it stores the delivered
information on the requesting server in the list of other
servers, and notifies its clients of the new server
information. A default server maintains the list of other
servers so that it can reply when a client asks about

currently available servers. Therefore, any client can
know the list of available servers either by explicitly
requesting it from a default server, or by receiving update
notifications using a default server. A default server now
keeps a channel list which includes both its clients and
other servers.

If an additional server leaves the system, it conducts
the opposite procedure to registration by requesting
deregistration and disconnection from the default server.
When the default server receives the deregistration event,
it deletes the requesting server information, and notifies
clients of the server departure. This process is also
triggered when a server application is unexpectedly
terminated. In this situation, a default server detects that it
is disconnected from a server, and implements the
deregistration procedure as well.

The server side of the CM does not change much of
its architecture from the previous development except the
additional connection to a default server at the
initialization phase and the management of the
registration and deregistration of additional servers. The
client CM, however, should manage multiple connections
with different servers. It implies that the same interaction
with a default server could happen with other servers as
well. Therefore, the client CM should maintain a different
interaction context with multiple servers. To do that, we
use the server list, which is maintained in the
collaboration manager of the server CM. The client CM
also uses this data structure since it has almost the same
architecture as the server CM, but it adds more
information, which is required for a client to interact with
additional servers. When the client CM receives the
information on additional servers from a default server, it
stores the information in its server list. This information
is used when a client logs in to a new server in order to
identify the target server. During the login process, the
client CM also stores the server-specific information to
the corresponding server element of the list, including
various server policies, session information, names of the
current session and group, and so on.

Another use of the client CM for a distributed
rendering system is that APIs are provided to
communicate with multiple servers. The previous version
of the client CM provides APIs for communication only
with the default server. Using the updated client CM, a
client can interact with multiple servers by specifying a
target server name in the APIs for connection (or
disconnection) and login (or logout). The operation of
such functions is divided into two cases. If a target server
name designates a default server, the client CM calls a
corresponding previous version of the function, which
uses only a default server. Otherwise, the client CM finds
a channel which maps to the server name, and uses it to
send a message.

With the integration of the image partition and the
multi-server support of the CM, the overall procedure of
distributed rendering is shown in Fig.12, which is an
example of two rendering servers. The example starts
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with a client and a default server (server1). In order to use
the distributed rendering functionality, the client should
connect to and log in to the default server (1). When a
new server (server2) is available, it registers itself to the
default server (2). The default server then notifies the
client of the new server information (3). The client makes
another connection withserver2 and logs it in as well (4).
Here, more servers could surely join the distributed
rendering process, and the client could establish more
connections with them. When the client receives an input
image, it partitions the file into image pieces (5). The
number of image pieces is determined to be the same
number of currently connected servers. In this example,
the image file is divided into two pieces (piece1 and
piece2). The client then sends each file piece to a different
server in order (6 and 7).Server1 and server2 receive
piece1 and piece2, respectively, and they independently
convert each input piece to the line-extracted file (8 and
9). After rendering the image pieces, the servers send
them back to the client (10 and 11), and the client finally
merges them into a resulting image file.

Fig. 12: Overall procedure with two server

8 Performance Evaluation

In this section, we discuss the analysis of the performance
of the proposed distributed rendering scheme. The
performance consists of the local processing cost and
communication delay. In the proposed method, the input
image content,C, is divided inton pieces,Ci (1≤ i ≤ n).
Ri is the rendered image piece ofCi, andR is a merged
image of allRi. S is a set ofm participating servers, each
of which is represented asSi (1≤ i≤ m). The overall cost
of distributed rendering for contentC, CostC, is defined
as follows:

CostC = (3)

Proccl+Comm(cl,S)+ProcS+Comm(S,cl),

where Proccl and ProcS are the processing delay at a
client, cl, and servers,S, respectively.Comm(cl,S) and
Comm(S,cl) are the communication delay of the content
from a client,cl, to servers,S, and vice versa.

Comm(cl,S) is the delay summation of transmitting
all Ci to Si, and Comm(S,cl) is the summation of the
transmission delay from allSi to cl as described in Eqs.
(4) and (5), respectively. If the existing
single-server-based rendering approach uses a serverS, its
communication delays,Comm(cl,S) andComm(S,cl), are
almost the same as that of the proposed scheme, because
all of the image pieces must be sent to one server. If
multiple transmissions are conducted in parallel using
separate channels, it can reduce the delay.

Commn(cl,S) =
n

∑
i=1

Comm(cl,Si)
Ci

(4)

Commn(S,cl) =
n

∑
i=1

Comm(Si,cl)
Ci

(5)

The processing delay of a server set,ProcS, occurs
when participating servers process and stylize the input
image pieces. compared to our approach, the processing
overhead of the single server method causes much higher
overhead, because only one server must be responsible
for rendering all of the content. While the proposed
scheme reduces its server processing and communication
overhead, it pays a higher cost for client processing
overhead.Proccl is defined as Eq. (6) whereDpart is the
local processing cost for partitioning an input image,
Dmerge is the cost for merging the resulting image pieces,
andDdisp is the cost for displaying an output image.

Proccl = Dpart +Dmerge+Ddisp (6)

For the proposed scheme,Dpart andDmerge are the
additional processing cost compared to the single server
approach, since the existing scheme does not need to
partition and merge tasks.

We conducted an experiment to quantitatively
measure the overall cost of the distributed processing as
we changed the number of servers and the size of the
input images. For the experiment, we implemented a test
client/server application using Visual Studio 2010 on
Windows 7. The test machines were connected through a
100 Mbps LAN. When the client splits the image into
pieces, the number of pieces is automatically decided by
the number of connected servers. If the client connects to
one server, it does not split the image.

The overall cost is measured as the total elapsed time
from the moment when the client splits an image to the
moment when it finishes merging the stylized image
pieces. Fig.13 shows the experimental results. Compared
to the case of a single server, the two-server-case surely
reduces the overall cost. Furthermore, the larger the
image size, the greater the cost reduction.
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Fig. 13: Overall cost of distributed processing

9 Conclusion

In this paper, we proposed a distributed rendering scheme
with multiple servers. In our approach, a client splits an
input image into pieces and then sends them to different
servers. Each server receives an image piece and runs a
processing routine for the stylization of the piece. When
processed image pieces are sent back to the client, it
merges them into one image. Using multiple servers
which stylize only parts of a whole image, the proposed
system overcomes the limitation of a single rendering
server, and high quality images are processed with
marginal processing cost.

Currently, our research is still in progress, and we are
planning to conduct more quantitative performance
evaluations according to different image sizes and the
number of servers in an extensive manner. We also have a
plan to extend our approach to adaptive distributed
rendering techniques. In this approach, the number of
participating servers is dynamically chosen according to
the size of the input image in order to make the system
more scalable than the current fixed environment.
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