Appl. Math. Inf. Sci.9, No. 2L, 471-481 (2015) %N =¥\ 471

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/092L22

A Distributed Stylization Mechanism for Line Extraction
Process of a 2D Image

Mingyu Limt, HyungSeok Kim' and Yunjin Lee?*

1 Department of Internet & Multimedia Engineering, Konkukitrsity, Seoul, Korea
2 Division of Digital Media, Ajou University, Suwon, Korea

Received: 25 May 2014, Revised: 25 Jul. 2014, Accepted: R@0w4
Published online: 1 Apr. 2015

Abstract: In this paper, we propose a distributed rendering mechafisimage data using multiple servers. Since line extractib
large images requires high computation overhead to remdienage, a client divides it into several image pieces. Edeteps sent to
a different server, which then performs the rendering. Artlthen merges the rendered pieces into one output imageproposed
method enables large image data to be rendered by a coltedmooh multiple servers with reasonable processing andnsonication
cost.

Keywords: Remote rendering, image stylization, line extractiontriiated processing, multi-server communication

1 Introduction addition, it is difficult to add more graphics cards if a
single card is not sufficient to complete the processing of
With the advancement of computing devices and Internetin input image with an acceptable delay.
technologies, we can easily create and obtain varying
multimedia content. Due to the proliferation of mobile In this paper, we aim to distribute the rendering
devices with embedded cameras, users have even momyerhead of a single server to multiple servers in order to
chance to manipulate 2D image data with a variety ofreduce the overall delay of image stylization. In
applications. As recent high-end devices provideparticular, we focus on the line extraction process, which
sufficient computing and rendering resources, users wantepresents one of the image stylization methods. To this
to process, transform, and visualize higher quality 2Dend, a client is in charge of dividing an input image into
image data. several small pieces, if the image size is greater than a
However, normal desktop PCs and mobile devicesthreshold value. Since the stylization of a pixel is affelcte
still lack sufficient rendering power due to hardware by its surrounding pixels in our stylization method, an
limitations. To address this issue, various studies havénput image splits such that the boundary pixels of the
been performed using remote rendering, especially for 3Dpieces overlap. Otherwise, the stylization result at the
content [,2,3,4,5,6,7]. The remote rendering method boundary pixels of two image pieces cannot be merged
enables low-end devices to display images that have beeseamlessly. Each image piece is then sent to a different
rendered by a remote server, but it has an intrinsicserver so that multiple servers handle only the separated
problem. Although a single server has the role ofimage piece instead of the whole input image. Multiple
surrogate renderer of a client, it can become overloaded iservers conduct the line extraction from the received input
terms of rendering time if the server performs renderingimage piece independently and in parallel. The servers do
for a large amount of content. As the content sizenot interact with each other, and just send their resulting
increases, it takes a longer time to process it. To overcomanage pieces back to the requesting client. While
the limitation of a single server, some existing approacheseceiving result image pieces from servers, a client
use parallel processing on a multi-core graphics c8rd [assembles them into one stylized image, which is then
However, this approach requires expensive hardware andisplayed on the client screen. The proposed distributed
sufficient knowledge of parallel programmin@][In stylization approach addresses the bottleneck problem of

* Corresponding author e-maylunjin@ajou.ac.kr

(@© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/092L22

472 NS 2 M. Lim et. al. : A Distributed Stylization Mechanism for Line

a single server rendering with modest changes on the In summary, most existing approaches focus on remote
client side, making it possible to stylize even a large inputrendering for 3D content using a single server. Although
image with reasonable delay. some of this research lightens the burden on the server, a
The remainder of this paper is organized as follows.complicated parallel programming model is required for
Sec. 2 discusses the literature survey of the existing high-performance graphics hardware.
remote rendering and image stylization schemes. In Sec.
3, we describe the main problem and the fundamental
idea of our proposed approach. In Sedsand 5, we 3 Design Consideration
introduce a previous local stylization technique and its
extension to the distributed manner of stylization. Remote rendering is used to address the limitations of a
Communication aspects of the proposed distributiondevice which does not have sufficient computing
model benefit from communication middleware (CM), resources for processing input content. The remote
which is described in Sec6.and7. In Sec.8, we analyze rendering method was developed for displaying 3D
our method to measure the performance in terms of theontent on a low-end device that has no 3D graphics
processing and communication overhead. Finally, weaccelerating capability. Even though a device has a 3D
conclude our paper in Se@. accelerator, it can delegate rendering tasks to a
high-performance machine in order to reduce the
processing delay. The same thing happens in 2D image
2 Related Wor k stylization because it also requires a great deal of
rendering computation on a GPU.
In this section, we discuss existing research on 2D image While the remote rendering method lessens the
stylization techniques and remote rendering approaches. processing overhead, it causes another overhead:
For 2D image stylization, which is a target of this communication delay between a client and a server.
paper, there have been various mechanisms that requit€ommunication delay occurs when a client sends source
high rendering computation. For real-time processing,content to a server, and when a server sends
many image stylization methods have been designed to bransformation results back to a requester. The delay is
highly parallel and have been implemented on theaffected by the available network bandwidth and content
Graphics Processing Unit (GPULQ,11,12,13]. Pixel size. Connection speeds of several Mbps surely cause a
operations are performed on the neighborhood around &nger delay than Gbps networks with the same content
pixel, and the operations for each pixel are independent o$ize, and it takes a longer time to send larger content.
the other pixels. The locality and independence of theTherefore, the remote rendering method has a
computations are suitable for our distributed renderingperformance benefit only if the communication and server
framework. process overhead is lower than the overall cost in the case
Shi et al. [l] proposed a real-time remote rendering of only local rendering.
system for mobile devices. In their approach, a server In addition to the communication delay, a server may
sends the selected depth images to the mobile clientsuffer from high processing overhead if the input content
which then runs 3D image warping on the received depthsize is greater than the acceptable size due to the
images to synthesize an updated image at the currerimitations of the graphics hardware. In this case, a
viewpoint. They reduce the interaction latency by graphics engine needs multiple rendering iterations
separating the rendering process between a client and laecause the buffer cannot read all of the bytes of the
server. Doellner et al2] devised a server-based rendering content at a time. Server performance can be improved by
scheme for large 3D scenes using G-buffer cube mapausing a multi-core graphics card and parallel
Their approach also splits the rendering process betweeprogramming model. However, this requires
a server and a client. A server is responsible for thehigh-performance hardware with parallel GPU
rendering of virtual panoramas which are represented byrchitecture and knowledge of a parallel computing
G-buffer cube maps, and a client uses these maps tplatform such as CUDA. Furthermore, a single GPU may
reconstruct the 3D scene. Diepstraten et3ldeveloped have the same problem if the quality or the size of the
a remote rendering method for 2D image generation taskiput image goes beyond the expected capability, and it is
from a 3D model in mobile devices. A server extracts 2D difficult to extend the performance by adding more
line primitives from arbitrary 3D scenes, and a client graphics cards. An alternative, more cost-effective
receives and renders only 2D line primitives. There areapproach is distributed rendering, in which parallel
also other similar remote 3D visualization approacles [processing is conducted by multiple servers, as shown in
5], as well as a multitude of real-time renderirg],[and Fig. 1. A client divides an image into several image
image-based rendering schemed. [Yoo et al. [] pieces, and sends each piece to a different server. A server
presented a parallel design of the proxy server in thetakes on the same role as that of remote rendering, but it
remote rendering framework. Using Compute Unified lessens the burden of the rendering cost as it handles only
Device Architecture (CUDA)9], they developed parallel a separate part of the whole image. Rendered image
rendering on GPUs in the proxy server. pieces are sent back to the client, which then collects the

(@© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2L, 471-481 (2015)Wwww.naturalspublishing.com/Journals.asp

results and generates a rendered image. This approach cal g
be easily extended by adding more servers, as the image
size increases.

>

&/ .

. server 1 -
l.nput WY
bal L » -'

»
l
m

client TR g (a) input image (b) line drawing and shading results

Fig. 2: 2D Image stylization

output SCrver n

Fig. L: Distributed rendering am‘; '3“\

be able to partition an image into independent pieces, and | ,ﬁg;qf 2 e

\ L -
. - . . D=,) :L-—t
In order to realize distributed rendering, a client must e O S 2 2
1

,’4’ ol / :
rendered pieces must be reassembled such that the = { 4 ‘@}ﬁ — b4 =T
boundary pixels of the pieces are seamlessly connected. \\§ / *\\ ‘

In other words, the recreated image must have the same 'y '« . . \ - -)
quality as an input image stylized by one server. Another AR N / |
aspect to consider is the additional overhead incurred by ! \\&‘{\m k \ o “\u
distributed rendering. The overall overhead of distriblute (a) detailed lines (b) abstracted lines

rendering consists of the partitioning and assembling
process, as well as communication delay. Distributed
rendering could be a reasonable scheme if the additional
processing overhead is marginal and does not
significantly affect the overall performance.

Fig. 3: Control of line width

Viewing the tone image as a height field, highlight
lines and dark lines correspond to ridges and valleys,
respectively, as shown in Figt. To extract lines along
4 Stylization of Image Data thin areas, we apply a ridge detection method using a

polynomial fitting. At each pixel, we fit a "8-degree
To stylize 2D image data in our system, we use aPolynomial
GPU-based line drawing method proposed by Lee etf (X,Y) = a0X° + 2a1xy+ ay* +agx+ asy + s to the tone
al. [12]. Although this line drawing method renders a 3D values near the pixel using a Ieasp Squares approximation.
mesh as a line drawing, it can be applied to any scenén.pfaCUCE. we use 9 sample points ar_ranged in>a33
representation such as a point set, implicit surface, o@rid around the pixel location, with spacing set to half the
image-based representation because the method extra¢lgsired line width. With pixel positiongs,y;) and tone
lines from a shaded rendering of a scene. Therefore, ivaluest; of sample pointg;, we can obtain the unknown
also works quite well using a 2D image as an input, as incoefficients of the polynomial by solving the equation like
Fig. 2. In Fig. 2(b), dark lines are drawn along thin dark Ed. @).
areas of tone and along boundaries between dark and light)
regions, and highlight lines are drawn along thin bright X5 XoYo Y5 X0 Yo 1] Tag lo

areas of tone. In addition, the method can capture the tone : ar :
variations in a broad region by combining toon shading ey 2 X vi 1 a| _ t.- (1)
with the lines. We can draw lines with various line widths MR as '
as shown in Fig3, and the line widths are controlled : cr :
according to the desired level of detail. X3 XnYn YA Xn Yn 1| L3 tn

(@© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

474 NS B M. Lim et. al. : A Distributed Stylization Mechanism for Line

We can determine if a pixel is on a ridge or valley rendering of a scene, and the second is used to detect
using geometric properties computed from a fittedridges and valleys in the tone image. In the case of a 2D
polynomial. Denoting the pointx,y) by x and a constant image as an input, the input image itself can be used as a
term by C, polynomial f(x) can be expressed as tone image and only a blurring step is performed to
f(x) = (x—c¢)"M(x—c) +C, where reduce noise in the image or sampling artifacts in the

second pass. After the line extraction process, we can
1 augment lines with toon shading to stylize tone variations
M = [ao al] , andc = __Mfl(a3a4)T, 2) in broad regions. The whole process can be performed on
a1 a 2 a GPU using a fragment shader, which uses pixels only in
a local region around each pixel over all passes. However,
& GPU is not available in small mobile devices, which
increases the processing time dramatically with a single
CPU. In addition, a single GPU also has the limitations of
parallel processing, as the quality and size of an input
image increases. Algorithm and 2 show the pseudo
codes of the first and second passes in the line extraction
process performed by a fragment shader.

N 4 l
' Algorithm 1 18! pass of the line extraction: blurring step

ridge
/1 15t pass: Blurring step for pixed
tsum = 0, Wgym <~ O
> for each pixelp in a Gaussian kernel of sizedo
valley

The principal curvatures and directions of the
polynomial atc are the eigenvalues and eigenvectors o
M. Here, the line through in the low-curvature direction
is the ridge or valley irf (x).

Il G(p) is a Gaussian weight at pixel

Height field /I tp is the tone of pixep
Wsym €~ Wsum + G(p)
Fig. 4: Ridges and valleys in the height field end for

blurred_tone < tsym/Wsum

However, since we use d®2degree polynomial, we
cannot distinguish two cases: a pixel near a ridge or valley
(Fig. 5(a)) and a pixel on an edge (Fig(b)). To
distinguish such cases, we use an iterative search methodgorithm 2 279 pass of the line extraction: ridge
which moves the point sampling toward the detectedseayching step
ridge or valley line, fits a polynomial with new samples,
and measures the curvature and the distance to the new
ridge or ridge line. In our implementation, the iterations
are repeated at most five times. In case (b), the new
computed curvature falls below a threshold or the new lc,d] = compute_curvature_and_distance(a)
location moves out.side 'the fitted region. Details of the Il 7compute by E_q. 2) T
approach are described ib7. / cis a principal curvature

// d is a distance to a ridge or valley line
if c<thr orx+s-dis outside the fitted regiothen

/1 2" pass: Ridge searching step for pixel
for i:=1to 5do
a = compute_coef ficent(x) // solve Eq. (1)
Il ais a vector of coefficents

. break
i end if
: (b) : /l thr is a threshold
, e " ’-F"' e /l sis a constant value between 0 and 1
’ \ (a) 7 \ X ¢+ X+ s-d // move the pixel position
1

Q@ I end for

Fig. 5: Rid hi . . - .
19 = TIge seatehing 5 File Partition for Distributed Rendering

The line extraction process consists of two passes: th&or our distributed content stylization, we separate the
first is used to generate a tone image, which is a shadetkquired processes between a client and a server. A client

(@© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2L, 471-481 (2015)Wwww.naturalspublishing.com/Journals.asp NS P 475

is responsible for dividing an input image, merging the Wy w,
resulting sub-images into one output image, and f ,
visualizing an output image. The server takes on the role
of the main processes for stylizing an image piece
received from a client. At the client side for the
distributed rendering, we have to consider how to
partition an input image. In this step, we need to allow the
boundary regions between the sub-images to be shared i
order to provide the same inputs to a pixel shader for the
pixels around the boundaries as the inputs in the loca 2wtk 2wtk
content stylization. For each pixel, a fragment shader use J/ \
9 pixels sampled around the pixel location to fit a —— .
polynomial in the second pass of the stylization. The |
sampling center can move inside the initial sampling 1
region in the iterative search process, and we sample ! '
pixels around a new sampling center for each iteration. As I, A
shown in Fig.6, if the spacing between samplesasand '
the initial sampling center is atx,y), the maximum A
horizontal or vertical distance frorfx,y) to the pixels '
used by the fragment shader in the second pasa.if\2 . o ---)
the pixel values are blurred by a Gaussian kernel of lsize " 2wtk
in the first pass of the stylization, we need a

(2(2w+ k) + 1)(2(2w+ k) + 1) region centered at each Fig. 7: Image partitioning
pixel from an input image to determine if a pixel is

rendered as a line or not.

-

|
1
|
1
1
1
|
1
1
1
I
1
1
1
1
.

e
3

>?‘>_______________

6 Communication Middleware

The proposed distributed stylization system is developed
by separating the visualization process and rendering
process between a client and servers, and the
communication between participating nodes is realized by
our communication middleware (CM)14]. In this
section, we introduce the supporting functionalities and
modification of the CM for the development of the
distributed stylization system.

The CM originally aims to provide an easy and

~

y+2w) efficient way of developing distributed applications. It
supports various functionalities with options for diffate
® developer requirements. The middleware deals with

communication methods which have to be implemented
by developers if they have only fundamental networking
Fig. 6: A local region required for the processing support. Our system plays the role of a bridge between an
application and the underlying network infrastructure. A
fundamental element of this is to deliver messages and
content between these two entities, by which
In the image division step, we add a region of width communicating nodes can interact with one another. With
2w+ k or height 2v+ k along the boundary of each Application Programming Interfaces (APIs) provided by
sub-image. Fig.7 shows an example where an input the CM, application developers can create, send, receive,
image is divided into two sub-images horizontally. The and process a remote event. In addition to dealing with
dashed regions are added to each sub-image in order tevents, it supports other operations which detect a
compute pixel values correctly around the boundaryspecialized event and conduct a dedicated service
between the two sub-images. Each sub-image is then seiiccording to the event type. To support them, we follow
to a different server and processed independently. The¢he layered approach to design the middleware. Big.
solid-colored regions of the sub-imageg é&ndl{) from shows the overall architecture of the CM. From the
different servers are sent back to a client, and areapplication’s point of view, the CM consists of four main
combined into the final line drawing result of the input modules in the following order: CM stub, collaboration
image. manager, event manager, and communication manager.

(x2wtk, yH2w+k)

(@© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

476 NS 2 M. Lim et. al. : A Distributed Stylization Mechanism for Line

We describe the details of each module in the following 6.2 Collaboration manager

sub-sections. To support the proposed distributed

processing of the image data, the CM is extended to

enable a multi-server-based client-server architectureThe collaboration manager manages a different level of

Additional processing servers can be dynamically addediser interaction area according to the application

or removed to/from the current server network accordingrequirement. It defines the number and relation of

to the developer requirements. sessions and groups in a hierarchical structure. As
illustrated in Fig.8, the collaboration manager contains
session managers, each of which handles a session, and a
session manager can have more than one group manager,

— , which manages a client (or a user) group. The developer
2B Imagee Sigylzetion Clems 2 Semver can organize the structure of sessions and groups using
e the configuration file or APIs provided by the manager
modules. In the CM architecture, we need at least one
M session and group to allow users to interact with each
Client/Server Stub Modules other. This means that the minimal unit of interaction is a
group. A user always has to belong to a group. For the
Collaboration Manager proposed distributed stylization system, we use the
default session and group which is the minimum
Session Manager requirement, because there is only one client for
File Manager visualizing stylized images.
Group Manager An event passing through the CM stub module from
the application layer stops by the collaboration manager
Event Manager which then checks the destination users in sessions or
— groups, and the event is delivered to the event manager
Communication Manager before being sent. All inbound events from the network
are also delivered to the collaboration manager. It checks
< Wired/Wireless Networks > the event header and conducts internal processes if it is
required. If the target of an event is a session manager or
a group manager, the collaboration manager delivers it to
Fig. 8: CM architecture an appropriate manager which processes the event.
6.3 Event manager
6.1 CM stub

The CM stub is a core module which provides The event manager is in charge of an event in the system.
communication interfaces to an application. A developerAn event is a high-level form of a message between
can access most of the supporting functionalities of theapplication nodes. As it includes semantics to be
middleware using this module. In general, it providesexchanged so that it can be understandable at the
APIs to start and stop the CM, register and deregister arapplication layer, high-level manager modules (the
event to be used among CM nodes, send an event, ancbllaboration manager, session manager, and group
assign an event handling callback function which is calledmanager) and the application uses an event as a way to
by the CM whenever it receives an event from a remoteexchange information. One of the key roles of the event
node. manager is to change an event to a low-level message

In addition to these fundamental operations, (sequence of byte array) which is delivered to the
depending on the application type (a client or a server)underlying communication manager, and vice versa. The
and the communication architecture (client/server,event manager provides several send functions which
peer-to-peer, or hybrid), which are assigned in atreat an event as a parameter and transform it into a
configuration file by a developer, the CM stub providesmessage so that it can be sent via the communication
appropriate useful functions with various options. For manager. To the contrary, an incoming message given by
example, if the application is a client type in the the communication manager is converted to an event in
client/server architecture, the CM stub offers a functmnt the event manager which then delivers it to the
connect to a server. What a developer has to do is to setollaboration manager for internal operation. The event
the server information like the IP address and portmanager also forwards the converted event to the CM stub
number in the configuration file and call the simple module, which eventually delivers it to an application for
connection function. the event process at that layer.

(@© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2L, 471-481 (2015)Wwww.naturalspublishing.com/Journals.asp NS P 477

6.4 Communication manager reply, the receiver sends a control event
(START_FILE_.TRANSFER ACK) to the sender. The
The communication manager controls messages angdender then starts the file transfer by creating a new thread
provides APIs to manage the communication channelswhich is dedicated to opening the target file and sending
The main role is to send and receive messages to/from thile blocks to the receivetGONTINUE_FILE_TRANSFE
underlying network. To support this, the communication R). While the receiver receives file blocks, it writes them
manager runs a separate thread which waits for everyo a new local file. After it sends the last file block, the
incoming message. Whenever it receives a message frogender thread closes the source file, stops the dedicated
the network, the communication manager forwards it tothread, and sends a control eveBND_FILE_TRANSFE
the event manager. It also uses its own send function®) to notify the receiver of the completion of the file
embedded in each channel when a message to be senttiqinsfer. When the receiver receives the end event, it
delivered from the event manager. If an applicationcloses the written file and sends back a reply event
creates a channel, it is maintained in the communicatioEND_FILE_TRANSFER ACK) to the sender, which then
manager as a channel list. Every event channel in the lisfinalizes the file transfer.
is checked by the receiving thread, and the event manager

. fiod of ved Th e In push mode, as shown in Fij0, most steps are the
IS notified of any received message. The communications,me 5 that of the pull mode except that the first request

K hich h . ket AP q K Mand its reply events are omitted. In this mode, a sender first
sockets which wrap the native socket APIs and make It,gy s 4 receiver if it is ready for receiving a file, because

easily possible to open and close a channel depending of,q sender application starts the file transfer by callireg th

the requirement. Supported socket types are a serv shFile() functi f the CM with t t fil
socket, a stream socket (TCP), datagram socket (UDPngmelae(n)d ;nncalr(T)]r; gf thg targglno(;/:/ac)).parame ers (afile

and a multicast socket. For the proposed distribute

stylization system, we use the server and stream socket
between a server and a client application, because our
system requires reliable communication of the input and

output image pieces. | Receiver | | Sender |

requestFile(file name, sender name)

REQUEST_FILE_ TRANSFER event
65 FI I e rna.nage, REPLY FILE_TRANSFER event

START_FILE_TRANSFER event
The main role of the file manager is to transfer files START_FILE TRANSFER ACK event
between communicating nodes such as a client and Threafl start
server. Using the APIs of the file_ manager, an applicatio_n CONTINUE FILE TRANSFER event 9 Repeat transfer
can set a directory where a received file or a source file i END FILE TRANSFER event
located. A client or a server can then send/receive a file Thread end
to/from a target node with one of two transmission END. FILE TRANSFER ACK event
modes, using the pull and push mode. The two modes are
different in terms of the node that triggers the file transfer Fig. 9: Pull mode transmission

In the pull mode, a requester node asks for a file from a
source node, and the file transfer starts. On the other hand,
in the push mode, a source node notifies a target node of
its intention to send a file, and then the file transfer starts.
As the file transmission functionality is considered to
be one of the most crucial features of the CM for the

proposed distributed rendering mechanism, a detaile(| Receiver | | Sender |
procedure of the file transfer in each mode is described a pushfile(file name, target name)
in the following. Fig.9 shows the flow of the pull mode. START FILE TRANSFER event
g.rFig p
When an application of a requester node (a receiver) call: START.FILE. TRANSFER_ACK event
therequestFile() function of the CM with two parameters Threatl start
(a file name and a name of source node), the CM sends CONTINUE FILE TRANSFER event
control event REQUEST_FILE_TRANSFER) to the D Repeat transfer
. END_FILE_ TRANSFER event
source node (a sender) in order to indicate its intention tc ‘ Thiedd end
receive a file. If the requested file is available, the source END FILE TRANSFER ACK event
node adds the request information (requester name, fili o -

name, and file size), and replies to the request event) o
(REPLY_FILE_TRANSFER). The source node then sends Fig. 10: Push mode transmission
a control event $TART_FILE_.TRANSFER), which asks

the requester if it is ready to receive the file or not. As a

(@© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

478 NS 2 M. Lim et. al. : A Distributed Stylization Mechanism for Line

7 Multi-Server Support of theCM currently available servers. Therefore, any client can
know the list of available servers either by explicitly
A distributed application can benefit from the CM by requesting it from a default server, or by receiving update
simply organizing communication nodes and calling notifications using a default server. A default server now
communication-related APIs in order to interact with keeps a channel list which includes both its clients and
other nodes. However, one limitation of the previous CM other servers.
was that it supported only one server in the client/server If an additional server leaves the system, it conducts
model. To realize the distributed rendering mechanismthe opposite procedure to registration by requesting
we extend the CM to let a client application connect to deregistration and disconnection from the default server.
multiple servers. When the default server receives the deregistration event,
The organization process of multiple servers is shownit deletes the requesting server information, and notifies
in Fig. 11 As there can be more than one server in aclients of the server departure. This process is also
system, we classify them with a default server and antiggered when a server application is unexpectedly
additional server. To this end, the Conﬁguration file of aterminated. In this situation, a default server detectsitha
server CM has fields for the address of a default servets disconnected from a server, and implements the
and its own address. The server CM can identify itsderegistration procedure as well.
application whether it is a default server or not by The server side of the CM does not change much of
comparing the two addresses in the configuration file. Ifits architecture from the previous development except the
they are equal, a server is a default server. Otherwise, it ig@dditional connection to a default server at the
regarded as an additional server. By default, a clienthitialization phase and the management of the
establishes a connection with a default server. registration and deregistration of additional serverse Th
client CM, however, should manage multiple connections
with different servers. It implies that the same interattio
with a default server could happen with other servers as
well. Therefore, the client CM should maintain a different
interaction context with multiple servers. To do that, we
use the server list, which is maintained in the

A default rendering
server

A new rendering

(2) Connection with
server

a default server
A server CM A server CM

(3) Register a new server collaboration manager of the server CM. The client CM
(1) Original also uses this data structure since it has almost the same

e it | @) Notify a new server information architecture as the server CM, but it adds more
server (5) Log in the new server mformanon, which is required for a client to interact with

A client CM i additional servers. When the client CM receives the

A visualization (6) Additional connection with a new server information on additional servers from a default server, it

client stores the information in its server list. This information

is used when a client logs in to a new server in order to

Fig. 11: Multi-sever organization process identify the target server. During the login process, the

client CM also stores the server-specific information to
the corresponding server element of the list, including
In the previous CM, the server was connected onlyvarious server policies, session information, names of the

with clients. However, now an additional server can alsocurrent session and group, and so on.
make a connection with a default server. Thus, the Another use of the client CM for a distributed
initialization phase of the server CM has changed suchrendering system is that APIs are provided to
that it makes a connection with a default server if it is not communicate with multiple servers. The previous version
the default server. If a system administrator wants to addf the client CM provides APIs for communication only
an additional server to the currently running system, awith the default server. Using the updated client CM, a
server application can request its registration to a defaulclient can interact with multiple servers by specifying a
server by calling the connection function and registrationtarget server name in the APIs for connection (or
function of the server CM. In the registration request, andisconnection) and login (or logout). The operation of
additional server can designate its name which will besuch functions is divided into two cases. If a target server
used by other servers and clients as a target name. Thisame designates a default server, the client CM calls a
name and the address information such as the IP addres®rresponding previous version of the function, which
and the port number are transferred to the CM of a defauluises only a default server. Otherwise, the client CM finds
server. When a default server receives a registratiora channel which maps to the server name, and uses it to
request from another server, it stores the deliveredsend a message.
information on the requesting server in the list of other ~ With the integration of the image partition and the
servers, and notifies its clients of the new servermulti-server support of the CM, the overall procedure of
information. A default server maintains the list of other distributed rendering is shown in Fig.2, which is an
servers so that it can reply when a client asks abouexample of two rendering servers. The example starts

(@© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2L, 471-481 (2015)Wwww.naturalspublishing.com/Journals.asp NS P 479

with a client and a default servesefverl). In orderto use where Proccl and ProcS are the processing delay at a
the distributed rendering functionality, the client stibul client, cl, and serversS, respectivelyComm(cl,S) and
connect to and log in to the default server (1). When aComm(S,cl) are the communication delay of the content
new server gerver2) is available, it registers itself to the from a client,cl, to serversS, and vice versa.

default server (2). The default server then notifies the Comm(cl,S) is the delay summation of transmitting
client of the new server information (3). The client makesall C; to §, and Comm(S,cl) is the summation of the
another connection witkerver2 and logs it in as well (4). transmission delay from afl to cl as described in Egs.
Here, more servers could surely join the distributed(4) and 6), respectively. If the existing
rendering process, and the client could establish mor&ingle-server-based rendering approach uses a sgriter
connections with them. When the client receives an inputcommunication delay§omm(cl, S) andComm(S,cl), are
image, it partitions the file into image pieces (5). The almost the same as that of the proposed scheme, because
number of image pieces is determined to be the samall of the image pieces must be sent to one server. If
number of currently connected servers. In this examplemultiple transmissions are conducted in parallel using
the image file is divided into two piecepiécel and separate channels, it can reduce the delay.

piece2). The client then sends each file piece to a different
server in order (6 and 7)Serverl and server2 receive
piecel and piece2, respectively, and they independently
convert each input piece to the line-extracted file (8 and
9). After rendering the image pieces, the servers send n
them back to the client (10 and 11), and the client finally Commn(Se) — Zlc()mrrk(fvc') (5)
merges them into a resulting image file. i

n
Commn(®S = ziComm(;"S) (4)
i=

The processing delay of a server setpcS, occurs
when participating servers process and stylize the input

image pieces. compared to our approach, the processing
M , L M overhead of the single server method causes much higher
()] connection and login head. b | t b ibl
2 server registration overhead, because only one server must be responsible
3| server notification for rendering all of the content. While the proposed
@] connection and login scheme redyces its server processing an'd communication
— ; overhead, it pays a higher cost for client processing
() [partition a fe | headProcal is defined h is th
6)|_send image piece 1 overheal Procp is defined as Eq:60\{v ererart |s.t e
‘ A (®)|[Render piece 1] local processing cost for partitioning an input image,
(7)|_send image piece 2 Dmergeis the cost for merging the resulting image pieces,
(10)send back rendered piece 1 (9 Render piece 2] andDdisp is the cost for displaying an output image.
11) send back rendered piece 2
12 i into a fil .
(12| [merge pieces into a fe | Proccl = Dpart + Dmerge+ Ddisp (6)
Fig. 12: Overall procedure with two server For the proposed schemBpart and Dmerge are the

additional processing cost compared to the single server

approach, since the existing scheme does not need to

partition and merge tasks.

We conducted an experiment to quantitatively

8 Performance Evaluation measure the overall cost of the distributed processing as
we changed the number of servers and the size of the
input images. For the experiment, we implemented a test
Client/server application using Visual Studio 2010 on
indows 7. The test machines were connected through a
00 Mbps LAN. When the client splits the image into
ieces, the number of pieces is automatically decided by
the number of connected servers. If the client connects to
one server, it does not split the image.

The overall cost is measured as the total elapsed time
from the moment when the client splits an image to the
moment when it finishes merging the stylized image
pieces. Figl3 shows the experimental results. Compared
CostC — 3) to the case of a single server, the two-server-case surely

reduces the overall cost. Furthermore, the larger the
image size, the greater the cost reduction.

In this section, we discuss the analysis of the performanc
of the proposed distributed rendering scheme. Th
performance consists of the local processing cost an
communication delay. In the proposed method, the inputp
image contentC, is divided inton piecesCi (1 <i <n).

R is the rendered image piece Gf, andR is a merged
image of allR. Sis a set ofm participating servers, each
of which is represented & (1 < i < m). The overall cost
of distributed rendering for conte, CostC, is defined
as follows:

Proccl +Comm(cl, S) + ProcS+Comm(S, cl),

(@© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

480 %N S\ M. Lim et. al. : A Distributed Stylization Mechanism for Line

[2] J. Doellner, B. Hagedorn, J. Klimke, Server-based reinde
Total cost of large 3D scenes for mobile devices using G-buffer cube
80000 maps, Proceedings of the 17th International Conference on
;gﬁgg Y 3D Web Technology, 97-100 (2012)
T so000 / [3] J. Diepstraten, M. Gorke, T. Ertl, Remote line rendering
> 40000 // for mobile devices, Proceedings of Computer Graphics
g 30000 7/ International, 454-461 (2004)
igggg 7/ [4] F. Lamberti and A. Sanna, A streaming-based solution for
0 —_— remote visualization of 3D graphics on mobile devices, IEEE
test1.jpg test2.jpg test3.jpg test4.jpg Transactions on Visualization and Computer GraphiSs,
(300KB) (1MmB) (2MmB) (6MmB) 247-260 (2007)
_.-;Z::::: 28235 2;425 Z;Sg :32;2 [5] G. Paravati, A. Sanna, F. Lamberti, L. Ciminiera, An
open and scalable architecture for delivering 3D shared
. o) visualization services to heterogeneous devices, Cogrocyr
Fig. 13: Overall cost of distributed processing and Computation: Practice & Experiencg3, 1179-1195
(2011)
[6] E. Gobbetti, D. Kasik, S. Yoon, Technical strategies for
9 Conclusion massive model visualization, Proceedings of the 2008 ACM

Symposium on Solid and Physical Modeling, 405-415 (2008)
g] C. Chang and S. Ger, Enhancing 3D graphics on mobile

In this paper, we proposed a distributed rendering schem devices by image-based rendering, Proceedings of the third

W'th ’T‘“'“p'e. SEIvers. In our approach, a client sp[|ts an " |EEE Pacific Rim Conference on Multimedia: Advances in
input image into pieces and then sends them to different Multimedia Information Processing, 1105-1111 (2002)
servers. Each server receives an image piece and rUNS[& w. Yoo, S. Shi, W. Jeon, K. Nahrs'tedt R. Campbell, Real-
processing routine for the stylization of the piece. When ™ 0 "haraliel remote rendering for mobile devices using
processed image pieces are sent back to the client, it graphics processing units, Proceedings of IEEE Internatio
merges them into one image. Using multiple servers conference on Multimedia and Expo, 902-907 (2010)
which stylize only parts of a whole image, the proposedig] J. Nickolls, I. Buck, M. Garland, K. SSkadron, Scalable
system overcomes the limitation of a single rendering parallel programming with CUDA, Magazine Queue GPU
server, and high quality images are processed with Computing,6, 40-53 (2008)
marginal processing cost. [10]J. Kyprianidis, Image and video abstraction by multi-
Currently, our research is still in progress, and we are scale anisotropic Kuwahara filtering, Proceedings of the
planning to conduct more quantitative performance ACM SIGGRAPH/Eurographics Symposium on Non-
evaluations according to different image sizes and the Photorealistic Animation and Rendering (NPAR '11), 55-64
number of servers in an extensive manner. We also have a (2011)
plan to extend our approach to adaptive distributed[11]H. Winnemdller, S. Olsen, B. Gooch, Real-time video
rendering techniques. In this approach, the number of abstraction, ACM Transactions on Graphi2s, 1221-1226,
participating servers is dynamically chosen according to__(2006) , , o
the size of the input image in order to make the system[lz] Y. Lee, L. Markosian, S. Lee, J. Hughes, Line drawings vi

more scalable than the current fixed environment. i‘?ggég%smding, ACM Transactions on Grapl26s]8:1-

[13] J. Lopez-Moreno, J. Jimenez, S. Hadap, E. Reinhard, K.
Anjyo, D. Gutierrez, Stylized depiction of images based
on depth perception, Proceedings of the 8th International
Symposium on Non-Photorealistic Animation and Rendering
(NPAR '10), 109-118 (2010)

] M. Lim, B. Kevelham, N. Nijdam, N. Magnenat-Thalman,

Acknowledgements

This paper was written as part of Konkuk University’s
Iresearch suppor'zj pr:ogram forh its faclulty on sabgatljtica;:% 4
eave in 2014, and this research was also supported by the o -1 4ovelooment of distribut lications usina hiah-
MSIP(Ministry of Science, ICT and Future Planning), Ie\a/lgldc(lmemzﬁicationo S(Lpport, egoﬁfﬁalc of Ifletwor?(a%d
Korea, under the ITRC(Information Technology Research Computer Applications34, 172-182 (2011)

Center) support program (NIPA-2014-H0301-14-1001)
supervised by the NIPA(National IT Industry Promotion
Agency).

References

[1] S. Shiand K. Nahrstedt and R. Campbell, A real-time ramot
rendering system for interactive mobile graphics, ACM
Transactions on Multimedia Computing, Communications,
and Applications8, 46:1-46:20 (2012)

(@© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2L, 471-481 (2015)Wwww.naturalspublishing.com/Journals.asp

%N = r’) 481

Mingyu Lim is an
Associate Professor at
the Department of Internet
and Multimedia Engineering,
Konkuk University, Korea
from the year 2009. Before
joining Konkuk University,
he was a senior researcher
at MIRALab, University
of Geneva, being involved

Yunjin Lee is an
Associate professor of
in the Division of Digital
Media at Ajou University.
She received her BS degree
in 1999 and her PhD degree
in 2005, all in Computer
Science and Engineering
from POSTECH in Korea.
Her research interests include

in various research activities on networked virtual nonphotorealistic rendering, 3D mesh processing, and

environments and ubiquitous computing systems. Hedata compression.

received his PhD in Computer Science in February 2006
at ICU, Korea. His major research field is supporting
scalability in networked virtual environments. His curren
research activities are focused on efficient communication
middleware, event transmissions, and content distributio
in networked ubiquitous computing systems.

HyungSeok Kim
received a PhD degree
in Computer Science
in February 2003 at VR Lab,
KAIST. He is an Associate
Professor at the Department
of Internet and Multimedia
b ; Engineering, Konkuk

W » University, Korea. Before
joining Konkuk University, he
was a senior researcher at MIRA Lab, University of
Geneva, being involved in research activities on virtual
reality. His major research field is real-time interactian i
virtual environments and multimodal interaction
mechanisms. His current research activities are focused
on topics of shape modeling for real-time rendering and
evoking believable experiences in virtual environments.

(@© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Related Work
	Design Consideration
	Stylization of Image Data
	File Partition for Distributed Rendering
	Communication Middleware
	Multi-Server Support of the CM
	Performance Evaluation
	Conclusion

