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Abstract: This paper discusses the stochastic analysis of a two-oidistandby system, taking into account that the operatidetlae
standby units are exchanged at random time intervals. riéailepair and exchanging time are following general distions. Using
semi-Markov process and regenerative point technique irkddarenewal process, we develop the explicit expressionghe mean
time to system failure, MTSF and steady-state availabifigo) for the system. Some special cases have been studied waftyeri
and graphically to explain the effect of the system pararaeta system performance. We also compute the sensitivityralative
sensitivity analysis for the MTSF and &f along with changes in specific values of the system paramete

Keywords: Mean time to system failure, steady-state availabilitps#iévity analysis, relative Sensitivity analysis.

1 Introduction They added time preventive maintenance for the system.
[11] analyzed profit analysis of a reliability model for a
The theory reliability plays an active role in our life single-unit system with preventive maintenance subject to
because of the high development of devices in manymaximum operation time 1P| considered reliability and
fields. Nowadays, it touches technological, economic, MTTF of complex systems, with different types of
structural, industrial, and other similar subjects. Salver failures and one type of repair.
authors [,2,3,4] have studied a two dissimilar unit The main contributions of this paper are: study a
standby system with constant failure raf.fliscussed two-unit cold standby system with random change
reliability measures of three models with three types ofbetween the units and all time distribution of the system
failures and attended by one repairman. The model 1 isre arbitrary. Various reliability characteristics ofengst
under preventive maintenance before failure, while modelare evaluated by using semi-Markov process and
2 and model 3 are analyzed without preventiveregenerative point technique. The effect of the different
maintenance. parameters on mean time to system failure and
A repairable K-out-of-(M+W) retrial system with M steady-state availability are shown tabular and
identical primary components, W standby componentsgraphically. Finally, the sensitivity analysis and the
and one repair facility investigated bg][ [7] studied the relative sensitivity analysis for the mean time to system
reliability measures of a repairable system with M failure and steady-state availability are discussed.
operating units, W warm standby units, and R repairmen  The organization of the paper is as follows. In section
in which there are switching failures and reboot del8y. [ 2, 3 we given a detailed description for system consist of
has considered the reliability and sensitivity analysisof two non-identical units. Transition probabilities and
system with M operating machines, S warm standbys, andojourn times are presented in section 4. Some reliability
a repairable service station. characteristics of the system are derived in sections 5 and
The reliability and sensitivity analysis of a repairable 6 respectively. The results of our numerical simulations
system with imperfect coverage under service pressurand sensitive analysis and relative sensitivity analy$is o
condition studied by9]. [10] provided a two-unit cold the reliability characteristics are discussed in section 7
standby system with hardware, human error failures.Finally, we make a concluding remark in section 8.
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2 Assumptions

1- A redundant system comprises from two non-identical

waiting for the repairf :repair of failed unit is continued
from earlier state.
With these symbols, the possible states of the system

units. Initially, one unit is operative and the other is cold model under study are:

standby.
2- The switch is perfect and instantaneous.

3- After a random amount of time t, the operative unit

Up states:
So =(0,CS),5 =(CS, 0),% = (0w CS),
(Fra O) 3:3 (CS Ouc3)

becomes standby and the standby unit becomes operative 34 (Ou, F), S = (Ouea, CS), S = (CS,0y).

if the standby is available.
4- The distributions of all times are arbitrary.

5- There is a single repair facility is available for repair.

6- Service discipline is FCFS.
7- After the repair, the unitis as good as new.

3 Nomenclature

Fi(t) Cumulative distribution function of failure time from
normal mode to complete failure, i = 1,2.

K(t) Cumulative distribution function of repair time
of a failed unit.

Gi(t) Cumulative distribution function of times after
which operative unit changes, i = 1,2.

Eo State of the system att=0.

E Set of regenerative states.

gij(t), Qij(t) Probability density function and
cumulative distribution function of transition time from
regenerative statg to S;.

o (t), QK(t) Probability density function and
cumulative d|str|but|on function of time for the system
transits from regenerative stat§ to S; via the
non-regenerative stai < E.

(M)i(t) Cumulative distribution function of time to
system failure starting from sta < E.

my; Contribution to mean sojourn time in stag
when system transits direct &).

Ui | P[system sojourn in stat for at least time t]dt.
Mi(t) P[system up initially in stat§ € E is up at time

t without going to any other regenerative state or returning

to itself through one or more statesE].
Avi(t) P[starting fromS € E, the system is up at time
t].

s Dummy variable in Lapace transform (LT).

x Symbol for Laplace transform, i.eqi*j (t) = [ exp
(-st) gij(t) dt

©Symbo|forord|nary convolution, i.eA(t) © B(t)
= fo A(t-x) B(x) dx.

3.1 Symbolsfor states of the system

O :normal unitwhen itis operative, CS : normal unit when

it is cold standbyQy, : old normal operative unitQycs :

old normal operative unit when it is continued from state

S3, Oyes @ 0ld normal operative unit when it is continued
from stateS, , F :failed unit under repainy; :failed unit

Down states:
S = (Fro W), andSs = (Wr, FR).

Fig. 1: Possible states and transitions between them

4 Transition probabilities and sojourn times

It is evident that the epochs of entry into any one of the
statesSy, S1, S, S3, S andS; are regeneration points and
is the set of these states. L&, T1, T,,... denote the
epochs at which the system enters any skateE and let
X, denote the state visited at epogl, i.e. just after the
transition atT,. Then ,, T,) is a Markov renewal
process with state space E aQg(t) = P Xnr1 =], Tns1 -
Ty < t] X, =) is the semi-Markov kernel over E. The
transition probability matrix of embedded Markov-chain
is P= (Rj(t)) = (Qij() = Q(e)) with non-zero elements
Rj as follows:

Py = P27_: f Fl(t) dG ( ) Pyz=P3= f Gl(t) dFl(t),

Pi2= [ Fa(t) dGa(t), Pia = [ Ga(t) dRa(t),

F$3 =/ Ra(t) K (1) dGa(t), PS, = [ Fa(t) dK (1),

P = [ Fu(t) dK (), Py = [ Fa(t) K(t) dGy(t),
P72— J R(t) dGa(t), Pra= | Go(t) dRo(t),

= [ F(t) dK(t), Pac, = [ Fu(t) dK(t),
P35— JK(t) dR(t), Pas = [ K(t) dFa(t),
P2 = [ Galt) K(t) dRa(t) + [ J§ Ga(x) dK(X) dF(t),
P = [ Gy(t) K(t) dFy(t) + [ f3 G1(x) dK(x) dFy(t).
Evidently,

Po1 + Pog=Pi2+ Pra=Po7 + Pog = Pic; + Pss = Poc, +
Pss =1,

P33 + P33 + PS, = Py + Py + PR = 1.

Mean sojourn timesg; in stateS are:

Ho = p2 = [ Fu(t) Ga(t) dt, pia = k7 = [ Fa(t)

ps = Fa(t) K(t) dt, pa = [ Fa(t) K(t) dt.

Gy(t) dt,
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5 Mean timeto system failure

According to the arguments of theory of regenerative

processes, we obtain the following equation:

Mo(t) = F1(t)Gy(t) + qoa(t) ©TTa(t) + QOa(t)©ﬁ3(t)&1)
M(t) = R(t)Ga(t) + qua(t) ©2(t) + Q14(t)©ﬁ4(t)&2)

IMa(t) = F1(t)Ga(t) + azs(t) ©T3(t) + Q27(t)©ﬁ7(t)&3)

M3(t) = R(t)K(t) + a3 (1) ©TTa(t) + dgg (1) ©TTa(t), (4)

Ma(t) = FL(OK(t) + 53 (t) ©TTa(t) + a3 () © T (1), (5)

IT7(t) = F2(t)Ga(t) + ar2(t) © M2 (t) + G74(t) © Ma(t) (6)

Taking the Laplace transform of these relations and
solving for lp(s) considering s = 0, we have the time to dK (X)

system failures MTSF as follows:

MTSF =E(T)= 5
1

(7
where,

D1 = 1-Pog {P53 (1-P5# Pra) + PS5 P2 Pro} - Par {Pr
(- 5 3 6 P - S -5 P

N1 = {Ho + Por pir} {(F53 Py - 1) (1 -Par Pr) - Prg
(Por P53 Py + Py) + Pog (PS5 (Pl + Pra- 1) - P Py
Pr2)} + Ho {Pos (P55 Py¥ Pro+ P53 (PE¥ Pra- 1)) (Pio Pra
- P14 Pr2) - Po3 (P27 Pra + Pry P% - 1)} + {Ho + w3 + wy}
{Po3 (FS2 (1 - Po7 Pro) + Pa7 PSS Pra) + Pot (Pra (PS5 PS2
+ Pt Pro) - Prp (PSS Pyd + P Pra- 1))} {1 + an + )
{Po1 (P14 Pz + Prg Pff) + Po1 (P27 Pfg“ - Py Pf;:?) + Po1
(Pia (1 - Pog PS5 - Po7 Pro) + Pro (Pag PS3 + Poy Pra))} + it
{P27 (Pog P + Pop (Pr2 + (Pra P53 - Pio PS3) Pi3)) - P4
(Po1 Pra (P23 PS5 - 1) - (Poa + Pox Pr2 Pog) P53)1,

w = [ Fa(t) Go(t) K(t) dt,

w = [ Fa(t) J5 G2(x) dK(x) dx
ws = [ Fu(t) Ga(t) K(t) dt,
w = [ Fi(t) fo Gu(x) dK(x) dx

6 System Availability

From the theory of regenerative processes, the pointwise
availabilities Avi(t) of the system starting from a given
regenerative point are seen to satisfy the following
recursion relations:

Avo(t) = Mo(t) + do1(t) ©Av1(t) + doa(t) ©Avs(t), (8)

Avy(t) = Ma(t) + dua(t) ©Av2(t) + ua(t) ©Ava(t), (9)

Ava(t) = Ma(t) + 023(t) ©Avs(t) + d27(t) ©Av4(t), (10)

Av3(t) = Ms<t>+q§3<t>©sz<t>+<q§z<t>+q§4<t>>©A(\X41<)t>,

Ava(t) = M4<t>+<q€i§<t>+qfis<t>>©Av3(t>+q§%<t>©A(\X72<)t>,

Avz(t) = Mz(t) + ara(t) ©Avz(t) + dra(t) ©Ava(t). (13)

where,
Mo(t)

(N;m) =Fi(t) K(t) +Fu(t) K(t) Ga(t) + Fi(t) f3 Ga(x)
dK(x).

Taking the Laplace transform of equations (8)-(13) and
solving forAvj(t), then we get the steady state availability
of the systemAvp(t) in the form,

N>

Avo = lim sAG(S) = 5. (14)

where,

N2 = {Ho + Po1 Mo} {(1'Pf§1 |301)(1'|:’g(;:23 P23) - (1- Po7
Pr2)(Pf + P3a)(Pa; + PSy) - Poa Py Pra (P55 + P3) - P33
Pa7 Pra (P + Pi2) - Por Pra}+ i {Poy Pro (1-P5% Pra -
(B + P3) (P53 + P3)) + Pos (PS3 (1- ¥ Pra) + PJY P
(P, + P53)) + Por Pua (P53 (PSy) + Pg2) + P Pro)} + {3
+w + wp} {Po1 P2 (Pa3 (1-Pra P% ) + Po7 Prg (PS; +
P54)) + Pog (1- Po7 P2 - P52 Pra) + Pog Pua (1-Pa7 Pr2) (P
+ Pg2) + Pag Prp Pe)) + {lia + s + g } { Po1 Pro (Po7
Pra+ Pos (P53 + PS))) + Pos (1-Pa7 Pro) (P8, ) + PE3) + Py
P4 ng ) + Po1 Pig (1- szs Pz - Po7 Pr2) + s {Po1 Pr2 (
Pa7 (1 - (P + Pg3 ) (P5, + PE)) + Pas Py (P5, + P53 )) +
Pos ( Po7 P53 + Py (P, + P53 )) + Poy Pua (1 - P53 Pos -
P27 Pr2)},
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Table 1: Effect of Az,a1,00,4 on MTSF when A; €

{0.1,---,0.5}.
A1 MTSF
A B C

0.1 | 672.16 | 366.594| 118.65
0.2 | 315.205| 160.945| 40.6057
0.3 | 186.98 | 95.253 | 23.3281
0.4 | 126.401| 65.5772| 16.7451
0.5 | 93.0855| 49.4803| 13.395

D, =y (Pé:f + P% Pys - Pé:f lec? ) + mg (P23 + Poy
Prg PSy + P2 Poy Prg - Pog Prg PS4 ) + my (Pog Pra PG, +
P53 Pag Pro+ Pra - Pog Pra P53 ) + my (P + P55 Par - P53
i),

Mp = Mpg + Mp7 , Mg = MG + MS3 + Mg, my = my4 +
M + mi, My = My + My,

7 Numerical analysisand discussion

In this section, some of the results are obtained from abov

Table 2: Effect of A, ap,02,u4 on Av(o) when A; €
{0.1,---,0.5}.

A

Av(o0)

B
0.990773
0.986145
0.981892
0.977581

0.97319

A
0.999134
0.998012
0.996468
0.994614
0.992545

Cc
0.983274
0.949213
0.911351
0.875892
0.844388

0.1
0.2
0.3
0.4
0.5

Table 3: Sensitivity and relative sensitivity of MTSF with respect
toA1,A2, 01,00 and

(p)\l %2 (pal %2 (p“
-835.84 -685.288 -1.31441 47.6518  269.6[16

O'Al G)\z Oq, Oq, O'“
-1.3411  -1.46601 -0.00844 0.229364 1.58614

availability with respect to one of system parameters
wherek = ai, Az, A1, Ay andu

911 Sensitivity analysis and relative sensitivity asay

sections and are illustrated with a numerical example, W&o MTSF

assume that
fi(t) =A2te Mt A > 0;
k(t)=p2te ™, u>0;
gi(t)=a2te a9t q; > 0;foralli=1,2.

The result shown in Table 1 presents the mean time to
system failure of the system computed by varying its

failure rate §;) from 0.1 to 0.5 and change other
parameters a3, = 0.4,0.5,0.7.a; = 1.2,0.8,0.5.0, =
0.9,0.6, 0.3 angt = 1.1,0.9,0.3 the mean time to system
failure of the system decrease with increasing\pfand
A2. The mean time to system failure of the system
increase with increasing @f1, a, , 4 . These results are

shown in Fig 2. The steady-state availability of the system

has been calculated by varying the failure ratg) from
0.1to 0.5 and change other parameters,ss0.4,0.5,0.7.
a; = 1.2,0.8,0.5a, = 0.9,0.6, 0.3 angt = 1.1,0.9,0.3.
The results are shown in Table 2 and Fig 3. . It seems th

the steady-state availability of the system decrease Wit@
increasing ofA; and A,. The steady-state availability of A

the system increase with increasingoaf a5 , U .
whereA = {a1 = 1.2,a, = 09,1, = 0.4,u = 1.1},
B = {a; = 08,a; = 06,A, = 05u = 0.9},
C= {Gl =05a,= 0.3,)\2 = 0.7,[J = 0.3}.
whereA = {a1 = 1.2,a, = 09,1, = 0.4,u = 1.1},
B = {a; = 08,a;, = 06,A, = 05u = 0.9},
C= {Gl =05a,= 0.3,)\2 = 0.7,[J = 0.3}.

7.1 Sensitivity analysis and relative sensitivity
analysis

Defined (7) with respect te, we obtain.

OMTSF
0k
wherek = a1 , 02, A1, A2 andu. The relative sensitivity
analysis of MTSF is defined as the percentage change that
resulting from the percentage change in one of system
parameterg.

(15)

K
We first perform the sensitivity and the relative sensiivit
analysis of MTSF with respect to different system
parametersr; , az, A1, A2 and u. respectively. We will

ee how effect on MTSF about system parameters.
umerical results of the sensitivity and the relative
ensitivity analysis of MTSF are shown in Table 3 when
1=0.3,2=04,01 =1.2,0, = 0.9, andu = 1.1. The
order of magnitude of the effect on MTSF about system
parameters can be determined by the absolute value in
Table 3. Therefore, the order of magnitude of the
sensitivity to the MTSF isA; > Ax > u > az > ai.
Moreover, the order of magnitude of the relative
sensitivity to the MTSF id\; > A2 > i > az > a; when

)\1 = 0.3,)\2 =0.4,00.=1.2,0,=0.9 andu =1.1.

7.1.2 Sensitivity analysis and relative sensitivity asay
for steady-state availability

In this subsection, we calculate the sensitivity analysisWe perform the sensitivity analysis of changes in steady-
and relative sensitivity analysis of MTSF and steady-statestate availability with respect to one of system parameters
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Table4: Sensitivity and relative sensitivity of Aw() with respect 207
toA1,A2, 01,00 andp Av() f=13a =08,
#=114=07 , _0ga =05
T, D, Ty T, Ty sr #=07 =11  o=050=03,
-0.0172 -0.00397 0.015141 0.022354 -0.02869 2=03,4=17

ltu/\l ltu/\z l.Ual Lpaz ltu}l
-0.0052 -0.00159 0.01824 0.02019  -0.03167

LL L

A e[0.110]

K wherek = ai , az, A1, A, and u. Differentiating (14) ’ : : s :
with respect tac, we obtain
Fig. 3: Effect of A2, a1, ap, u on Availability
0Av
Mo — (°°)’
0K

17)

The relative sensitivity of steady-state availability is two non-identical units and repairman. The effect of the
defined as the percentage change that resulting from theystem parameterd;, A,, a1, a,, and y has been

percentage changes in one of system parameters discussed. It has been found that the failure rate shows a
K strong effect on the system than that of the other

Yk = Mi(——), (18)  parameters with respect to mean time to system failure.

AV(w) While the repair rate shows a strong effect on the system

Numerical results are provided to illustrate the than that of the other parameters with respect to
sensitivity of steady-state availability with respect to steady-state availability. We have the same results, using
system parameters. Table 4 show that sensitivity andhe sensitivity analysis and relative sensitivity anayisi
relative sensitivity of steady-state availability for thase  specific values of the system parameters.
case with respect to one of system parametenserex
wherek = aj , 02, A1, Az andu. whenA; = 0.3,A, =0.4,

o =1.2,a, = 0.9, andu = 1.1, respectively. Therefore, References
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Fig. 2: Effect of A2, a1, ao, u on MTSF

In this paper, A regenerative point technique is used to
derive the mean time to system failure, MTSF, and
steady-state availability, Aw{), of a system consisting of
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