
Appl. Math. Inf. Sci.12, No. 2, 397-404 (2018) 397

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/120214

Efficient String Matching FPGA for speed up Network
Intrusion Detection
J. Armstrong Joseph1,∗, Reeba Korah2 and S. Salivahanan3

1 Dept. of ICE, Anna University, Chennai, India.
2 Alliance College of Engineering and Design, Alliance University, Bangaluru, India.
3 SSN College of Engineering, Chennai, India.

Received: 7 Jan. 2018, Revised: 19 Feb. 2018, Accepted: 23 Feb. 2018
Published online: 1 Mar. 2018

Abstract: Malicious attacks and threats over network can be identifiedand prevented by Intrusion detection system (IDS). Essential
ability of every intrusion detection system is to search andfind packet content that can matches distinguished attacks.An open source
Network Intrusion Detection System (NIDS) is Snort that utilizes signatures/rules for detecting irregular network activities. Software-
based IDS may not be continued to process all traffic in real-time when network traffic increased. On the other hand, hardware based IDS
are best suited for computing and serious processing on network traffic and can keep up high network throughput. This paper, contributes
Buffered Boyer-Moore string-matching algorithm using FPGA that drastically increase throughput and improve its performance on
hardware implementations. The projected performance as Performance Efficiency Metric (PEM) 21.3 enables system to do 19.2 Gbps
of throughput and implies a significant difference obtainedwhen processing large number of payload.

Keywords: Boyer-moore (BM) algorithm, Network intrusion detection,string matching, FPGA

1 Introduction

General attribute of network intrusion detection is to look
at packets entering from a network and to scrutinize
content of the packet headers and payload. Intrusion
detection systems which are more obscured than simple
packet classification systems in which one needs to look
at the packet content that is payload as well as the packet
headers. Pattern matching systems have facility to search
for a string or regular expression wherever within the
packet. Once a possible threat is found as defined by the
matched rule, actions could be taken as either allows or
drops the packet. This is used to generate a report
detailing the alleged threat. Many algorithms have been
applied for packet classification and Pattern matching
systems. Well known software based intrusion detection
system is being Snort [1, 2]. However, the predictable
software solution can have difficulty in keeping up higher
network speeds, performance and use. The drawback to
the software based IDS is the serial processing the rules.
An alternate approach ought to be to use rules being
checked in parallel. Such parallel processing may be
realized in reconfigurable hardware such as the FPGA
(Field Programmable Gate Array). The aim of this

proposed work is to study the efficiency of IDS using
FPGA that designed by string-matching system with a
pre-decoder Finite State Machine (FSM) for use in
high-speed network intrusion detection system and to
show that this could be applied using current up to date
hardware.

2 Related work

Many researchers designed signature (rule) detection
architectures based on NFAs and DFAs [3–7] though,
they may not give high performance and also process
more than one character per cycle easily. Using CAMs
and discrete comparators for searching payload against
the patterns contained in NIDS rule set [8]. In these
studies give the area per slice cost is higher, since they are
easy to implement pipeline logic and process multiple
bytes per cycle their performance is increased. A
technique is applied to increase sharing and reduced
designs cost is the use of pre-decoding, it is applied in
CAM and regular expression approaches. Sourdis et
al. [9] introduced Pre-decoded CAMs for Efficient and

∗ Corresponding author e-mail:armstrongauphd@gmail.com

c© 2018 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/120214

398 J. Joseph et al.: Efficient string matching FPGA for speed up...

High-Speed NIDS Pattern Matching. Dharampurikar et
al. [10] presented Bloom Filters with field programmable
gate array (FPGA) technology to do string matching
which is efficient and very low-cost approach. Michael
Attig and Gordon Brebner et al. [11] presented high
throughput by increasing data path width. Bande et
al. [12] used unique subsequence matching. Hao Wang et
al. [13] illustrated MIN-MAX to support matching of
regular expressions.

During runtime reconfigurable within programmable
device hardware is achieved through either partial
reconfiguration or context switching. Course grained
reconfigurability [14] is achieved by multiplexing various
functional units. Fine-grained reconfigurability requires
large routing area so it gives low efficient. Building
blocks of FPGA contain more than one LUT, flip-flop and
mixture of arithmetic, combinatorial, and multiplexing
logic [15]. Dynamically configurable gate array (DCGA)
concept [16] is implemented for context switching at
run-time reconfigurable system and also included context
swapping within an FPGA. This is based on providing a
number of resources like ALUs, RAMs, Multipliers, and
registers. Partially reconfigurable track the difference
based flow on the differences between the designs. By
making small changes to a design and then generating the
bit streams for the difference. One of dynamically
reconfigurable architecture is PipeRench [17] which
allows configuration of processing elements
(reconfigurable) to change in each execution cycle. This
provides a global bus for data transfer. Kilocore KC256 is
a commercial version of PipeRench which is a specialized
structure for the pipelined execution.

3 Methodology

FPGA-based network intrusion detection system will be
rules-based, using rules generated for the software based
Snort IDS. Network packets are getting from the network
link RJ45 and preprocessed as various rules sets. The
preprocessing works is designed for each rule associated
with Intrusion detection engine that is secondary FSM.
All rules definitions are controlled by a FSM is called as
MasterFSM. Each secondary FSM gets control from
MasterFSM and classify the packet data into packet
header or content of packet (payload). Decoder approach
is followed in FSMs. In packet header contains the
information about such as protocols, port and source and
destination addresses. In payload of packet data contains
the rule dentition which is used for searching content
stored in DRAM. If it is found match, result out will be
delivered or pass the control to next secondary FSM by
MasterFSM. Each result is recorded in registers that is
called as scoreboard.

Each Intrusion Detection engines are designed by rule
definition specified in the rule which is controlled by
secondary FSM. They would be set to find payload
contents while passing packet data. This can be

implemented by comparator and adder. Comparator
compares data from DRAM with packet data and delivers
result as drop or match. The adder is used for computation
of new keys into DRAM. In this paper, Detection engine’s
string matching implemented by using buffered BM
algorithm. Result Output is in the form of alerts, logs and
databases. Performance is analyzed in terms of
throughput to get efficiently here. As a result Performance
Efficiency Metric (PEM) is calculated as follows.

In order to decide how efficient [22] a design is, we
calculate the efficiency in terms of performance as

Throughput in Mbit/s
Area in slices

Figure of merit is calculated as, where throughput is
defined as

working frequency×Number of Bits
number of cycles

Performance Efficiency Metric (PEM) [9] is used to index
efficient as defined as

Throughput
(Logic Cells+(MEM bytes/12))/Non-Meta Character)

where MEM bytes become 0. Number of logic cells
calculated as 1.6× number of LUTs used in design. We
use a metric speedup, is defined by a method for
increasing the performance between two systems
processing the same instance. But, speedup can be used to
explain the effect on performance after any resource
development. Using speedup formula as

Latency of old architecture
Latency of New architecture

where Latency of architectureL is the inverse of the
execute speed of system. Significant speedup is obtained
in overall execution time only for large pattern size. By
editing binary configuration file used to increase the
speedup in Multicontext FPGA for reconfiguration
according to input pattern. Fig.1 describes block diagram
of proposed Intrusion Detection System.

Following subsections given in detailed explanation.

3.1 Preprocessing works for design

From snort database the rule definitions are derived and
assigned each rule to design intrusion detection engine.
Rule definitions have contents options that are converted
from infix notations to postfix notations if necessary. The
data values are stored into DRAM by external circuit by
vc707 evaluation board.

All snort rule definitions are converted in the form of
Hex value content into binary for designing string
matching circuit with the help of FSM.

c© 2018 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.12, No. 2, 397-404 (2018) /www.naturalspublishing.com/Journals.asp 399

Fig. 1: Block diagram of Proposed Intrusion Detection System.

3.2 Snort

A system based on snort rules optimized for more than
thousand need string matching against data of incoming
packet.

An example for Snort rule is:
alert tcp any any→ 172.198.2.1/32 333 (content: “ieca|
4a4b|”; msg: “mounted success”;)

This rule seeks a TCP packet with any source IP is
172.198.2.1 and port no= 333 respectively. To match this
rule describes that packet payload contains pattern “ieca|
4a4b| ”, in which i, e, c, a are ASCII characters and “4a”
and “4b” are quoted within| as Hexadecimal format.
Intrusion detection systems are capable to do packet
classification and inspection. Their major bottleneck is
signature (rule) detection which limits performance of
NIDS.

3.3 Intrusion Detection System (IDS)

The IDS simulates snort database contents. Subsets of the
snort rule set from snort database is designed for each
Intrusion Detection Engine (IDE). Each IDE consists of a
primary FSM and secondary FSMs. Primary FSM is
designed according to packet header and secondary FSMs
is designed for payload that can be inspected to check
with packet data. A new packet arrives, the Primary FSM
reads in the first rule from the DRAM (Distributed RAM)
which has pre-coded values. Once packet is scanned,
Primary FSM delivers the result output as matched or
drops the packet.

3.4 Intrusion Detection Engine

Each Intrusion Detection Engine is constructed according
to snort rule and controlled by FSM. String matching is
computed done by logical elements configured as
comparator/adder. Comparator compares the specific rule
content stored in memory (DRAM) with incoming packet
data. Reconfigurable logic elements will act as either
comparator or adder based on input pattern. Adder is used

to compute new keys in DRAM. After completion of
scanning a particular rule on a packet, an IDE revises its
equivalent entry in the Scoreboard Register. The
Scoreboard maintains a record of the result for each rule.

3.5 Boyer–Moore (BM) algorithm

BM algorithm is an efficient string-matching technique
that uses concurrent multi-keyword comparisons. Before
the comparisons are performed, it builds tire in reverse
according to snort rule set. Tire is tree data structure with
a kind of ordered search tree that is used to store a
dynamic set or associative array. So, concurrent
comparison only requires current packet pointer into trie
node. On success, continue down trie and if at leaf, check
whether truncated characters match. Otherwise, shift by
precomputed shift size on failure pointer. Precomputed
shift sizes are computed with two tables. One table is
bad-symbol table that indicates how much level to shift
based on text’s character cause a mismatch. Another is
good-suffix table that indicates that how much level to
shift based on matched part (suffix) of the pattern.
Buffered input is registered by registers.

3.6 Buffered input

In common, BM algorithm is hard to use in pipelined
architecture of matching elements. Because of freeze and
delay this algorithm, matching processing of new
characters are in irregular ways. A partially mismatched
pattern occurs due to input text is less than pattern size.
This can cause stalling that is unacceptable in array of
secondary FSM. This can be rectified by preprocessing
that takes alignments allowed with input text over pattern
instances are shifted by 16 bits for the 64 bit-per-cycle
architecture. A bandwidth of 64 bits per cycle can be
achieved with four hardwired 16 bit comparators, allows
the running time to be reduced by 4 for an equivalent
increased in comparator. A proof of buffer size required
to create a string-matching secondary FSM that will not
stall. This allows a matching unit to accept one character

c© 2018 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

400 J. Joseph et al.: Efficient string matching FPGA for speed up...

Fig. 2: Architecture of comparator design for buffered
input.

each cycle into a buffer size equals to logk
α where

α = (1+
√

5)/2 andk is pattern size. Solution is to buffer
the entire input sequence by registered inputs. But it is
cumbersome as input sizes become large. Buffered inputs
guaranteed that always one character per cycle could be
accepted for searching process simultaneously. Fig.2
illustrates architecture of comparator design for buffered
input. Input is buffered with hardware based BM
algorithm to obtain high throughput efficiently.

This proposed paper has presented string matching
architecture using buffered input with BM algorithm. The
architecture competes with the latest while providing
reconfiguration and more efficient hardware use. Table 1
describes Buffered input Boyer-Moore algorithm
pseudo-code is as given in Table1.

3.7 Reconfigurable computing

Accessible Reconfigurable computing (RC) models [20]
are formed as either one dimensional or two dimensional
arrays of configurable logics cells. They are linked by
configurable switches or programming links. The
architecture would be graded by its processing ability of
each logic cell at various granularity levels such as coarse
grained, fine grained. Configuration data could be stored
on SRAM/DRAM of FPGA device. Granularity is graded
as one-bit output of each Look up Table (LUT). Due to a
number of switches used for the programmability creates
large delay and large interconnects area. It can be reduced
by providing greater data width per LE Array. Single bit
output of each Look up Table (LUT) in the LE results in a
large interconnects area and large delay due to a number
of switches for the programmability. In order to avoid
large interconnects area and large delay, provides
increased data width per LE. We propose to use an LE
with multi bit output LUTs [21]. Since multi bit output
LUT has fine grained configurable cell performed with
simple logic functions with more complex functions (In
this case is DRAM function generator used for
computation output). Each logic element (LE) can
comprehend two different operations equivalent to six bit

Table 1: Pseudo-code of Buffered input Boyer-Moore
algorithm.

int tablesize = 256;
int[] table;
String pattern;
Function table(String pattern)
{
table = new int[tablesize];
for (int el = 0; el< tablesize; el++)
table[el] =-1;
for (int m=0; m< pattern.length(); m++)
table[pattern.char(m)] = m;
/* store pattern character into pattern registers */
}
public int Textsearch(String text, String pattern){
int pl = pattern.length();
int tl = text.length();
int skip;
for (int l = 0; l < = tl-pl; l += skip) {
skip = 0;
for (int m = pl-1; m> = 0; m–){
if (pattern.char(m) ! = text.char(l + m)){
skip = max(1, m-table[text.char(l + m)]);
break;
}
if (skip == 0)
return l;
}
endif (pattern.char(m) == text.char(l + m)){
++ skip;++m;
break;
}
}
if(skip ==m-1)
print ”Match found”;
endif
return tl;
}

input to single bit output or five bit input to single bit
output. Configuration data could be stored on
SRAM/DRAM of FPGA device. Up to thirty two
different configurations can store in each memory cell.
Like a context switch, LE is reconfigured form
comparator to adder in a single cycle and vice versa. The
FSM designed to control them as necessary at run-time.
In this method parallel processing is achieved by IDS is
divided into a series of stages with each stage has separate
IDE and DRAM sequentially.

3.8 Scoreboard

Record of the result is maintained for each rule associated
with IDE by a unit is called as scoreboard. To maintain
IDE search quicker, scoreboard uses modified LFU
algorithm is to assign a counter to every memory
controller of each IDE block that is loaded into
Distributed RAM (DRAM). Each time a reference is
made to that trap the counter is increased by one. When

c© 2018 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.12, No. 2, 397-404 (2018) /www.naturalspublishing.com/Journals.asp 401

Table 2: PEM Comparison of various FPGA-based pattern matching approaches.

Approaches Input
bits per
cycle

Device Throughput
(Gbps)

Logic
cells

Eq.
Logic
cell/char

chars PEM

Sourdis et al. PreD-CAM 32 Virtex2–6000 9.708 64,268 3.56 18,036 2.73
Cho et al. Dis. Comp BruteForce 32 Altra EP20K 2.88 17,000 10.6 1,611 0.27
Baker et al. PreD-CAM 8 Virtex2P-100 1.896 6,340 0.32 19,584 5.86
Clark et al. Decoder NFA 32 Virtex2–6000 6.077 54,742 3.1 17,537 1.946
Gokhale et.al. Dis. Comp 32 VirtexE-1000 2.716 9,722 15.2 640 0.14
Sidhu et.al. NFA 8 Virtex-100 0.46 1,920 66 29 0.01
Franklin et al. Comparator NFA 8 VirtexE-2000 0.39 40,232 2.52 16,028 0.16
Moscola et al. DFA 32 VirtexE-2000 1.184 8.134 19.4 420 0.06
Bande et al. NFA 32 Virtex-5 FX100T 5.69 12,733 1.62 5,024 2.24
Hao Wang et al. NFA 8 Virtex-5 LX1107 2.57 8,640 0.33 25,829 7.8
Proposed Method Decoder DFA BM 64 Virtex-7 X485T 19.2 42,182 0.9 46,500 21.3

Table 3: Speedup over other approaches for 8 patterns with input textsize varies from 103 to 105.

Approaches TM +TRE+TE (s) speedup
Input Text Size n= 103 n= 104 n= 105 n= 103 n= 104 n= 105

Proposed Method Decoder DFA BM 0.0018 0.018 0.18 1 1 1
CAD tool [24] 76 76 76.2 ≈ 4X106 ≈ 4X106 ≈ 4X106

Mapping data [25] 0.0218 0.0393 0.2041 12.1 2.1 1.1
Software based snort IDS with BM algorithm 0.03 0.08 0.289 16.6 4.4 3.7

the DRAM reaches capacity and has a new IDE block
waiting to be inserted the system will search for memory
controller of IDE block with the lowest counter and
remove it from the DRAM. A simple modification to LFU
that avoids the problem of throwing out the least used
page. A redundantR bit is assigned to each memory
controller while used. The redundant R bit of the oldest
memory controller is inspected. If it is 0, the memory
controller is both old and unused, so it is replaced
immediately from DRAM. If the R bit is 1, the bit is
cleared, the memory controller is put onto the end of the
list of memory controllers, and its load time is updated as
reset to the current time though it had just arrived in
DRAM. Then the search continues.

3.9 FPGA Implementation

We used tool Vivado v2015.4 (64-bit) for synthesis and
place and route this proposed method. The examples in
the benchmark suite implemented for Virtex-7 X485T
FPGA device Xc7vx485tffg176–1-2. The FPGA has
75,900 ‘slices’, each containing four six-input lookup
tables (LUTs) and eight flip-flops(FFs). The target device
is the Virtex-7 X485T FPGA device
Xc7vx485tffg176–1-2 speed grade [16]. Table 2 Shows
that PEM Comparison of different FPGA-based pattern
matching approaches. A Non-deterministic Finite
Automation (NFA) is mapped on an FPGA [4] achieved
low throughput. To build and configure, NFA is
complicated. In contrast, discrete comparators [6, 18] are
used to obtain higher throughput at the increased area
cost. Area cost is reduced by using CAM based solutions

to get similar throughput. With the drawbacks of
increased area cost and power consumption, proposed
pre-Decoder DFA is used to find probable matches on the
string set and reduce the total number of comparisons.
Our design operates at maximum speed of is 300 MHz
while using approx 46500 characters. Design takes
42,182 logic cells and 26,364 LUT and 7,962 Flip-flops.
Design execution time is 0.018 second. Our design
achieves the best throughput/area efficiency as
Performance efficiency Metric (PEM) is 21.3 on FPG and
throughput is 19.2 Gbps.

Performance [22] calculated in terms of throughput
(Gbps)/area(slices). Two logical cell forms one slice.
Higher throughputs achieved by number of bits per cycle
processed. By using 64 input bits per cycle achieved
throughput is 19.2 Gbps from the proposed method. The
performance degradation occurred as either more
character increases or as number of states increases.

The devices have on chip DRAM to store a number of
configuration context vary from 8 to 256 and switching
contexts takes 5 to 100ns. The context switching [23] is
like a switching of process on a uniprocessor. Active
context (bits stored in all the flip-flops) have saved before
switching to a different context. At the same time only
one context is active and other contexts are remained.
Switched context will execute from where it has stopped
earlier. Multicontext FPGA rapidly switches between
stored configurations. Our proposed method Decoder
DFA BM uses Multicontext FPGA for Logical element
reconfiguration. We obtained the performance Software
based snort IDS with BM algorithm for searching pattern
which is implemented on Pentium 2.8GHz workstation.

c© 2018 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

402 J. Joseph et al.: Efficient string matching FPGA for speed up...

(a) No. of characters vs. Total Time. (b) No. of characters vs. Mapping
Time.

Fig. 3

Fig. 4: Simulation Screen shot of the proposed IDS system.

Mapping time(TM +TRE) is taken for Proposed Method
Decoder DFA BM approach with other approaches.
Where TM denotes mapping time andTRE denotes
reconfiguration time or time required to configuration
onto device. TE is total execution time. Derive the
equationsTM, TRE and TE in terms of in terms ofTCM
(configuration memory read or write time),Tclk (one
clock cycle Time) andSOR-GATE (switching OR gates).
The FSM (Finite State Machines) is constructed on a
separate context. While executing current context cannot
be modify it. Data sharing between contexts are possible
on multicontext FPGAs. Reconfiguration is performed via
DRAM and writes construction of back edges. Runtime
generated FSM is swapped by switching between two
contexts. Time calculations are based on the equations:

TRE = (m−1)SOR-GATETCM (1)

TM = (4m−1)TCM+(m+1)TCM+(7m−4)Tclk (2)

TE = (2n− (n/m))Tclk (3)

wherem is size of pattern andn is size of Text respectively.
Table 3 shows speedup in mapping time (8 patterns

context switch) with other approaches. To build logic,
template logics are used in CAD tools for each problem
once.

Comparison made for implementation of FPGA based
string matching approaches. Observed that in [25],
Speedups will be getting in very large text searches due to
high TM + TRE From the result of Table 3, the proposed
method shows that speedup significant is obtained about

12.1 to 1.1 while using input text size varies from 103 to
105 respectively. Fig.3(a) and Fig. 3(b) shows that
comparison of mapping time and total time versus no of
characters used in various approaches as in graph
respectively. With the help of Eqs. (1) to (3) we obtained
a speedup significant when processing no of characters
varies from 103 to 105 respectively.

Proposed method is designed by a device Virtex-7
X485T and it has configured by dynamic reconfiguration
using Xilinx Vivado v2014.2. The result shows that
significant speedup is obtained while using input text size
varies from 103 to 105 by getting different mapping time
and reasonable reconfiguration time over various existing
approaches.

Figs.4 and5 show screenshots of simulations output
and device implementation of our system respectively. It
clearly indicates that successive matching signature output
and its corresponding resources utilized in this design.

4 Conclusion and Future work

In this paper the features of Xilinx FPGA are used to map
software based Snort IDS into hardware based snort IDS
using FPGA and the amount of logic resources decreased.
The paper shows that proposed system can maintain
throughput of 19.2 Gbps with performance in terms of
Performance Efficiency Metric (PEM) 21.3. Moreover,
the system is implemented on device Virtex-7 X485T
supporting board for networking application. The
proposed method based on pre decoded DFA of the

c© 2018 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.12, No. 2, 397-404 (2018) /www.naturalspublishing.com/Journals.asp 403

Fig. 5: Device Implementation Screen shot of the
proposed IDS system after place and route.

incoming packets from Snort ruleset. In this application,
FSM constructed to use control memory and string
matching. Results show that significant speedup is
obtained in mapping time and total time over various
existing approaches. Upcoming work is to preprocess the
snort rule set by an optimizer [19] that can determine
their interdependencies of rules. This will reduce number
of rues, so searching pattern is very easy.

References

[1] Sourcefire, Snort: The Open Source Network Intrusion
Detection System,http://www.snort.org, 2017.

[2] Haoyu Song, T. Sproull, M. Attig and J. Lockwood, Snort
off loader: a reconfigurable hardware NIDS filter, Field
Programmable Logic and Applications, 2005. International
Conference on, 24–26 Aug. 2005.

[3] Z.K. Baker and V.K. Prasanna, Automatic Synthesis of
Efficient Intrusion Detection Systems on FPGAs. In:
Proceedings of 14th International Conference on Field
Programmable Logic and Applications, August 2004.

[4] R. Franklin, D. Carver, and B. Hutchings. Assisting
Network Intrusion Detection with Reconfigurable
Hardware. In: IEEE Symposium on Field- Programmable
Custom Computing Machines, April 2002.

[5] J. Moscola, J. Lockwood, R.P. Loui, and M. Pachos,
Implementation of a Content-Scanning Module for
an Internet Firewall. In: IEEE Symposium on Field-
Programmable Custom Computing Machines, April 2003.

[6] R. Sidhu and V.K. Prasanna, Fast Regular Expression
Matching using FPGAs. In: IEEE Symposium on Field-
Programmable Custom Computing Machines, April 2001.

[7] C.R. Clark and D.E. Schimmel, Scalable Parallel Pattern-
Matching on High- Speed Networks. In: IEEE Symposium
on Field-Programmable Custom Computing Machines,
April 2004.

[8] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole,
and V. Hogsett, Granidt: Towards Gigabit Rate Network
Intrusion Detection Technology. In: Proceedings of 12th Int.
Conference on Field Programmable Logic and Applications,
2002.

[9] I. Sourdis and D. Pnevmatikatos. Pre-decoded CAMs for
Efficient and High- Speed NIDS Pattern Matching. In: IEEE
Symposium on Field-Programmable Custom Computing
Machines, April 2004.

[10] M. Attig, S. Dharmapurikar, and J. Lockwood.
Implementation Results of Bloom Filters for String
Matching, In: IEEE Symposium on Field-Programmable
Custom Computing Machines, April 2004.

[11] Michael Attig and Gordon Brebner, 400 Gb/s Programmable
Packet Parsing on a Single FPGA, Xilinx Labs 2100 Logic
Drive.

[12] J.M. Bande Serrano, J.H. Palancar, String alignment pre-
detection using unique subsequences for FPGA-based
network intrusion detection, Computer Communications,35
(2012) 720–728.

[13] Hao Wang, Gabe Knezek, and Jyh-Charn Liu, MIN-
MAX: A Counter-Based Algorithm for Regular Expression
Matching, IEEE Transactions on Parallel and Distributed
Systems,24(1), January 2013.

[14] T. Kitaoka, H. Amano, and K. Anjo, Reducing the
configuration loading time of a coarse grain multicontext
reconfigurable device, Proc. FPL (LNCS2778), pp.171–180,
2003.

[15] Anupam Chattopadhyay, Ingredients of Adaptability: A
Survey of Reconfigurable Processors, Hindawi Publishing
Corporation, VLSI Design, Volume 2013, Article ID
683615.

[16] The Xilinx Corporation, Virtex 7 Series FPGA Devices,
2016,http://www.xilinx.com

[17] S.C. Goldstein et al., PipeRench: A Coprocessor for
Streaming Multimedia Acceleration; Proc. ISCA‘99,
Atlanta, May 2–4, 1999.

[18] Hao Chen, Yu Chen and Douglas H. Summerville, A Survey
on the Application of FPGAs for Network Infrastructure
Security, In: IEEE Communications Surveys & Tutorials,
13(4), 2011.

[19] T.T. Hieu. T.N. Thinh, T.H. Vu. and S. Tomiyama,
Optimization of regular expression processing circuits for
NIDS on FPGA. In: Proceeding of the Second International
Networking and Computing Conference. 2011, pp. 105–
112.

[20] Wai Kai Chen, The Electrical Engineering Handbook,
Elsevier Academic Press. ISBN: 0–12-170960–4.

[21] Huesung Kim, A.K. Somani and A. Tyagi, A reconfigurable
multifunction computing cache architecture, Aug 2001,
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems,9(4), 509–523.

[22] H. Mahdizadeh, and M. Masoumi, Novel Architecture
for Efficient FPGA Implementation of Elliptic Curve
Cryptographic Processor Over GF (2163), IEEE Trans. VLSI
Systems,21(12), 2330–2333, 2013.

[23] A. Beasley, L. Walker and C. Clarke, Developing and
Implementing Dynamic Partial Reconfiguration for Pre-
Emptible Context Switching and Continuous End-To-End
Dataflow Applications, In: Altera SoC Developers Forum,
2015–14.

[24] P. Lysaght, B. Blodget, J. Mason, J. Young, and
Bridgeford, Invited Paper: Enhanced Architectures,
Design Methodologies and CAD Tools for Dynamic
Reconfiguration of Xilinx FPGAS” International
Conference on Field Programmable Logic and Applications,
2006.

c© 2018 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
http://www.snort.org
http://www.xilinx.com

404 J. Joseph et al.: Efficient string matching FPGA for speed up...

[25] Krishna N. Vikram, and Vinita Vasudevan, Mapping
Data-Parallel Tasks Onto Partially Reconfigurable Hybrid
Processor Architectures, IEEE Transactions on Very Large
Scale Integration (VLSI) Systems,14(9), 2006.

J. Armstrong Joseph
is research scholar in
Anna University
in Chennai. He obtained B.E.
degree in Electronics and
Communication Engineering
from National Engineering
College, M.E. degree
in Computer Science and

Engineering from Manonmaniam Sundaranar University,
Tirunelveli. His areas of interest in research are VLSI,
Computer Networks and Information Security.

Reeba Korah heads
the Department of Electronics
and Communication
Engineering of Alliance
University, Bangalore.
She has a vast experience
of over 24 years in the field
of engineering, academics,
administration and active
research. Prof. Korah is an

alumnus of Marathwada University, Maharashtra and
Anna University, Chennai. Her technical expertise spans
VLSI design, image and video processing and wireless
sensor networks.

S. Salivahanan is
the Principal of SSN College
of Engineering, Chennai,
since July 2003. He obtained
B.E. degree in Electronics
and Communication
Engineering from PSG
College of Technology,
Coimbatore, M.E. degree in

Communication Systems from NIT, Trichy and Ph.D.
from Madurai Kamaraj University, in the area of
Microwave Integrated Circuits. His areas of interest in
research are Microwave Integrated Circuits, Low and
High Frequency EM Fields and Digital Signal Processing.

c© 2018 NSP
Natural Sciences Publishing Cor.

	Introduction
	Related work
	Methodology
	Conclusion and Future work

