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Abstract: This work studies some characterizations of hyponormal operators. It presents certain operator inequalities by usinga

modified Aluthge transform̃T given as|T|
k

2m U |T|
k

2m , for k ≤ m, wherek,m are natural numbers andU is a partial isometry. Under
certain assumptions, together with the properties of the operatorU , the paper concludes that the transform̃T is hyponormal,p-

hyponormal,
(

p+ k
2m

)
-hyponormal, and

(
p+q
p+n

)
-hyponormal given thatp,q are positive reals.
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1 Introduction

Let B(H) be the space of all bounded linear operators on
H, the Hilbert space. It is known that every operatorT on
H can be factorized intoT = U |T|, whereU is a partial
isometry. IfU is uniquely determined under the condition
N(U) = N(|T |), then this factorization is called thepolar
decomposition of T. A bounded linear operator
T : H −→ H on a Hilbert spaceH is said to be unitary if
T∗T = TT∗ = I , an isometry if ‖Tx‖ = ‖x‖, ∀ x∈H and a
partial isometry if it is isometric onN(T)⊥. It is familiar
that |T|2 = T∗T is the square root ofT and
[T∗T] = T∗T − TT∗ = |T|2 − |T∗|2 is known as the self
commutator ofT. The operatorT is said to be normal if
its self commutator equals zero,p-hyponormal forp > 0
if (T∗T)p ≥ (TT∗)p. An invertible p-hyponormal
operatorT is said to be log-hyponormal if it satisfies
log(T∗T) ≥ log(TT∗) , see [4]. If p = 1, T is called
hyponormal and semi-hyponormal forp = 1

2. We shall
denote the set of allp-hyponormal operators byP−H.

The expressioñT = |T|
1
2U |T|

1
2 , whereU is unitary, is

known as the Aluthge transform. This was introduced by
Aluthge [1]. For results on generalized Aluthge
transform, see [7]. In this paper, we shall use the

modified formT̃ = |T|
k

2mU |T|
k

2m , k ≤ m, whereU is a

partial isometry to obtain some inequalities for the class
of hyponormal operators.

2 Preliminaries

Under this section, some of the well known related results
on inequalities for hyponormal operators are briefly
revisited . In this article, we will work exclusively with
Hilbert spaces over the field of complex numbers.
The first tool to study the elements ofP− H is the
Aluthge transform. In [1], Aluthge introduced the
transformT̃ = |T|

1
2U |T|

1
2 of a T ∈ P−H with the polar

decompositionT = U |T|, where 0< p ≤ 1 andU is a
unitary operator. He showed that the transform̃T is
hyponormal for12 ≤ p≤ 1 and(p+ 1

2)-hyponormal when
0< p≤ 1

2. This result was extended, among others, by T.
Furuta [7], T. Huruya [9], T. Furutaet al. [10], and K.
Tanahashi [4]. In all the above generalizations of
Aluthge’s work, the operatorU is a partial isometry. For
similar work , we refer to ([5], [6], [2]). Our work is
mainly in the extension of Aluthge’s work [1].

In the sequel, we require the applications of the
following results:

Theorem 1.[10](Löwner-Heinz Inequality)
Let A,B ∈ B(H), where H is a complex Hilbert space. If
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A≥ B≥ 0 andα ∈ [0,1] ,then

Aα ≥ Bα ≥ 0. (1)

Lemma 1.[5] Let T ∈ B(H), where H is a complex
Hilbert space and T= U |T| be the polar decomposition
of T . Then, the following hold:

(i)N(|T |) = N(T),
(ii) |T∗|n =U |T|nU∗,
(iii) |T|n =U∗|T|nU , for any positive integern.

Remark.This result is also true for any positive real.

Lemma 2.[9](Furuta Inequality)
Let H be a complex Hilbert space and A,B∈ B(H). If A≥
B≥ 0, then the following inequalities:

(i)(BrApBr)
1
q ≥ B

p+2r
q

(ii)A
p+2r

q ≥ (ArBpAr)
1
q

hold for p≥ 0, q≥ 1, r ≥ 0 with (1+2r)q≥ p+2r.

Lemma 3.[8](Hansen Inequality) Let H be a complex
Hilbert space and A,B ∈ B(H). If A ≥ 0, 0 ≤ α ≤ 1 and
‖B‖ ≤ 1, then

(B∗AB)α ≥ B∗AαB. (2)

Corollary 1.[3].
If A,B> 0, thenlogA> logB if and only if there exists an
α ∈ (0,1] such that Aα > Bα .

3 Results and Discussion

In this section, by introducing the operator

T̃ = |T|
k

2mU |T|
k

2m , wherek,m are natural numbers, with
k ≤ m, and U is a partial isometry, some operator
inequalities are obtained. Under particular values ofk,m,
some existing results are obtained as corollaries.

Theorem 2.Let T ∈ P− H and T = U |T| be the polar
decomposition of T . If0 <

k
2m ≤ p and U is a partial

isometry, then the operator̃T = |T|
k

2mU |T|
k

2m satisfies
T̃∗T̃ ≥ T̃T̃∗.

Proof.Let T ∈ P−H for 0 <
k

2m ≤ p. For anyq ≤ p, by
Lowner-Heinz Theorem,p-hyponormality ofT implies
that ofq. Therefore,T is k

2m-hyponormal. This means

(T∗T)
k

2m ≥ (TT∗)
k

2m . (3)

UsingT∗T = |T|2 andTT∗ = |T∗|2 in (3), we have

|T|
k
m ≥ |T∗|

k
m . (4)

Using|T|n =U∗|T|nU and |T∗|n =U |T|nU∗ in (4) to have

U∗|T|
k
mU ≥ |T|

k
m ≥U |T|

k
mU∗·

That is
U∗|T|

k
mU −U |T|

k
mU∗ ≥ 0. (5)

Now, consider

T̃n
∗T̃n− T̃nT̃n

∗ =
(
|T|

k
2mU∗|T|

k
2m |T|

k
2mU |T|

k
2m

)
−
(
|T|

k
2mU |T|

k
2m |T|

k
2mU∗|T|

k
2m

)

=
(
|T|

k
2mU∗|T|

k
mU |T|

k
2m

)
−
(
|T|

k
2mU |T|

k
mU∗|T|

k
2m

)

= |T|
k

2m
(
U∗|T|

k
mU −U |T|

k
m U∗

)
|T|

k
2m ≥ 0.

That is,T̃n
∗T̃n ≥ T̃nT̃n

∗.

In particular, by settingk=m= 1 in Theorem2, yields
the following corollary.

Corollary 2.(see [1] ) Let T∈ P−H and T=U |T| be the
polar decomposition of T . If0<

1
2 ≤ p and U is a partial

isometry, then the operator̃T = |T|
1
2U |T|

1
2 satisfies

T̃∗T̃ ≥ T̃T̃∗.

To study the next result, the following Lemma is necessary
which we shall state and prove for completeness.

Lemma 4.Let T ∈ P−H for p > 0 and U : H −→ H be
a partial isometry. If N(T) and N(T∗) coincide, then the
equation

(U∗|T|U)n =U∗|T|nU, (6)

holds for n> 0

Proof.The hypothesis thatN(T) and N(T∗) coincide
impliesN(T)⊥ = N(T∗)⊥. This means the initial and final
projection coincide. That isU∗U equalsUU∗. Therefore,

(U∗|T|U)2 = U∗|T|UU∗|T|U

= U∗|T|U∗U |T|U

= U∗|T||T|U

= U∗|T|2U.

Similarly, by induction onx,y∈ N, we have(U∗|T|U)
x
y =

U∗|T|
x
yU .

Letting x
y −→ n, the result (U∗|T|U)n = U∗|T|nU holds

for anyn> 0, as required.

Theorem 3.Let T ∈ P−H with the polar decomposition
T = U |T|, where U is a partial isometry. If N(T) and

N(T∗) coincide, with the operator̃T = |T|
k

2mU |T|
k

2m ,

then the inequality
(

T̃∗T̃
)p

≥
(

T̃T̃∗
)p

holds for p> 0,

and k
2m < p.

Proof.By p-hyponormality ofT, we have|T|2p ≥ |T∗|2p.
From which we get

U∗|T|2pU ≥ |T|2p ≥U |T|2pU∗
. (7)

SinceA := |T|2p ≥ |T∗|2p =: B ≥ 0, then, we can apply
Löwner-Heinz Theorem to the above expression fork

2m ∈
(0,1] to obtain

(
|T|2p) k

2m ≥
(
|T∗|2p) k

2m ·
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Natural Sciences Publishing Cor.



J. Ana. Num. Theor.6, No. 1, 33-37 (2018) /www.naturalspublishing.com/Journals.asp 35

This gives
(
U∗|T|

kp
m U −U |T|

kp
m U∗

)
≥ 0. (8)

Now,
(

T̃∗T̃
)p

−
(

T̃T̃∗
)p

=
(
|T|

k
2mU∗|T|

k
2m · |T|

k
2mU |T|

k
2m

)p

−
(
|T|

k
2mU |T|

k
2m · |T|

k
2mU∗|T|

k
2m

)p

=
(
|T|

k
2mU∗|T|

k
mU |T|

k
2m

)p

−
(
|T|

k
2mU |T|

k
mU∗|T|

k
2m

)p

=|T|
kp
2m

(
U∗|T|

kp
m U −U |T|

kp
m U∗

)
|T|

kp
2m

≥0.

Hence,
(

T̃∗T̃
)p

≥
(

T̃T̃∗
)p

.

By re-writing k
2m < p asp<

k
2m, we refine the last two

results as follows:

Theorem 4.Let T ∈ P−H with the polar decomposition
T =U |T| and U be a partial isometry. Then, for0< p<

k
2m, the operator̃T = |T|

k
2mU |T|

k
2m satisfies

(
T̃∗T̃

)p+ k
2m

≥
(

T̃T̃∗
)p+ k

2m
·

Proof.Let T ∈ P− H . This means(T∗T)p ≥ (TT∗)p.
From which we have |T|2p ≥ |T∗|2p. This gives
U∗|T|2pU ≥ |T|2p ≥U |T|2pU∗. Put

A′ :=U∗|T|2pU, B′ := |T|2p
, C′ :=U |T|2pU∗

. (9)

Then,
(

T̃∗T̃
)p+ k

2m
=

(
|T|

k
2mU∗|T|

k
2m · |T|

k
2mU |T|

k
2m

)p+ k
2m

=
(
|T|

k
2mU∗|T|

k
mU |T|

k
2m

)p+ k
2m

=
(

B′
k

4mpA′
k

2mpB′
k

4mp

)p+ k
2m

.

To apply Lemma2 (Furuta Inequality)(i), we letr ′ = k
4mp,

p′ = k
2mp, q′ = 2m

2mp+k. Then,

(1+2r ′)q′ = (1+2
k

4mp
)

2m
2mp+ k

=
1
p

and

p′+2r ′ =
k

2mp
+2

k
4mp

=
k

mp
·

This shows that

(1+2r ′)q′ =
1
p
≥ p′+2r ′ =

k
mp

·

Hence,

(
T̃∗T̃

)p+ k
2m

=
(

B′
k

4mpA′
k

2mpB′
k

2mp

)p+ k
2mp

≥
(

B′
k

4mp+
k

2mp+
k

4mp

)p+ k
2mp

= B′
k
m(1+ k

2mp). (10)

Similarly, by Lemma2(ii), we have

(
T̃T̃∗

)p+ k
2m

=
(
|T|

k
2mU |T|

k
mU∗|T|

k
2m

)p+ k
2m

=
(

B′
k

4mpC
k

2mpB′
k

4mp

)p+ k
2mp

≤
(

B′
k

4mp+
k

2mp+
k

4mp

)p+ k
2mp

= B′
k
m(1+ k

2mp).(11)

From (10) and (11), it follows that

(
T̃∗T̃

)p+ k
2m

≥
(

T̃T̃∗
)p+ k

2m
·

Puttingk = m= 1 in Theorem3, gives the following
corollary.

Corollary 3.(see [1]) Let T ∈ P − H with the polar
decomposition T=U |T|, where U is a partial isometry. If
N(T) and N(T∗) coincide, with the operator

T̃ = |T|
1
2U |T|

1
2 , then the inequality

(
T̃∗T̃

)p
≥

(
T̃T̃∗

)p

holds for p> 0, and 1
2 < p.

Theorem 5.Let T∈ P−H be invertible for p> 0 with the
polar decomposition T=U |T|. For p+n≥ p+q, where

n,q > 0, the operator T̃ = |T|
k

2mU |T|
k

2m satisfies the
inequalities:

(
T̃∗T̃

)( p+q
p+n)

≥ |T|
2k
m ( p+q

p+n) ≥
(

T̃T̃∗
)( p+q

p+n )
·

Proof.: It is easy to see thatT is log-hyponormal. That
is, log(T∗T) ≥ log(TT∗). This clearly implies log|T|2 ≥
log|T∗|2. Hence, log|T| ≥ log|T∗|.
For A := |T| > 0, B := |T∗| > 0 and log|T| ≥ log|T∗|, it
follows from Cor.1 that we can find anα ∈ (0,1] such that

|T|α ≥ |T∗|α =U |T|αU∗·

That is,
|T|α ≥U |T|αU∗

. (12)

By pre-multiplying and post-multiplying (12) by U∗ and
U respectively, we have

U∗|T|αU ≥ |T|α . (13)

Combining (12) and (13), we get

U∗|T|αU ≥ |T|α ≥U |T|αU∗
. (14)
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Let

A′ :=U∗|T|αU, B′ := |T|α , C′ :=U |T|αU∗
. (15)

Now,
(

T̃∗T̃
)( p+q

p+n)
=

(
|T|

k
2mU∗|T|

k
2m · |T|

k
2mU |T|

k
2m

)( p+q
p+n)

=
(
|T|

k
2mU∗|T|

k
mU |T|

k
2m

)( p+q
p+n )

=
(

B′
k

2mα A′
k

mα B′
k

2mα
)( p+q

p+n)

. (16)

Let α = p+q
p+n. Clearly,α ∈ (0,1]. Then, from (16), we get

(
T̃∗T̃

)( p+q
p+n)

=
(

B′ k
2m( p+n

p+q)A′ k
m( p+n

p+q)B′ k
2m( p+n

p+q)
)( p+q

p+n)
.

(17)
To apply Furuta Inequality, Lemma (2)(i), we let

r ′ = k
2m

(
p+n
p+q

)
≥ 0, p′ = k

m

(
p+n
p+q

)
≥ 0, q′ = p+n

p+q ≥ 1.

(18)
Clearly,(1+2r ′)q′ ≥ p′+2r ′. Therefore,
(

T̃∗T̃
)α

=
(

B′
k

2mα A′
k

mα B′
k

2mα
)α

≥ B′(
k

2mα + k
mα + k

2mα )(α)
= B′

2k
m

≥ |T|
2kα
m = |T|

2k
m ( p+q

p+n). (19)

On similar steps, we obtain

(
T̃T̃∗

)α
=

(
B′

k
2mα C′

k
mα B′

k
2mα

)α

≤ B′(
k

2mα + k
mα + k

2mα )(α)
= B′

2k
m

≤ |T|
2kα
m = |T|

2k
m ( p+q

p+n). (20)

From (19) and (20), it follows that

(
T̃∗T̃

)( p+q
p+n)

≥ |T|
2k
m ( p+q

p+n) ≥
(

T̃T̃∗
)( p+q

p+n)
·

By setting m = k = 1 in Theorem5, we have the
following corollary.

Corollary 4.Let T ∈ P−H be invertible for p> 0 with
the polar decomposition T= U |T|. For p+ n ≥ p+ q,

where n,q > 0, the operatorT̃ = |T|
1
2U |T|

1
2 satisfies the

inequalities:

(
T̃∗T̃

)( p+q
p+n )

≥ |T|2(
p+q
p+n) ≥

(
T̃T̃∗

)( p+q
p+n)

·

By settingp+q= p+n in Theorem5, yields the following
corollary.

Corollary 5.Let T ∈ P−H be invertible for p> 0 with
the polar decomposition T= U |T|. Then for k≤ m, the

operatorT̃ = |T|
k

2mU |T|
k

2m satisfies the inequalities:

T̃∗T̃ ≥ |T|
2k
m ≥ T̃T̃∗·

4 Conclusion

This work presents a study on the order properties of
p-hyponormal and log−hyponormal operators. In
theorems 2, 3, 4 and 5, it is stated that under the given
conditions, the modified Aluthge transform

T̃ = |T|
k

2mU |T|
k

2m is respectively hyponormal,
p-hyponormal,

(
p+ k

2m

)
-hyponormal, and(

p+q
p+n

)
-hyponormal.
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