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Abstract: This is a review article, to show the consistency of delayedintial equations with biological systems with memory,
in which we present a class of mathematical models with fegs-in immunology, physiology, epidemiology and cell gtiowwe
also incorporate optimal control parameters into a delagehto describe the interactions of the tumour cells and imemesponse
cells with external therapy. We then study parameter esitmaand sensitivity analysis with delay differential atjans. Sensitivity
analysis is an important tool for understanding a particuiadel, which is considered as an issue of stability witlpeesto structural
perturbations in the model. We introduce a variational métio evaluate sensitivity of the state variables to smatiypeations in the
initial conditions and parameters appear in the model. Thegnted numerical simulations show the consistency afydiifferential
equations with biological systems with memory. The dispthyesults may bridge the gap between the mathematics casand its
applications in biology and medicine.
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1 Introduction usually a propagation delay before the effects are felt.
This situation can be modelled using a DDE

Mathematical modelling with delay differential equations

(DDEs) is widely used for analysis and predictions in _

various areas of the life sciences, e.g., population)/(t) = FY(U),y(t—12), Y(t—T2),....y({t—Tg), 1), t Zto(z)

dynamics, epidemiology, immunology, physiology, neural

n)eltworks. T[r)1e time gglays in thegsye pm)c/)delsgélke intoWhere. all of the delay termg;, are assumed to be none

account a dependence of the present state of the modellébgg;tg/ri gjrn\fgﬁgaeogsﬂ;ﬁngﬁg;esnégﬁngseﬂ tﬁgusktjatbe

system on its past history. The delay can be related to th ’ y.

duration of certain hidden processes like the stages of thB€Ccause of these delay terms it is no longer sufficient to
life cycle, the time between infection of a cell and the Supply an initial value, at time= to, to completely define

production of new viruses, the duration of the infectious € Problem. Instead, it is necessary to define the history
period, the immune period and so on. of the state vectory(t), sufficiently far enough back in

An Initial Value Problem (IVP) takes the form: time fromtp to ensure that a!l of the dela}ygd state terms,
y(t — 1), are always well defined. Thus, it is necessary to
y(t)=f(yt),t), where y(to) =Yo (1)  supply aninitial state profile of the form:

wherey € ZN. We see that, at time, the system is Y(D) = ¢(t), to— Tmax <t <to, andy(to) = Yo. 3)
completely defined by the state of the systg(h), attime It should be noted thap(tp—) need not be the same »s

t. (In other words, everything is instantaneously known.)This immediately introduces the possibility of a
Much work has been done in developing efficient discontinuity in the statey(t). We refer to I, 2,3,4,5,6,4,
techniques for solving these types of problem. However,7,8,9], and references therein, for the scope of DDEs in
in real life, things are rarely so instantaneous; There isbioscience and related issues.
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In the present paper, we show how delay differentialCancer cells are also different from normal cells in the
equations have, prospectively, more interesting dynamic®ody and they have unusual substances on their outer
than equations that lack memory effects; in consequencsurfaces. However, the IS is much better at recognizing
they provide potentially more flexible tools for modelling and attacking pathogens (harmful germs) than cancer
biological systems with memory. This paper is organizedcells. This is due to the fact that pathogens are very
as follows: Section 2 displays the role of delay differelntia different from normal human cells and are often easily
models in dynamic diseases. Section 3 provides a delageen as foreign, but cancer cells and normal cells have
differential model for tumour-immune response and fewer clear differences. This leads us to the fact that the
control with chemo—immunotherapy. Section 4 introduceslS may not always recognize cancer cells as foreign.

a general approach of least squares approach for However, the response of an immune system cannot
parameter estimations with DDEs. Section 5 introduces @e represented correctly without the hereditary
variational approach to investigate the sensitivity of thephenomena being taken into account: cell division,
models to minor changes in the parameters, withdifferentiation, etc. (the time needed for immune cells to
applications with cell bacterial growth of Tetrahymena divide, mature, or die). Therefore, delay differential
pyriformis. Section 7 presents some available software forequations have a particularly important role to play in
DDEs. understanding the dynamics and tracking viral infections
and immune populations over time. Recently, many
mathematical models for virus dynamic4d3[14,15
2 Delay Models in Dynamic Diseases gxplicitly consider_ dela_y terms to represent the n_eeded
time between the infection of a cell and the production of

In many applications in the life sciences, a delay i New viruses of HIV (Human Immunodeficiency Virus) in

introduced when there are some hidden variables an('f'feaed patients.

processes which are not well understood but are known tg The simple mathematical model of immune response
cause a time-lagll. Thus, the delays or lags may in fact employed by Marchuk16] describes the interaction of

represent a reaction chain or a transport process, gerstatié’éﬁgﬁgg&g;gﬁgﬁ;g%ﬁ (E%'eplsf?gl?e%etsrgg&t?ngfthae
times, incubat_ion period.s, transport delays, or can simply erson infected by a viral disease. This ,model is
lump qompllcated b|plog|cal _ Processes together'?ormulated asasystyem of four nonlinear DDEs:
accounting only for the time required for these processes
to occur. A well-known example is Cheyne-StokesV'(t)=(p1— p2F(t))V(t),

respiration (or periodic breathing), discovered in thenl9t C'(t)=& (m)psF(t — 1)V (t — 1) — p5(C(t) —C*),
century: some people show, under constant conditiong/(t)zm(c(t) —F(t)) — psF(t)V ()
periodic oscillations of breathing frequenc$1]. This m (t)=pgV (t) — pzm(t),

strange phenomenon is apparently due to a delay caused , )

by cardiac insufficiency in the physiological circuit Witht=0and&(m)is defined by
controlling the carbon dioxide level in the blood. Delays 1 i m<o01
also occur naturally in the chemostat (a laboratory device &(m) = { 106 mi 0

for controlling the supply of nutrients to a growing (I-mgif0l<m<1l
population [L2]). We shall see in this section that the
mathematical properties of DDEs justify such
approximations.

(4)

3

Thefirst equationdescribes the change in the number of
antigen in an organizm (it is a \olterra-Lotka like
predator-prey equation). Theecond equatiomescribes
the creation of new plasma cells with time-lag due to
infection (in the absence of infection, the second term
2.1 Immunology creates an equilibrium a(t) = C*). Thethird equation
models the balance of the number of antibody reacting
The Immune System (IS) is a complex network of cells with antigens: the generation of antibodies from plasma
and signals that have evolved to respond to the presenceells is described by,C(t) and their decrease due to
of pathogens (such as bacteria, virus and fungi) andaging is described by(—psF(t)) and binding with
protect the body from cancer cells. IS basically works byantigens by(—psF(t)V(t)). The relative characteristic
keeping track of all substances normally found in them(t) of damaging organizm is given by th&ourth
body. Any new substance in the body that the IS does noequationof which the first term expresses the degree of
recognize raises an alarm, causing the IS to attack itdamage to an organ and the second term describes the
Substances that cause an IS response are callegcuperation due to the recovery activity of the organizm.
"antigens”. The IS can lead to destruction of anything Finally, the definition ofé (m) expresses the fact that the
containing antigens, such as pathogens or cancer cellgreation of plasma cells slows down when the organizm is
Pathogens have substances on their outer surfaces such@amaged by the viral infection.
certain proteins that are not normally found in the human  The model §) has been used to study the relationships
body. The IS sees these foreign substances as antigerisetween the pathogen and the host immune system
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Fig. 1: Numerical simulations of model (4) for T = 0.5 and Fig. 2: Simulations of model (4) with the same parameters
pr=2, pp=0.8, p3=10% ps=0.17, ps = 0.5, pg =10, p; = of Figure 1 except for pg = 300. The graphs illustrate the
0.12and pg = 8. periodic outbreak of the disease.

parameters determining the stability of various steady
states. It can also be used to underly the basic types afophisticated mathematical models for viral-bacterial
infectious disease dynamics: subclinical, acute withinfections in lungs, or T-cell division incorporate about
recovery, chronic and lethal, or predicting the results often delays; se€l[7]. Another example of generic time-lag
external manipulations with the immune system. In otherequations in immunology is provided by Mohlet al.
words, this model allows us, by changing the coefficients[18] who developed compartmental models for
p1,P2...,Ps, to model all sorts of behaviour of stable lymphocyte migration. The delays represent the time that
health, unstable health, acute form of a disease, chronicells reside in a particular compartment, or the transit
form etc. (see Marchuklf]). One of the stationary times through compartments, or the duration of
solutions of #), that describes the healthy state of an inter-compartmental transfer.
organizm, is
Mathematical modeling of  tumour-immune
V(t)=0,C(t)=C", F(t)=F*=C", andm(t) = 0. interactions is also very complex and has a long history
e.g. [19,20,21,22,23,24,25]. Kuznetsowet al.[26] model
FIGURES1 & 2 show the solutions of the moded)((with the interactions of cytotoxic T lymphocyte (CTL)

different parameters) far = 0.5, with initial values: response and the growth of an immunogenic tumour. In
recent contributions of27,28,29,30], the authors take
V(0)=0.5x10®, C(0) =1, F(0) = 1 andm(0) = 0; into account the penetration of the tumour cells by the
o ) effector cells, which simultaneously causes the
and with initial functions: inactivation of effector cells.q1] consider the effects of

time delay on the two-dimensional system which
represents the basic model of the immune response. They

It may also be noted, from the graphs, that there is eithe itmugy d\é?gat;)nn ds t?]feth%:;?gi'lli'tty grt?rfeﬂgsgu?gzzzsedgfetrt]?a
a complete recovery, as MGURE 1, or periodic outbreak y P y

of the disease, as ShOWNHIGURE 2. chaotic solujtions. Foryg and_KoIeBZ] propose and study
the role of time delay in solid avascular tumour growth.
They study a delay model in terms of a reaction-diffusion
Marchuk and his associateslf] developed a equation and mass conservation law. Two main processes
hierarchy of immune response models of increasingare taken into account i.e. proliferation and apoptosis.
complexity to account for the various details of defencevafia [33] analyzed an interaction between the
responses to pathogens. The delays are used in theroliferating and quiescent cells tumour with a single
functional terms describing the proliferation and delay. He showed the occurrence of Hopf bifurcation as
differentiation of lymphocytes, and represent the timethe delay crosses some critical val34,[35,36,37.
needed for cells to divide, mature (i.e., express certain
genes), or to die. Whereas the basic model of an We just consider a very simple delayed
infectious disease has only one time-lag, moretumour-immune competition model, without treatments

V(t) =max0,10 °+t), F(t)=1, t<O0.
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[39]

di—(t)=0+a)E(t—r)T(t—r)—6E_(t), .

a0 __ ®)

—gr = G- BTM)T®) -~ nEQT(),

with given initial functions

E(t) = ¢u(t), T(t) = yn(t),t € [-1,0), E(0),T(0) >(%)

It is easy to show that itv > 0, andad > o, then the
system §)-(6) has two steady statessy = (%,O)
(tumour-free steady state) arl = (E*, T*) (endemic

steady state), where E* —a(Bo ;{3)) a \/Z,
T _ —a(Bo+w) — VA with
203w

A= a?(Bé— w)?+4aBow>0.

Theorem 1Under the condition that (iyo > 0 and (ii)
ad > o, then the steady statép is a asymptotically
stable for all T > 0. However the steady stat&, is
asymptotically stable wherr = 0 under the same
conditions and (iii)3 be close enough t0.

The delay timer plays an important role in stability of the
system §), (6).

Theorem 2Under the hypotheses that > 0, ad > o,
and 8 be close enough t6, there existt, , n=0,1,...
such that (i)&} is asymptotically stable for < 1 and
unstable fort > 1p; (ii) System §)-(6) undergoes a Hopf
bifurcation até’y whent = 1,, where

1 vé—r)—Bsvé 2nm
rn:—arccoq(o )~ Bs% =,

7
Vo Vg + P Vo %

and

1 1
2_ (L _p? = _p2 2_4A(r2_ g2
Vo—2(32 p+2r)+2\/(32 p?+2r)2 —4(r? — o),
where p=0+afT*, r=apBdT*, s= —wT*, and q=
awT*(1-2BT*).

Numerical simulations of5)-(6) are given in Figures.
(For the proof of Theorem 1 & Theorem 2, | refer 80[
39].)

2.2 Physiology

The great potential of simple DDEs for capturing

\\\\\\\\\\\\\

nnnnnnnnnn

Fig. 3: Numerical simulation of model (5), with ¢ = 0.118],
w = 0.01184 & = 0.3747, a = 1.636 [ = 0.002 with T =
0.2, 0.4, 0.5, 1. The steady state (E*, T*) is table when 1 <
Tp := 0.3854= (the critical delay); and unstable when 1 > 19
and a bifurcation of a periodic solution from (E*,T*) =
(1.5535, 25.2260 occurs.

large-amplitude oscillations}ji) the production of blood
cells (periodic and chaotic regimes), afid) hormone
regulation in the endocrine system (period-doubling
bifurcations and chaotic solutions); sed]

The following model is concerned with the regulation
of hematopoiesis, the formation of blood cell elements in
the body. For example white and red blood cells, platelets
and so on are produced in the bone marrow from where
they enter the blood stream. When the level of oxygen in
the blood decreases this leads to a release of a substance
which in turn causes an increase in the release of the blood
elements from the marrow. There is thus a feedback from
the blood to the bone marrow.

As an llustrative example, letc(t) be the
concentration of cells (the population species) in the
circulating blood. We assume that the cells are lost (=die)
at a rate proportional to their concentration, that is like
yc(t), where the parametgr has dimensiongday) L.
After the reduction in cells in the blood stream there is
about a 6 day delay before the marrow release further
cells to replenish the deficiency (seé&l]). We thus
assume that the flux of cells into the blood stream
depends on the cell concentration at an earlier time,
namely,c(t — 7), wherert is the delay. Such assumptions
suggest a model equation of the form

dc(t)

ot Ac(t—1) — ye(t).

complex dynamics observed in physiological systems,

was shown in a series of related works by an der Heiden

Mackeyet al. [40,11]. Delay differential equations were
used to model unstable patterns ¢f the human

respiratory system and regulation of blood concentration g — antcnt—1) ve(t).
of CO, (periodic breathing and prediction of low- and ¢t)

Glass & Mackey 42] proposed a possible replacement in
the form of the non-linear delay differential equation

dc(t) AaMc(t—1) £>0

’ (8)

=a, t<0,
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proportional to the produc(t)I (t). It was also assumed
that the number of newly removed persons is proportional
to the infected ones, and the total population is a constant
N = S+ 1+ R (except death from the disease).
o5k | Kermack-McKendrick44] thus arrived at th&IRmodel:

. A A A A S(t) = - BSHI(), I'(t) = BSHI () — al (1), R(t) = al (t).
0 100 200 300 400 500 (9)
Here B is the number of contacts between an average
infective and the population per unit time (pairwise rate
of infection), anda is the fraction of the population
which leaves the inflective class (removal rate of
infectives). The qualitative analysis is displayed as
follows: If S(0) < a/B, thenl (t) is a decreasing function
. - o - _— oo which tends to 0, an&(t) is also decreasing and tends to
Time a constant level greater than 0. However$(0) > a /8,
S(t) is also decreasing and tends to a constant level
greater than 0, but(t) will first increase in a time period
Fig. 4: (top) shows the numerical solution of (8) with  (0,To), then decrease and tends to O afier

15

[N
T

C(

C()

parameter values a = 0.1, y= 0.1 days™*, A = 0.2 days 1, Define a dimensionless quantitfy = 3S(0)/a, that
m= 10 and 1 = 6 days; (bottom) shows the numerical is a threshold quantity. If we introduce a small number of
simulation with the same parameter values as in (a) except infectives| (0) into the a susceptible population, then an
an increase in the delay to T = 20 days. epidemic will occur if%Zo > 1. As an example, the solution

(with all constants equal to one) dd)((with initial values
S(0) =5,1(0) =0.1,R(0) = 0) is plotted inFIGURE 5. We
note that an epidemic breaks out, and everybody finally
becomes “removed” and nothing further happens.

FSO) ng

maximize the immunization by reducing(0) and
transferringS(t) to R(t) (removed ones). Suppose that

. . percent of population is successfully immunized, then
2.3 Epidemiology S(0) is replaced by(1— p)S(0), thenp > 1— —BSG(O)' (For
Epidemics have ever been a great concern of human kindgractical study to estimate the epidemiological
since the impact of infectious diseases on human angbarameters, | refer taip,43).)
animal is enormous, both in terms of suffering and social From the above model, we note that the occurrence of
and economic consequences. This concern is novan epidemic depends solely on the number susceptibles,
increased, specially when new swine flu viruses HLN1 the transmission rate, and recovery rate. In other words,
[43] and recently H5N1 have sparked a deadly outbreakhe initial number of infectives plays no role in whether or
in some countries and spread into other parts of the worldnot there is an epidemic. Other considerations, such as
Mathematical modeling is an essential tool in studying avital dynamics (births and deaths), length of immunity,
diverse range of such diseases. The basic elements for ttiee incubation period of the disease, and disease induced
description of infectious diseases have been considererhortality can all have large influences on the course of an
by three epidemiological classeS(t) that measures the outbreak.
susceptiblé portion of population] (t) theinfected, and
R(t) theremoved ones. It was natural to assume that the
number of newly infected people per time unit is

whereA,a,m g, 7, and a are positive constants. Graphs
in FIGURE 4 show the numerical solutions o8)(for two To prevent an epidemic, we redugg =
values of the delay time.

2.3.1 Development of SIR mod&)(

1 Influenza viruses are defined by two different protein .
components, known as antigens, on the surface of the virus] € nonautonomous phenomenon occurs mainly due to

They are spike-like features called haemagglutinin (H) andthe seasonal variety, which makes the population behave

neuraminidase (N) components. periodically [6,47]. To investigate this kind of
2 Susceptible: who are not yet infected phenomenon, in the model, the coefficients should be
3 Infected: who are infected at timend are able to spread the periodic functions, then the system is called periodic
disease by contact with susceptible system. Many communicable diseases have this
4 Removed: who have been infected and then removed froncharacteristic.
the possibility of being infected again or spreading (Mefhof Assume that the immunized people become
removal: isolation or immunization or recovery or death) susceptible again, say after tinte (say, 11 = 10) (see
(© 2015 NSP
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Fig. 5: The left banner shows the solution of the SIR model
(9) that illustrate the spread of an infection disease in a
population. However, the right banner shows the solution of
model (10) with time delays that displays periodic outbreak
of the disease.

[48,49)). If we also introduce an incubation periot;,

distributed delays

S(t) =A(t) —B(t)S(t)/omk(r)l(t— 0)dr—
Ha(t)S(t) + & (DR(L),

o (11)

() =B(t)5(t)/0 k(T)H(t — 1)dT — (p2(t) + a (1)1 (1),

R(t) =a(t)I(t) — (us(t) + & (O))R().

HereN(t) = S(t) +1(t) + R(t) denotes the total number of
the population at timé. The functionA (t) is the growth
rate of the population; functiofi(t) is the daily contact
rate, that is the average number of contacts per day;
functionsp (1), Lo(t), andus(t) are the instantaneous pro
capita mortality rates of susceptible, infective and
recovered population, respectively; functioogt) and
&(t) are the instantaneous pro capita rates of leaving the
infection stage and removed stage, respectivdly) is
the fraction of vector population in which the time taken
to become infectious is, is assumed to be a nonnegative
function on [0,») and satisfies [y k(T)dT = 1 and
Jo TK(T)dT < o0

To analyze the dynamics of the models, numerical
methods are necessary, as analytical studies can only
provide limited results. We next introduce some reliable
computational techniques to solve numerically the
emerging delay differential models in biosciences.

3 Optimal Control with Delay Models

We mention here that there are many problems in
biosciences (such as epidemics, harvesting, chemostat,
treatment of diseases, physiological control, vaccimjtio
which can be addressed within an optimal control
framework for systems of DDE$({,51,52,53]. However,
the amount of real experience that exists with optimal
control problems (OCPSs) is still small.

The DDE @) can be converted into an optimal control

between exposure to infection and becoming infectedy oplem by adding am—dimensional control term(t)

(say, T2 = 1), we can arrive at the model

S(t) = -BSt)I({t—12)+yI(t—T11), t>0,
() = BSOI(t—12) —al(t), t>0, (10)
R(t) = al(t)—yI(t—11), t=>0,

The solutions of 10) are shown (with initial functions
[S(t),1(t),R(t)]" =[5,0.1,1]" fort < 0) in FIGURE 5; we
note a periodic outbreak of the disease.

2.3.2 Development of model Q)

y(t) = f(y(t)ay(t - Tl)vy(t - T2)7 oo 7y(t - Td)7 u(t)atxlz)
and a suitable objective functional (measudgju)
Maximize Jo(u) = @o(y(T))+

t

; (13)

JELCRYE ARYIER SRS ARV

0
and subject to control constraiat< u(t) < b, and state
constanty(t) < c, wherea andb are the lower and upper
bounds. The integrand#(:) is called the Lagrangian of

objective functional which is continuous ifo0,t¢].
Additional equality or inequality constraint(s) can be

If the model allows for a loss of immunity that causes imposed in terms ad;(u).

recovered individuals to become susceptible again, we OCPs using DDEs were studied in connection with
may also consider the more general nonautonomous SIRBimune responses to infections. 164], delay model
epidemic model, with variable periodic coefficients, with with optimal control is used to describe the interactions
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between HIV, CD4+ T cells, and cell-mediated immune We are seeking optimal control pdir*,w*) such that
response. Both the treatment and the intracellular delay
are incorporated into the model in order to improve J(v', W) = max{J(v,w) : (v,w) € W}, (17)
therapies to cure HIV infection. The optimal controls . ]
represent the efficiency of drug treatment in inhibiting WhereW is the control set defined by
viral production and preventing new infections. . . . .
A humoral immune response model was considered in/ ={(»ww) : (ww) piecewise continuoysuch that
the paper $2] on determining optimal intravenous drug 0 < V() < Vmax < ,;0 S W(t) < Wmax < o, 7t € [0,¢]}.

delivery in AIDS patients. The objective was to find a _ _ (18)
control strategy that minimizes the total drug The existence of optimal controls(t) andw*(t) for this

administered subject to the constraint that patientMdel is guaranteed by standard results in Optimal
recovers. In this paper, we present a delay differentiaControl Theory b€]. Necessary conditions that the
model with optimal control that describes the interactionsCONtrols must satisfy are derived via Pontryagins
of the tumour cells and immune response cells withMaximum Principle. The optimal control problem given
external therapy. The optimal control variables are alsg?y €xpressions 14)-(18) is equivalent to that of
incorporated to identify the best treatment strategy andMinimizing the Hamiltonianz”:

block producing new tumour cells with minimum side B,
effects, by keeping the number of normal cells above 75% J7(t,E, T,E;, Tr,u,vyWA)=E—-T — > [v(t)]2 —
of its carrying capacity. Assume th&(t) represents dE qT dN d
effector cells population, such as CDBcells andT (t) is B SV I el W LI WS L S el
, , W(U)]" +Ar—= +Ao— +A3—= + Aa— + VK
the tumour cells population. The authors 88] provide a 2 dt dt dt dt 19
competing model in terms a system of DDEs, in which (19)
we add extra variables namely chemotherapy variable . _
u(t), normal cellsN(t) and two control variableg(t) and andy > 0 with y(t)k(t) =0, where
w(t). We also assume a homogeneity of the tumour cells, ,
then the model takes the form _ {1 if N(t) <0.75,
0 otherwise
E(t Et—0)T(t—
dd( ) _ g4 PEL TT) =0 Et-nT-1-
t n+T({t-1) A standard application of Pontryagins Maximum
OE(t) —ay(1—e “)E(t) +w(t)sy, Principle B7] leads to the following result:
dT(t) Th ; i i
— LT (1= BTH)) —nEM®)T(t)— eorem 3There exists an optimal pair{t) and w'(t)
dt 2T -AT) OTO and corresponding solutions*ET*, N* and ux and that
N T(t) —a(1—e UO)T(t) (14)  minimizes Ju(t),w(t)) over Q. The explicit optimal
dN(D) ’ controls are connected to the existence of continuous
5= raN(t)(1— BoN(t)) — coT (HN(t)— gggtcelm: functiong; for i = 1,2, 3,4 satisfying the adjoint
ag(1- e_u(U)N(t)a A1) = —1+M1(t) {5+a1(1—e’“*)} +
du(t .
% = v(t) — dyu(t). DaONT 4 M1+ s [T - 20 .
The general goal is to keep the patient healthy while?(®)=1+4 ~r2+2BT +nE 4N’ +a(1-e )| + (20)

killing the tumour. Since our model takes into account the PE'T*  pE®

toxicity of the drug to all types of cells, our control (n+T)2 n+T
problem consists of determining the variablgs) and ;) = Ac,T g (ra— 2rsBoN’ —coT* ~ (1)) .
w(t) that will maximize the amount of effector cells and

minimize the number of tumour cells and the cost of the
control with the constraint that we do not kill too many with transversality conditions
normal cells. Therefore, our objective is to maximize the

)\3C2N*+X[0=(f,r]A1(t+T) |: +HE*:| N

M) = —Ar(t)are Y E* + Ax(t)age W T* + As(t)age " N* + Ag(t)dy,

functional (see55]) At) =0, ={1,2,3.4} and X1, « :{(1) rhe (21)
¢ . :
Ivw) = /0 (E T [%[V(t)]% %[W(t)]zb dt, Furthermore, the following properties hold

(15) _ mi A — mi Ms
where whereB,, B,, are, respectively, the weight factors V7= min { Vinax B,/’ W' = min | Winax By /) (22)

that describe the patient's acceptance level of

chemotherapy and immunotherapy with a constraint The numerical simulations leading to the
approximation of the optimal controls, are carried out

k(E,T,N,u,E;,Tr,v) =N—-0.75>0, 0<t<ts. (16) using forward and backward Euler methods. Starting with
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In (23), the vector functiorf is sufficiently smooth with
With Control respect to each argumeny$t) € RM, y(t— 1) e RM  p e

250l 2l RL, andt € RY is positive constant lag, which may have
to be identified as a parametéf € L, M’ < M). (t) and
@(t) are given continuous functions.

Suppose thal observations{t;; Y| ?‘:1’ have been
150 o0 | obtained. We are concerned with applying to these data a
system of NDDEsZ3). The model-fitting problem is then
v , | select a value or a set values fofor which the function
'.“ y(t;p) provides a ‘best’ fit, at arguments=t;, to the
sl L) | given set{YJ-'}n-“=1 (1 <i < M). The key part in fitting a
®, model to data is the formulation of the objective function
‘ ‘ - to be optimized that depends on the stochastic features of
0 s Y ety 2 % the errors in the dat&p].

There is a variety of methods for regression analysis
and interpretation of statistical properties of estinmatio
schemes §9,60]. The discussion here will be based on
the use ofweighted least square@VLS) or alog-least
squareqLLS) approach for finding the best-fit parameter
values to observed data in the NDDE models. When
determining the best fit by the WLS process, we suppose
that the unknown parametep is the value of p
minimizing the weighted objective function:

300

200

Tumour Cells, T(t)

100

[y
)

= =
- ) >
T T T

o
©

Effector Cells, E(t)

M N
i i12
0.4y I=1j=1
wherew; are the weights (possibly related to the accuracy
*%o 5 01 20 25 %0 of the data point$) Whenw; = 1, this is the method of
Time (days) unweighted oordinary least square¢OLS).

] _ ) _ If we adapt the LLS approach, the objective function
Fig. 6: Simulations of the tumour cells population of system may take the form

(14), before and after the imuno-chemotherapy treatments with

controls. It shows that the tumour cells population can be M N . 12
eradicated in day 10. @L(p) = 21 Z [logy'(tj,p) —logY]]~. (25)
i=1j=1

The choice of LLS in model-fitting problem may decrease
the exponential nonlinearity of model predictions with
an initial guess for the value of the controls on the timerespect top. (It will be assumed that (tj,p) > 0.)
interval [0,t¢], we solve the state system with controls Another significant feature of the LLS approach is that
(14) using forward Euler. Next, the adjoint system is small relative changes in large data values can be unduly
solved using the solutions of the state system and theveighted. For comparing between different formulae of
transversality conditions20) backward in time. It has objective functions, we refer to Sheirgtral. (1985). (The
been shown from Figuré that the tumour cells can be optimum parametep is taken to be the value such that
eradicated at day 10. The numerical simulations show thep(p) < @®(p), for all physically meaningful values qf
rationality of the model presented, which in some degreeandp.)
meets the natural facts. When the predictions are governed by models of the
form (23), then theleast square$LS) approach (even for
models linear in their parameters) usually leads to a
4 Parameter Estimation with DDEs ponlinear minimization problem, sir_lce the cost function
is no longer quadratic. Numerical algorithms for
) o nonlinear LS approach are generally iterative procedures
Consider even a predictive DDE model néutraltype,  for searching the parameter estimates and require initial
parameterized by € R which are estimated using agiven starting values. An obvious difficulty is that there is the

set of observations, possibility of the iterative scheme converging to a local
y'(t) =f(t,y(t),y(t—1),y'(t—1);p), t<[0,T], (23) 5 The choice of the values| is best based on knowledge of
y(t) = Y(t,p), y’(t) =¢(t,p), te[-1,0]. the relative precision of th¥;.
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minimum, or not converging at all, rather than achieving provide the approach of variational of parameter to
the desired global minimum. Thus, an appropriate choicesvaluate the analysis of sensitivity for DDEs or NDDEs.
of the objective function is a significant factor in The variational approachis to derive, analytically,
determining the ease of solving the parameter estimatiomeneral sensitivity coefficients for minor changes in the
problem p1]. parameters, time delays, and initial data in the model. Use
Given a set of experimental datd)Y;) g\‘:l, the  of this approach gives an expression for the sensitivity
technique for finding the best-fit parameter values for afunctions in terms of the solution of an adjoint equation.
given mathematical model and objective function consistsvariational approach has been used in Rihan (2003) to
of the following steps:ij Provide an initial guespg for investigate the qualitative behaviour of the solution of a
the parameter estimatesi)(Solve the model equations, dynamic system of DDEs due to small variations in the
using Ar chi code B2 with the current values of the parameters occur in the model. Rihan (2010) extended the
parameters and calculate the corresponding objectivépproach to include a dynamic system described by a
function @(p); (i) The parameter values are then sSystem of NDDEs.
adjusted (by the minimization routine, for example = We desire to compute the sensitivity of the state
EO4USF® from NAG library; (iv) When no further Vvariable y(t,p) to small variations in the parameters
reduction in the value®(p) is possible, the best fit which occur in the NDDE Z3). The familiar first-order
parameter values have been found;etermine whether ~ sensitivity functions for constant parametecs are
the chosen set of parameter values is acceptable (ardefined by the partial derivative; (t*) = dyi(t")/daj,
meaningful) or unacceptable by comparing the objectivewherea; represent the parametgrs the constant lags

function value to a given criterion for the objective Or the initial valuesy;(0). Then the total variation i;(t)
function or the estimate$§]. due to small variations in the parametersis such that

ayi(t)
Note that@®(p) can have several local minima and oyi(t) = ZW

that a good code and/or good starting initial parameter ! :

values can be of great assistance, both in accelerating thehe functional derivative sensitivity coefficients, howev

minimization process and finding the global minimum. when the parameters are functions of time such as the

Local minimum can also be avoided by repeating theinitial function, are defined by (t,t*) = dyi(t*)/daj(t)

iterative scheme for a variety of different initial estimat  (wheret < t*). Then the total variation ig(t*) due to any

of parameter vector. We should also draw attention to theperturbation inx (t) is denoted byy(t*), such that:

fact that, even if the right hand side &3) and the initial v ay(t)

functions are smooth functions, a discontinuity in the first dy; (t*) = oaj(t)dt, t<tr. (27)

time derivative of the solution appears at tifigeand is o daj(t)

propagated through the time. The higher derivativesThe functional derivative sensitivity density function

become smoother as time increases. Additional jumps cady;(t*)/daj(t) measures the sensitivity of;(t) at

arise due to discontinuities in the initial functions. Tees |ocationt* to variation inaj(t) at any locatiort < t*.

discontinuities propagate into partial derivative ®fp)

with respect top;, via solution valueg/(t,p). Thus, for For simplicity in equationZ3), we write

correct numerical parameter estimates in DDEs or p

NDDEs attention should be paid to the position of the ft) = fg,y(t),y(t—r),y (t=1),p). (28a)

jumps and the differentiability of state variable with p«.\ _ 2 _ Iy

respect to the time-lag. A (t) - 0 f(tay(t)ay(t T)ay (t T)ap)' (28b)

Saj+0(|al?). (26)

B (t) = d%f(t,y(t),y(t— 1.yt —1).p). (280)
5 Sensitivity Analysis
yanay C) = oAty Ty E- D). (28

Of considerable importance in assessing the ma2@| ( 9

is the sensitivity of the model solutiop(t,p) to small ~ D*(t) = a—f(t,y(t),y(t— 1),y (t—1),p). (28e)
variations in the parametgr. For example, if it can be P

observed that a particular paramefgrhas no effect on

the solution, it may be possible to eliminate it, at someTheorem 4If W(t) is an n-dimensional adjoint function
stage, from the modelling process. In this Section, wewhich satisfies the differential equation

6 E04USF is designed to minimize an arbitrary smooth sum W/(t) =-A (t)TW(t) -B (t)TW(t +0)+
of squares function subject to constraints (which may idelu o (t)TW’(t +1), t<th
simple bounds on the variables, linear constraints and #moo , i
nonlinear constraints) using a sequential quadratic progring W(t) =W'(t) =0, t>t7
(SQP) method. W(t*) =[0,...,0,1¢,0...,0]T,W/(t*) = 0,

(29)
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Table 1: Parameter estimates for the growth model (31) that
best fits data of Figure 7.

Po P1 T
-0.0518| 0.1054 | 95.33

|[Error||2
34.41

5.1 Application to cell growth problem

We apply the above analysis to fit a time-lag model to the
growth of a population of Tetrahymena pyriformis (where
the experimental data is given in the Figurg and
evaluate its sensitivity functions.

The cells in the culture of Tetrahymena pyriformis
(displayed in Fig.7) are initially homogeneous and

then the functional derivative sensitivity functions of synchronized. This synchronized cell population becomes

NDDEs @3) can be expressed by the formulae

0?5*) = W), (30a)
a;:;_(;*) = ./O.*WT(t)D*(t)dt, t<t (30b)
PO [ Wi By
C*(t+n)y"(t)]dt, (30c)
?&,(g)) =A(t+DW(t+T1), te[-T,0). (30d)

ProofSee Rihan (2010).
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Fig. 7: The circles, Y;, represents the data for growth of
a population of Yy = 50 of newborn cells of Tetrahymena
pyriformis. This data represents the multiplication of 25
cells in perfect division synchrony at first population
doubling. The line, y(t,p), shows the prediction of the
perfect model that based on the NDDE (31), with y(0) =
50, y(t) = 25 for t < 0, and best fit parameters given in
Table 1. The initially synchronized cell population becomes
desynchronized over time.

desynchronized over time. The total observed population
as function of time of 50 cells which at timte= 0 are
newborn is shown in Fig7. According to the above
analysis, we can model this growth by a parameterized
linear NDDE
Y (t) = poy(t) +pry(t — 1) + o2y (t—T), t=0, 31)
yt) =g, YO)=¢'(t), tel[-1,0, ¥(0)=yo
One possible meaning of the parameters 3 (is that
T > 0 the average cell-division timgy < 0 the rate of
cell-death in culture; ang; the rate of commitment to
cell-division process; ang, is the gradual dispersal of
synchronization of cell-divisiond, = 2 implies pure
synchronization). We adopt the Log Least Squares
Approach g5) to fit model B1) to the observations given
in Figure 7 to estimate the unknown parameters. We
consider here a uniform initial functiogy(t) = 25 for
t € [-1,0), and initial valuey(0) = 50. The graph of
Figure 7 displays model prediction for the best fit
parameters given in Tablel. Prescott (1959) 43
measured thegeneration times of a population of
Tetrahymena pyriformigells under uniform conditions.
The distribution of generation times in the cell population
was displayed for a subpopulation of new born cells at a
given time from thesynchronizectell population, all of
age zero. The mean generation timewas 111 min,
which is close to estimated value of the best fit,
T = 96.33; see Tabl4.

We apply the analysis of Section 3 to find analytically

the sensitivity functionsay(—t) & A1) (t <t*), where

ayY(t) aa;

a = [P0, p1,02:Y0]"- In (31) a = [0, P1,P2.Y0,T]". The
adjoint equation for this case is

W (t) = —poW(t) — pIW(t +T) + oW/ (t+ 1), t < t*(32)
W(t)=0, t>t* W(t")=1
The analytical solution of the adjoint E§J) is as follows:
(o<t <t
W(t) = efpoﬂft*)’
(i)T<t* <21
{ e PE) it —t* 1) PETHD gt <tf -1,

e Pt ¢ ot <t

t<t, (33)

W(t) =

(34)

7 Generation timethat varies from cell to cell, is defined as
the age at which a cell divides, where age is time measured fro
birth of a cell.
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Hereb = (p1+ pop2), W(t+1)=0fort* — 7 <t <t* and
W(t+1)=e P40 foro<t <t*—.
The solution of the NDDEJR1), with an initial function
Wit) =ym (Y1) =0), is
ae™ —ynE, 0<t<T,
y(t) = { aeg® — [ymé —ab(t— 1)+ (35)
ym&2)ePot=0) Ly 82 T <t < 21,

wherea= (Yo +Yymé), andé = %

0
Thus the functional derivative sensitivity density
function to the initial function, by using30d), becomes:

o<t <t

ay(t*) _f prePtUHT) ot <tF T,
aw(t)*plw(t“)*{o, t-T<t<O0.
(36)
(iht<t*<21
plefpo(tft*ﬁ)_
ay(t* .
dﬁ(t)) ={ pib(t —t* 4 21)e P+ _p ot <t* 21,

pre P+ ¢+ _or ~t <0,
(37)

While the sensitivity function ofy(t) to the initial
conditiony(0), that given by the formula3Q3), is

* P o<t <,
W _wio=1 . * -
dy(0) e L b(t* —1)ePV D T <t <21

The sensitivity function of(t) to the constant paré?nse)ter
po(= %), by using B0b), takes the form:
ay(t*) t* oF
T :/O WD) 3 dt =
{ (at” —ymEn)e +ymén, 0<t* <, (39)
l T<t* <21,
where

%

- oF oF
| = W(t)=——dt W(t)—=——dt
0 ()0PO N t—1 ()0;)0

= (&t — ymén)e™ —2ymé?n —
[[ym& — ab(t" — 1) + ym&? + apz — bym& N](t* — 1)

—Ymén — ZYmEZU] R
(Similarly, we can deducay(t*)/dp; & dy(t*)/dp,.) By
using B0g, we obtain the sensitivity of(t) to small
perturbations in the time-lag parameteas:

ay(t”)

ot
t*—1

- W(t+r)[

-7

of(t+1)_,

of(t+1) ,
t)+
oy: y'(t) y

Yy’
0, O<t*<r,
| —poab(t* — 1)t T <t* < 2r,

ay(t)ow() ay(t')/oy(0)

ay(t)iap,

dy(t)ar

Fig. 8: Shows general sensitivity functions,

ay(t*)/oy(t), dy(t")/dyo, 0y(t")/dpo, and Jy(t")/dT,
for the NDDE (31).

with a= (Yo + Ymé) andb = (p1 + pop2).

We notice from the formuladQ) that, as expectedgl(t)
is sensitive to a change inin the time intervalr <t < 21
and is insensitive to changes in the constanttddg the
time interval [0, 1]. The plots (see 6. 8) have a kink
att = 1 due to the existence of the delay in the system.
We may also remark from E@®Y), that if yg # ym, then
dy(t)/dt has a jump at; = 1. Thereafter attention has to
be directed to the objective function wheis a parameter
to be estimated.

6 DDE Solvers and Available Softwares

From a modeller’s viewpoint, two historical periods in the
production of numerical codes for delay equations can be
distinguished. During the first period, a number of
experimental codes were developed by modellers or
numerical analysts. The second period can be
characterized by the availability of more sophisticated
DDE solvers. The major problems that the designers of
such codes try to accommodate are: automatic location or
tracking of the discontinuities in the solution or its
derivatives, efficient handling of any “stiffness” (if
possible), dense output requirements, control strategy fo
the local and global error underlying the step-size
selection, the cost and consistency of interpolation
technique for evaluating delayed terms.

The earliest, simple, numerical methods for DDBE (
utilized the Euler or classical fourth-ordeRK methods
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with a constant step-size, supplemented with linear Sensitivity functions clearly demonstrate the measure
interpolation schemes for the retarded terms. Suclof the importance of the input parameters. We have
adaptations provided minimally effective means for remarked how these functions enable one to assess the
solving models numerically: they had no error control, relevant time intervals for the identification of specific
used fixed step-size, and had problems coping withparameters and enhance the understanding of the role
“stiffness”. Numerical analysts are now in a position to played by specific model parameters in describing
cite published algorithms for the numerical solution of experimental data.

DDEs. Several packages and software are available for The literature on this subject is very broad and we
the numerical integration and/or the study of bifurcationscannot quote many interesting papers, as an exhaustive
in delay differential equations. Here is a short list for list of references is not possible in this short entry.
available software:

-Archi (Paul B2)) simulates a large class of functional
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