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Abstract: Prognosis of muscle contraction is an important factor in the study of the physiological characteristics of human 

movement. The prognosis muscle movement allows athletes and their coaches to improve the effectiveness of their 

training. The prognosis also helps improve the effectiveness of treatments for muscle disorders. To make the prognosis we 

present a model for the analysis of skeletal muscle contraction with account its deformation properties. We also introduce 

an analytical approach for analysis of the considered muscle contraction. 
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1 Introduction 

The prognosis of muscle contraction is an important factor 

in the study of the physiological characteristics of human 

movement. Knowledge of the informative parameters of the 

mechanical properties of the muscle is used in medicine in 

the treatment of patients [1-5]. In sports, the prediction of 

human muscle movement helps coaches improve the 

effectiveness of sports training. Prognosis of muscle 

contraction is an important factor in the study of the 

physiological characteristics of human movement. The 

prognosis muscle movement allows athletes and their 

coaches to improve the effectiveness of their training. The 

prognosis also helps improve the effectiveness of 

treatments for muscle disorders. The capabilities of modern 

models allow conducting research and introducing 

correction into the treatment and training methods directly 

during its implementation. In this situation it is attracted an 

interest to take into account state of human and first of all 

state of muscle. This information helps to coaches to 

optimize their training and to doctors to optimize their 

treatment. In this paper we present a model for the analysis 

of skeletal muscle contraction, which takes into account 

possible deformation properties. We also present an 

analytical approach for analysis of the considered muscle 

contraction. 

2 Method of solution 

In this section, we consider the model of skeletal muscle 

contraction and analyze it. In the framework of the model 

under consideration, we will assume that the muscle is a 

locally flat object and has the structure "elastic thread - 

elastic-viscous substrate": it is a set of parallel threads 

connected to an elastic-viscous substrate. We will assume 

that the effective layer of tissue with depth H is reduced. A 

linear law of distribution along the coordinate q of the 

component of the displacement field normal to the muscle 

surface is adopted 

U (y,z,t) = V (z,t)[1+ (y,z,t)y/z],                (1) 

where U (y,z,t) is the normal to the muscle surface 

component of the displacement vector field; V (z,t) is the 

movement of a fiber point along the Oy axis, spaced from 

the edge at a distance z; H is the depth of the effective layer 

of the substrate; y is the coordinate directed from the free 

surface of the muscle; z is the fiber axis coordinate;  is the 

empirical parameter that takes into account possible 

deviations of the system under consideration from ideality. 

The equation of transverse oscillations of a thread on an 

elastic-viscous substrate has the following form [6] 
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where m is the mass of a unite of the thread; T (y,z,t) it the 

thread tension force; q (y,z,t) is the distributed shear force 

from the side of the substrate, directed against the axis y. 

Force q (y,z,t) is determined through the tension in the 

muscle - the substrate , multiplied by the effective width 

b: q =  b. As boundary conditions, equation (2) is 

supplemented by the conditions for fastening the thread 

V (0,t) = 0, V (L,t) = 0,                    (3a) 

where L is the effective thread length. Initial conditions for 

the function V (z,t) could be written as 

V (z,0) = V0, 
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We solve the equation (2) with conditions (3) by recently 

introduced method of functional corrections [7,8]. In the 
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framework of the approach we transform thread tension 

force T (y,z,t) to the following form: 

T (y,z,t) = T0[1+g  (y,z,t)], =       (4) 

where T0 is the average value of the considered force, 0   

<1, |g  (y,z,t)| 1. We determine solution of the equation (2) 

as the following power series 
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Substitution of the considered form of solution (5) and 

relation (4) into equation (2) and conditions (3) as well as 

grouping of terms at equal powers of the parameter  gives 

a possibility to obtain equations for functions Vi (z,t), 

boundary and initial conditions for them in the following 

form 
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Vi(0,t) = 0, Vi(L,t) = 0, 
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, i 0; V0(z,0) = 

V0, Vi(z,0) = 0, i 1.                 (7) 

Equations (6) with conditions (7) were solve by Fourier 

variable separation method [9]. The considered solutions 

could be presented in the following form 
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Spatio-temporal distributions of the movement of a fiber 

point along the Oy axis was analyzed analytically by using 

the second-order approximation in the framework of the 

method of function corrections. The approximation is 

usually enough good approximation for to make qualitative 

analysis and to obtain some quantitative results. All 

obtained results have been checked by comparison with 

results of numerical simulations. 

3 Discussion 

In this section, we will analyze the spatio-temporal 

distribution of the fiber point displacement along the Oy 

axis. Figures 1, 2 and 3 show typical dependences of the 

considered distribution on the coordinate during fiber 

compression for various values of the external force q. 

Increasing of the number of figures corresponds to 

increasing of the considerate force (curves with larger 

maximum correspond to analytical results, curves with 

smaller maximum correspond to numerical results). An 

increase in this force corresponds to fiber elongation. A 

similar result was obtained when analyzing the change in 

fiber over time. However, excessive external force can 

cause fiber breakage. The maximum external force is 

determined individually. 

 

Fig. 1: Typical dependence of the distribution of the fiber 

point displacement along the Oy axis for fixed value of the 

external force q. Curve with larger maximum corresponds 

to analytical results. Curve with smaller maximum 

corresponds to numerical results. 

 

Fig. 2: Typical dependence of the distribution of the fiber 

point displacement along the Oy axis for fixed value of the 

external force q, which is smaller, than external force on the 

figure 1. Curve with larger maximum corresponds to 

analytical results. Curve with smaller maximum 

corresponds to numerical results. 
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Fig. 3: Typical dependence of the distribution of the fiber 

point displacement along the Oy axis for fixed value of the 

external force q, which is smaller, than external force on the 

figure 2. Curve with larger maximum corresponds to 

analytical results. Curve with smaller maximum 

corresponds to numerical results 

4 Conclusion 

In this paper, we propose a model for the analysis of 

skeletal muscle contraction, which takes into account its 

deformation properties. We analyzed the considered model. 

We introduce an analytical approach for analysis of the 

considered muscle contraction. 
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