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Abstract: Project portfolio selection is one of the most important problems faced byany organization. The decision process involves
multiple conflicting criteria, and has been commonly addressed by implementing a two-phase procedure. The first step identifies
the efficient solution set; the second step supports the decision maker in selecting only one portfolio solution from the efficient set.
However, several recent studies show the advantages gained by optimizing towards a region of interest (according to the decision
maker’s preferences) instead of approximating the complete Pareto set. However, these works have not faced synergism and its variants,
such as cannibalization and redundancy. In this paper we introduce a new approach calledNon-Outranked Ant Colony Optimization,
which optimizes interdependent project portfolios witha priori articulation of decision-maker preferences based on an outranking
model. Several experimental tests show the advantages of our proposal over the two-phase approach, providing reasonable evidence of
its potential for solving real-world high-scale problems with many objectives.

Keywords: portfolio selection, interdependent projects, multiobjective metaheuristic optimization, preference incorporation,
multicriteria decision

1 Introduction

Portfolio problems are ubiquitous in business and
government organizations. Usually, there are more good
ideas for projects or programmes than there are resources
(funds, capacity, time, etc.) to support them [1].
Manufacturing enterprises recognize that success depends
on the selection of research and development (R&D)
project portfolios, expecting that these projects will
permit them to develop new products that generate
growing benefits. Local governments allocate public
funds to projects and programmes that improve social and
educational services. Environmental regulations and
alternative policy measures attempt to mitigate the
harmful consequences of human activity [2]. To fight
poverty, governments in underdeveloped countries fund
many helpful social programmes. Portfolio consequences
are usually described by multiple attributes related to the
organizational strategy. A vector

z(x) = 〈z1(x), z2(x), . . . , zp(x)〉 is associated with the
consequences of a portfoliox consideringp criteria. This
is a vector representation of the portfolio’s impact. In the
simplest case,z(x) is obtained from the cumulative sum
of the benefits of the selected projects, but under
interacting project conditions, it is necessary to consider
the contribution of interdependent project groups.
Without loss of generality, we can assume that higher
criterion values are preferred to lower values. The best
portfolio is obtained by solving the following problem:

max
x∈RF

{〈z1(x), z2(x), . . . , zp(x)〉}, (1)

where RF is the space of feasible portfolios, and is
usually determined by the available budget, and by
constraints for the kind of projects, social roles and
geographic zones. Solving Problem (1) means finding the
best compromise solution according to the system of
preferences and values of the Decision Maker (DM).
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In the scientific literature, the problem expressed by
(1) has received great interest in the management of R&D
by manufacturing and industrial enterprises (e.g. [3,4,5,
6,7,8]). Most of these approaches can also be applied in
the public sector. Perhaps what best characterizes the
portfolio problems in non-profit organizations are the
emphasis on intangible criteria and, probably, a higher
number of project proposals and objectives to optimize.
Many-objective problems are frequent in project portfolio
optimization. For example, in socially responsible
organizations, the number of criteria used for capital
investment may be about a dozen (see [9]). Even more
objective functions should be considered in basic research
project management (cf. [10]). A high number of project
proposals can apply for public support in a simple call for
projects. For instance, in 2012 the US state of Georgia
had a list of over 1600 applicant projects at the State
Department of Transportation alone [11,12,13,14], with
many potential interdependencies. There should be a
large set of Pareto-efficient solutions to (1). However, the
DM has to select only one portfolio according to her/his
preferences for the consequences expressed byz(x).

The specificity of such project portfolio problems
with many objectives has been scarcely approached by
the scientific literature. This paper is a contribution in this
sense. It is structured as follows. Section2 summarizes
the most-widely accepted optimization model of the
portfolio problem. Section3 briefly reviews proposals for
incorporating DM preferences in multi-objective
optimization metaheuristics, and on this background, the
method by Fernandez et al. [10,15] is detailed. Our
proposal is presented in Section4, followed by test
examples and comparisons with other approaches
(Section5). Finally, some conclusions are discussed in
Section6.

2 Description and formalization of the
problem

Here, we follow the proposal by Stummer and
Heidemberger in [5] that was also addressed by Doerner
et al. [16,17] and Carazo et al. [18,19].

Let X be the set of applicant projects competing for
resources. A portfolio (a subset ofX) is typically
represented by a binary vectorx = {x1, x2, . . . , xN},
whereN is the total of project proposals; the variablesxj

indicate whether the projectj is included in the portfolio
(xj = 1) or not (xj = 0).

Let us denote byf(j) = {f1(j), f2(j), . . . , fp(j)} the
benefits provided by thejth project. The benefits provided
by portfoliox are expressed by Equation (2):

z(x) = {z1(x), z2(x), . . . , zp(x)} , (2)

wherezk(x) is defined as

zk(x) =

N
∑

j=1

xj · fk(j) +
S
∑

i=1

gi(x) · ai,k. (3)

In Equation (3), the first term is the cumulative sum of
the benefits from the selected projects to thekth objective
function. The second term is the sum of the synergetic
interactions among the projects in the portfolio.S is the
number of interactions that impact the objectives. Let us
assume that those interactions have been identified by the
DM. Functiongi(x) indicates if theith interaction occurs
in the portfolio x. If Ai = {Ai,1, Ai,2, . . . , Ai,N} is a
binary vector that indicates which projects are affected by
the ith interdependency (Ai,j = 1 represents that thejth
project is considered in theith objective interaction),
gi(x) may be defined as

gi(x) =











1 if mi ≤
N
∑

j=1

(xj ·Ai,j) ≤ Mi,

0 otherwise.

(4)

In Equation (4), mi and Mi are respectively the
minimum and maximum number of projects required for
synergyi to occur, thus gaining additional benefits.

In Equation (3), ai,k is the value added to thekth
objective when the ith synergy is activated. The
interaction has been particularly namedcannibalizationif
ai,k is negative.

Suppose that there areq categories of resources
destined for supporting project proposals. Let
{B1,B2, . . . ,Bq} be the set containing the quantity of
available resources for each category (e.g. financial,
human or technological resources), and letcj,k be the
amount of thekth resource requested by projectj. Thus,
the total of thekth resource needed for implementing
portfolio x, is expressed by Equation (5):

ck(x) =
N
∑

j=1

xj · cj,k +
R
∑

i=1

hi(x) · bi,k. (5)

The first term in Equation (5) is the sum of resources
consumed by the projects inx, without considering
resource interactions. The second term is the sum
concerning interactions that affect costs and resources
requested.R is the number of these interdependencies,
hi(x) is a binary function that indicates if theith resource
interaction occurs, andbi,k is the change in thekth cost
produced by theith interaction. hi(x) is defined in
Equation (6) similarly togi(x), but consideringni andNi

as limits for activating synergy. Equation (6) presents the
definition ofhi(x):

hi(x) =











1 if ni ≤
N
∑

j=1

(xj · Ci,j) ≤ Ni,

0 otherwise,

(6)

whereCi = {Ci,1, Ci,2, . . . , Ci,N} is a binary vector that
indicates which projects are affected by theith cost
interdependency.
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Of course, Problem (1) is subject to the budgetary
constraint:

ck(x) ≤ Bk ∀k ∈ {1, 2, . . . , q}. (7)

Besides Equation (7), other strategic and logical
constraints could be regarded. For example:

–Constraints to ensure equitable conditions for all
competent areas of the organization.All applicant
projects are grouped according to pre-established
criteria. The organization determines limits in terms
of number of supported projects (or quantities of
allocated budget) for each group.

–Constraints to prevent the presence of
mutually-excluding projects.Some projects (primarily
because of their nature and organizational rules)
cannot simultaneously receive support in the same
portfolio decision process. These projects often
receive the adjective ‘redundant’.

We are not taking into account project scheduling,
thus we are tackling the stationary version of the problem
presented in [16,19]; for this reason, all the concerns
related to schedule are not included in either Equations
(2–7) or the above-mentioned constraints. Conditions of
partial support have no special processing, but it is
possible to include dummy projects that represent
different versions of the same project. So, dummy
projects are treated like redundant proposals, in the same
sense as it is suggested in [5,16,17,18,19].

3 An outline of the state of the art

3.1 A brief outline and some criticisms of
previous approaches

Only non-dominated solutions to (1) can fulfil the
conditions necessary for being considered the best
portfolio. So most solution methods seek to generate the
Pareto frontier, and later, by some interactive method,
multicriteria procedure or heuristic, try to identify the best
compromise. These approaches assume that the DM has
the capacity to make valid judgments about the set of
efficient points until the best compromise is reached. This
way to identify the best solution is commonly referred to
asa posterioripreferences modelling [20].

In [21], Ghasemzadeh et al. model preferences using a
weighted-sum function. They approximate the Pareto
frontier by changing the weights and solving the resultant
model by 0-1 programming. Stummer and Heidenberger
in [5] include synergy and redundancy in selecting R&D
projects; their procedure consists of three phases: 1)
filtering the proposals and retaining the most promising
projects in order to reduce the set of projects to a
‘manageable’ size, 2) generating the efficient frontier of
portfolios for the reduced set by an integer linear
programming method, and 3) supporting the

decision-making process, helping the DM to identify the
best compromise by an interactive process.

However, most recent works show the advantages of
multi-objective metaheuristic methods to approximate the
Pareto set (e.g. [8,19,22,23,24,25,26,27,28]). Doerner et
al. in [17] combine Ant Colony Optimization (ACO) with
0-1 dynamic mathematical programming to initialize the
algorithm with enhanced solutions. One of the most
complete proposals was suggested by Carazo et al. [18,
19]; they model interactions among projects (in the same
way as Stummer and Heidenberger in [5]) and temporal
dependencies, enabling the allocation of resources not
used in previous periods. By means of a Scatter Search,
Carazo et al. [18] outperform SPEA2 [29] in the range of
25–60 projects considering up to six objective functions.

Compared with multi-objective optimization methods
based on mathematical programming, metaheuristic
approaches exhibit relevant advantages:

–they have the ability to deal with a set of solutions
(called a population) at the same time, allowing for
the efficient frontier to be approximated in a single
algorithm run, and

–they are less sensitive to the mathematical properties
of objective functions and problem constraints.

However, many researchers have argued that, when
the number of objective functions increases, the selection
of appropriate individuals for conducting the population
towards the Pareto frontier becomes more difficult (e.g.
[30,31,32,33]). According to [32], other important
concerns are the so-calledDominance Resistant Solutions
(e.g. [34]). They are not Pareto solutions, but they have
near-optimal values in some objectives though with a
poor value in at least one of the remaining objectives.
These solutions can be hardly dominated in a population.
Their number grows as the dimension of the objective
space is increased.

In the presence of many objectives, there are other
important concerns associated with thea posteriori
articulation of preferences:

1.The visualization of the Pareto front in
high-dimensional objective spaces is very
cumbersome.

2.The number of Pareto optimal points grows
exponentially, making it hard to obtain a
representative sample of the non-dominated frontier.

3.According to the famous Miller’s paper [35], the
human mind is limited to handling a small number of
information pieces simultaneously, thus being
questionable the issue of identifying the best
compromise solution when the DM should compare
even a small subset of non-dominated solutions in
problems with many objectives.

Most approaches from the field of Multi-Criteria
Decision Analysis (MCDA) do not perform well on large
decision problems. Incomparability, non-transitivity,
cyclic preferences and dependence with respect to
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‘irrelevant alternatives’ make it difficult to reach a reliable
final prescription.

In order to make the decision making phase easier, the
DM would agree incorporate his/her multicriteria
preferences into the search process. This preference
information is used to guide the search towards the
Region of Interest(RoI) [36], the privileged zone of the
Pareto frontier that best matches the DM’s preferences.

The DM’s preference information can be expressed in
different ways. According to Bechikh [37], the most
commonly-used ways are the following:

1.Those in which importance factors (weights) are
assigned by the DM to each objective function (e.g.
[38,39,40]).

2.Those in which the DM makes pair-wise comparisons
on a subset of the current population, in order to rank
the sample’s solutions (e.g. [41,42,43,44,45,46]).

3.Those in which pair-wise comparisons between pairs
of objective functions are performed in order to rank
the set of objective functions (e.g. [47,48,49]).

4.Those based on goals or aspiration levels to be
achieved by each objective (reference point) (e.g. [36,
50,51,52,53,54]).

5.Those in which the DM identifies acceptable trade-offs
between objective functions (e.g. [55]).

6.Those in which the DM supplies the model’s
parameters to build a fuzzy outranking relation (e.g.
[15,56]).

7.The construction of a desirability function which is
based on the assignment of some desirability
thresholds (e.g. [57]).

In the field of project portfolio optimization, the
model proposed in [10] has shown substantial benefits for
tackling these problems. This model is briefly explained
below.

3.2 The best portfolio in the sense of Fernandez
et al. [10]

The proposal by Fernandez et al. [10,15] is based on the
relational system of preferences described in [58] by Roy.
A crucial model is the degree of credibility of the
statement ‘x is at least as good asy’. This is represented
asσ(x, y) and could be calculated using proven methods
from the literature, such as ELECTRE [59] and
PROMETHEE [60]. Considering the parametersλ, β, and
ǫ (0 ≤ ǫ ≤ β ≤ λ andλ > 0.5), the proposal in [10,15]
identifies one of the following relations for each pair of
portfolios(x, y):

1.Strict preference: Denoted asxPy, represents the
situation when the DM significantly prefersx. It is
defined as a disjunction of the conditions:
(a)x dominatesy.
(b) σ(x, y) ≥ λ ∧ σ(y, x) < 0.5.

(c) σ(x, y) ≥ λ ∧ [0.5 ≤ σ(y, x) < λ] ∧
[σ(x, y)− σ(y, x)] ≥ β

2.Indifference: From the DM’s perspective, the two
alternatives have a high degree of equivalence, so
he/she cannot state that one is preferred over the other.
This relationship is denoted asxIy. In terms of
σ(x, y) this is defined as the conjunction of:
(a)σ(x, y) ≥ λ ∧ σ(y, x) ≥ λ.
(b) |σ(x, y)− σ(y, x)| ≤ ǫ.

3.Weak preference: Represented asxQy, this models a
state of doubt betweenxPy andxIy. It can be defined
as the conjunction of:
(a)σ(x, y) ≤ λ ∧ σ(x, y) ≥ σ(y, x).
(b)¬xPy ∧ ¬xIy.

4.Incomparability: From the point of view of the DM,
there is high heterogeneity between the alternatives, so
he/she cannot set a preference relation between them.
This is denoted asxRy, and is expressed in terms of
σ(x, y) asxRy ⇒ σ(x, y) < 0.5 ∧ σ(y, x) < 0.5.

5.k-Preference: This represents a state of doubt between
xPy andxRy, and is denoted asxKy. (x, y) ∈ K if
the following three conditions are true:
(a)0.5 ≤ σ(x, y) ≤ λ.
(b) σ(y, x) < 0.5.
(c) σ(x, y)− σ(y, x) > β

2 .

Indifference corresponds to the existence of clear and
positive reasons that justify equivalence between the two
options. Additionally, incomparability represents
situations where the DM cannot, or does not want to,
express a preference. Strict preference is associated with
conditions in which the DM has clear and well-defined
reasons justifying the choice of one alternative over the
other. However, because the DM usually shows non-ideal
behaviour, the weak preference and thek-preference also
exist. These relations can be considered as ‘weakened’
ways of the strict preference.

From a set of feasible portfoliosO, the preferential
system defines the following sets:

1.S(O, x) = {y ∈ O | yPx} is composed of the
solutions that strictly outrankx.

2.NS(O) = {x ∈ O | S(O, x) = ∅} is known as the
non-strictly-outranked frontier.

3.W (O, x) = {y ∈ NS(O) | yQx ∧ yKx} is
composed of the non-strictly-outranked solutions that
weakly outrankx.

4.NW (O) = {x ∈ O | W (O, x) = ∅} is known as the
non-weakly-outranked frontier.

Besides the weak outranking, the net flow score is
another measure used in [10,15] to identify the DM’s
preferences in the non-strictly-outranked frontier. It can
be defined as:

Fn(x) =
∑

y∈NS(O)\{x}

[σ(x, y)− σ(y, x)] . (8)

SinceFn(x) > Fn(y) indicates a preference forx over
y, Fernandez et al. [15] define:
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1.F (O, x) = {y ∈ NS(O) | Fn(y) > Fn(x)} to be the
set of non-strictly-outranked solutions that are greater
in net flow tox.

2.NF (O) = {x ∈ NS(O) | F (O, x) = ∅} to be the
net-flow non-outranked frontier.

Fernandez et al. [10] proved that the best portfolio
compatible with the fuzzy outranking relationσ should be
a non-strictly outranked solution that is simultaneously a
non-dominated solution to the problem:

min
x∈O

{〈|S(O, x)|, |W (O, x)|, |F (O, x)|〉}. (9)

As a consequence of the last remark, the best portfolio
can be found through a lexicographic search, with
pre-emptive priority favouring|S(O, x)|.

The above three-objective problem is a map of the
original problem in (1). When the DM is confident on the
preference model, he/she should accept that the best
compromise is a non-dominated solution of Problem (9).
It is also interesting that the equivalence between the
problem in (1) and its mapped three-objective problem is
valid independently of the original objective space
dimension. This may be very important in solving
portfolio problems with many objective functions [15].

The model parameters need to be adjusted according
to the specific characteristics of the problem and of the
DM. This can be done by an interaction between the DM
and a Decision Analyst (DA), utilizing, if necessary,
indirect elicitation methods to support this task [61,62,
63]. The DM should assess the parameters included in:

–the calculation of σ (e.g. criterion weights and
thresholds), and

–the system of preferences (λ, β andǫ).

This is not an easy task since DMs usually have
difficulties in specifying outranking parameters and
require an intense support by a DA. To facilitate this
process, the pair DM-DA can use the Preference
Disaggregation Analysis (PDA) paradigm (e.g. [61]),
which has received increasing interest from the MCDA
community. PDA infers the model’s parameters from
holistic judgments provided by the DM. Those judgments
may be obtained from decisions made for a limited set of
fictitious portfolios, or decisions taken for a subset of the
portfolios under consideration for which the DM can
easily make a judgment. In the framework of outranking
methods, PDA has been recently approached in [62,63].

Fernandez et al. in [10] solved problems of allocating
public funds via their outranking model. However, that
work does not consider interactions among projects,
which is an important concern in most practical
applications.

In light of this feedback, we propose here a portfolio
optimization metaheuristic approach based on the
preferential model proposed in [15]. So, our metaheuristic
inherits all the advantages of this model, but we have
incorporated the capacity to solve portfolios with

interdependent projects. Several papers in the literature
consider synergy as an inherent characteristic of the
portfolio problem (e.g. [5,16,17,18,19]). Our solution
approach, called Non-Outranked Ant Colony
Optimizationshows promising results compared to other
related algorithms. Experimental results provide evidence
that it is very capable of getting close to the Pareto
frontier when the best compromise is sought.

4 Our proposal

Our algorithm, NO-ACO (Non-Outranked Ant Colony
Optimization), is based on the optimization idea proposed
in [64] by Dorigo and Gambardella, which has been
adapted more than once to find a set of Pareto solutions
(e.g. [16,65,66,67]), but incorporates the preference
model from [15]. The algorithm performs the
optimization process through a set of agents called ants.
Each ant in the colony builds a portfolio by selecting a
project at a time. The way of choosing each project is
called a selection rule. When all ants have finished
constructing their portfolios, these are evaluated and each
ant drops pheromone according to this assessment.
Pheromone is used for learning, allowing the next
generation of ants to acquire knowledge about the
structure of the best solutions. To prevent premature
convergence, the colony includes a strategic oblivion
mechanism, known as evaporation, which reduces the
pheromone trail over specified periods of time. In order to
improve the intensification, NO-ACO includes a variable
neighbourhood search for the best solutions. This local
search runs once per iteration. This intensifier scheme is
complemented by a diversifier mechanism, in which
portfolios that have remained non-strictly-outranked for
more thanγ generations are removed from the solution
set. This allows the selective pressure to be relaxed. This
behaviour is desirable when the algorithm has only found
out local optima. The optimization process ends when a
predetermined termination criterion (such as a maximum
number of iterations, or a subsequent recurrence of the
best solution) is reached. The following sections describe
the elements of the NO-ACO algorithm in further detail.

4.1 Pheromone representation

Pheromone is usually represented by the Greek letterτ
and is modelled in NO-ACO as a two dimensional array
of sizeN × N , whereN is the total number of applicant
project proposals. The pheromone between two projectsi
andj is represented asτi,j , and indicates how good it is
that both projects receive financial support. Pheromone
values are in range(0, 1], initializing at the upper limit to
prevent premature convergence. The pheromone matrix
acts as a reinforcement learning structure reflecting the
knowledge gained by the ants that formed high-quality
portfolios.
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The pheromone representation of NO-ACO allows
identifying pairs, trios, quartets or larger project
subgroups present in the best portfolios. Most likely,
some synergies (mainly those that decrease costs and/or
increase objectives) occur in the best portfolios. These
favourable project interactions are detected through the
pheromone matrix and this knowledge is transmitted to
ants of the next generation for building better solutions.

4.2 Selection rule

Each ant builds its portfolio by selecting the projects one
by one, taking into account two factors:

–Local knowledge (heuristic): This considers the
benefits provided by the project to the portfolio and
how many resources the project consumes. Local
knowledge for thejth project is denoted byηj and is
calculated by the expression:

ηj =

1

c(j)

p
∑

k=1

fk(j)

max
l∈X

{

1

c(l)

p
∑

k=1

fk(l)

} , (10)

where c(j) is a measure proportional to the cost of
project j, p is the number of objectives,X is the
applicant project list, andfk(j) is the benefit from
projectj to thekth objective. Equation (10) promotes
the inclusion of projects that have a good balance
between intended objectives and requested budget. In
Equation (10), c(j) is defined as

c(j) =
1

q

q
∑

k=1

(

cj,k

Bk

)

, (11)

where,q is the number of categories of resources,cj,k
is thekth resource cost requested by projectj, andBk

is the available amount of resource in thekth category.
–Global knowledge(learning): This takes into account
the experience of previous generations of ants,
expressed in the pheromone matrix. The global
knowledge for projecti to be included in a portfoliox
is denoted byτ(x, i) and is defined by the expression:

τ(x, i) =

N
∑

j=1

(xj)τi,j

N
∑

j=1

xj

, (12)

whereN is the total number of applicant projects,xj

is the binary value indicating whether thejth project
is included in the portfoliox, and τi,j is the
pheromone for projectsi and j. The numerator in

Equation (12) is the total sum of pheromone between
i and each project in portfoliox; the denominator is
the cardinality ofx. The global knowledge favours the
selection of projects that were part of the best
portfolios in previous generations. At the first
iteration this knowledge has no effect on portfolio
formation process.

Both knowledge factors are linearly combined into a
single evaluation function, which corresponds to Equation
(13):

Ω(x, i) = w · ηi + (1− w) · τ(x, i), (13)

where w is a parameter weighing global and local
knowledge. Each ant in the colony has a different value
for w, which is generated at random in the range[0,W ]
with W < 1. W determines the possible greatest value of
w for each ant. The functionΩ forms the basis of the
selection rule.

If x is a partially-constructed portfolio, one or more
projects may be included inx. From among all the project
proposals, only those that are not part ofx and the
inclusion of which favours the fulfilment of budgetary
constraints should be considered. This set is known as the
candidate project listand is denoted byX⊖. Note that
X⊖ is a subset ofX. The choice of whichj ∈ X⊖ will
be added is made by using the selection rule:

j =







arg maxi∈X⊖ {Ω(x, i)} if ℘ ≤ α1,
Li∈X⊖{Ω(x, i)} if α1 < ℘ ≤ α2,
ℓi∈X⊖ otherwise,

(14)

where j is the next project to be included;℘ is a
pseudorandom number between zero and one;α1 is a
parameter that sets the intensification probability in the
algorithm (choosing the project with the greatest value of
Ω); andα2 − α1 is the probability of triggering a middle
state between intensification and diversification
(randomly selecting a projecti with probability
proportional to its assessmentΩ), this selection scheme is
represented byL; in the event that℘ > α2, diversification
is promoted by means of the functionℓ (taking a project
uniformly at random).

4.3 Pheromone laying and evaporation

At the beginning of the first iteration, the pheromone
matrix is initialized toτi,j = 1 for all (i, j) ∈ N × N .
After that, each ant constructs a feasible portfolio. In a
colony with n ants,n new solutions are generated after
each iteration, and there is also a set of sizem with the
best portfolios found from the previous iterations. If all
alternatives are integrated into a setO whose cardinality
is n+m, we can identify the non-strictly-outranked front
NS(O).

In addition, NS(O) is subdivided into domination
fronts. The fronts are obtained by considering the
minimization of two objectives,W (O, x) and F (O, x),
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according to the best-compromise definition given in
Problem (9). The set composed by these fronts is denoted
by F = {F1,F2, . . . ,Fk,Fk+1, . . .}, whereF1 contains
the non-dominated solutions,F2 contains the portfolios
that are dominated by only one solution,F3 those
dominated by two solutions, and so forth. In general, the
portfolios dominated byk solutions are inFk+1. The set
F will be used in the pheromone intensification in order
to increase the selective pressure towards the best
compromise.

Each pair of projects(i, j) for each solutionx ∈ O
intensifies the pheromone trail according to the expression:

τi,j =

{

τi,j +∆τi,j if x ∈ NS(O),
τi,j otherwise. (15)

If x is a non-strictly-outranked solution, then there is a
k such thatx ∈ Fk. The pheromone increase depends on
k, and is defined as:

∆τi,j =

(

|F| − k + 1

|F|

)

(1− τi,j) if x ∈ Fk, (16)

wherei andj belong to portfoliox.
At the end of each iteration, the entire pheromone

matrix is evaporated by multiplication by a constant
factor lying between zero and one, denoted asρ.

4.4 Local search

The algorithm intensification is promoted by a greedy
variable-neighbourhood local search that is only carried
out on non-strictly-outranked solutions. This search
explores regions near to the best known solutions by a
simple scheme consisting of randomly selectingv
projects, and generating all possible combinations of
them for each solution in the non-strictly-outranked
frontier. Small values forv provoke behaviour that is too
greedy, whereas large values produce intolerable
computation times. In our experiments we obtained a
good balance between these by usingv = ⌈lnN⌉. The
algorithmic outline for the local search is illustrated by
Algorithm 1.

As observed in Algorithm1, the search starts by
choosingv projects at random (Line2), and generating all
combinations of them (Line3). Every combination is set
for each portfolio inNS(O) (Lines4–11).

In Line 12, procedurerepair has two main goals: 1)
improving clearly-suboptimal portfolios, and 2) bringing
unfeasible portfolios to the feasible region. Thus, it has
two conditions to check:

–If the generated solution is partially constructed: then
repair adds projects to portfolio, according to
selection rule but respecting the bits assigned by the
current combination (represented byc in Algorithm
1). This is done until no project can be added to the
portfolio.

Algorithm 1: NO-ACO’s local search algorithm
Data: NS(O) (non-strictly-outranked frontier),X

(applicant project list)
Result: A better approximation ofNS(O)

1 Initialize:N ← |X|, v ← ⌈lnN⌉, O′ ← ∅
2 P ← select_projects(v,X)
3 C ← generate_combinations(P)
4 foreach c ∈ C do
5 foreacho ∈ NS(O) do
6 o′ ← o

7 foreachp ∈ P do
8 if p ∈ c then
9 Add projectp to portfolioo′

10 else
11 Remove projectp from portfolioo′

12 repair(o′)
13 if o′ ∈ RF then
14 O′ ← O′ ∪ {o′}

15 O ← O ∪O′

16 RecalculateNS(O)
17 return NS(O)

–If the generated solution is unfeasible: thenrepair
removes projects at random until the portfolio does
not surpass the budget. The probability of removing a
project is inversely proportional to its expected
benefits. No project chosen by the current
combination can be removed. In the generated
instances,repair procedure could make feasible the
most of solutions.

Each feasible solution is evaluated to verify whether or
not it is a non-strictly-outranked solution (Lines13–17).

4.5 Algorithmic description of NO-ACO

Algorithm 2 presents an algorithmic outline of NO-ACO.
Line 1 indicates the initialization of the control variables,
and Lines2–27show the search process.

Lines4–12of Algorithm 2 illustrate the process of the
formation of portfolios. Each ant starts from an empty
portfolio, and projects are added by the selection rule, one
at a time. Complete and feasible solutions are stored inO.
These are then evaluated according to Problem (9), and
the non-strictly-outranked solutions are refined by local
search. Pheromone increase is the next step (Lines
14–17).

In Lines 18–23, the non-strictly-outranked set and
some algorithm control variables are updated.
Subsequently, at Line 24, the procedure
remove_and_refill counts the number of iterations
of each solution in the localNS frontier. All solutions
with more thanγ iterations are removed from the local
set, and replaced by new solutions in the globalNS
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Algorithm 2: Non-Outranked Ant Colony Optimization algorithm
Data: X (applicant project list),B (budget)
Result: An approximation ofNS(O)

1 Initialize: iter ← 1, rep← 0, NSlocal ← ∅, NSglobal ← ∅, NS∗
local ← ∅

2 repeat
3 O ← ∅
4 foreachant in the colonydo
5 x← make_empty_portfolio()

6 X⊖ ← get_candidate_projects(X,x) // Section 4.2
7 repeat
8 j ← selection_Rule(X⊖, x) // Equation (14)
9 xj ← 1

10 X⊖ ← get_candidate_projects(X,x) // Section 4.2

11 until X⊖ = ∅
12 O ← O ∪ {x}

13 O ← O ∪NSlocal

14 NSlocal ← arg minx∈O {〈|S(O, x)|, |W (O, x)|, |F (O, x)|〉} // Problem (9)
15 NSlocal ← local_search(NSlocal, X) // Algorithm 1
16 foreachx ∈ NSlocal do
17 lay_pheromone(x,O) // Equations (15-16)

18 NS∗
global ← NSglobal ∪NSlocal

19 NS∗
global ← local_search(NS∗

global, X) // Algorithm 1
20 if NSglobal = NS∗

global then
21 rep← rep+ 1
22 else
23 rep← 0

24 remove_and_refill(NSlocal, NS∗
global, γ)

25 Evaporate pheromone // Section 4.3
26 Update:iter ← iter + 1, NSglobal ← NS∗

global

27 until rep = repmax ∨ iter = itermax

28 return NSglobal

frontier. These new solutions should not have belonged to
NSlocal, therefore they have to be generated by the local
search onNS∗

global. While this search is providing
non-strictly-outranked portfolios the replacement will be
possible. The removed solutions can still belong to the
global non-strictly-outranked front, but no longer
influence the optimization process made by the colony.

At the end of each iteration, pheromone is evaporated
(Line 25), and the remaining algorithm control variables
are updated (Line26). The algorithm finishes when it has
iterated with the same set of solutions as the
non-strictly-outranked frontier duringrepmax iterations,
or if it has reached the maximum number of iterations
itermax (Line 27).

5 Case study: Optimization of social
assistance portfolios

Consider a DM facing a portfolio problem, with 100
project proposals are aimed at benefitting the most
precarious social classes. The project quality is measured
as the number of beneficiaries for each of nine criteria
that have previously been established. Each objective is

associated with one of three classes (extreme poverty,
lower class and lower-middle class) and one of three
levels of impact (low, medium and high).

The total budget to distribute is 250 million dollars.
The proposals can be grouped into three types according
to their nature, and into two geographic regions according
to the location of their impact. Furthermore, in a desire to
provide equitable conditions, the DM imposes the
following restrictions:

1.The budget allocated to support each project type
should be between 20% and 60% of the total budget.

2.The financial support allocated to each region must be
at least 30% of the total budget, and no more than 70%.

The DM has also identified 20 relevant interactions
among projects: four of them are cannibalization
phenomena, six correspond to situations of
mutually-excluding projects, and ten are synergism
interactions. There are up to five projects per interaction.

In order to make easier the comparative descriptions, in
this section the termPareto efficiency(and all the related
terms, such asoptimal or efficient portfolio) will be used
to refer to non-dominated solutions of (1), and the term
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Table 1: Effect of preferences incorporation on the Pareto Ant Colony Optimization algorithm
In

st
a

n
ce

Algorithm
Time

Size Non-dominated Solutions Obtains
of the solutions belonging the best

(seconds) solution in to compromise
set O1 ∪O2 NS(O1 ∪O2) in O1 ∪O2

1
P-ACO 3448.07 2006 928 10
P-ACO-P 536.66 15 15 10 X

2
P-ACO 3470.29 2514 1295 7
P-ACO-P 775.94 19 19 13 X

3
P-ACO 3485.16 2456 280 13
P-ACO-P 1112.49 34 34 17 X

4
P-ACO 3591.27 2587 1392 10 X

P-ACO-P 734.58 38 37 19 X

5
P-ACO 3525.85 2245 1165 10
P-ACO-P 1035.85 21 21 15 X

6
P-ACO 3496.68 2013 161 11
P-ACO-P 855.68 18 18 10 X

7
P-ACO 3549.55 2211 766 13 X

P-ACO-P 161.02 19 19 14 X

8
P-ACO 3464.27 2285 1317 13
P-ACO-P 1646.32 28 28 21 X

9
P-ACO 3707.65 965 762 4 X

P-ACO-P 712.24 25 25 11 X

10
P-ACO 3549.67 2255 1403 15 X

P-ACO-P 651.43 18 18 16 X

Note:O1 andO2 are the solution sets generated by P-ACO and P-ACO-P respectively.
The best compromise is the best solution to Problem (9) onO1 ∪O2.

best compromiseto best solutions to (9) (the best portfolio
compatible with the fuzzy outranking relation [10,15]).

Below, we present a range of experiments to verify
the validity and advantages of our approach to solving
this case study. They give evidence of the benefits of
incorporating the DM’s preferences during the
optimization process, and thus they also prove that our
approach has good potential for solving real
resource-allocation problems.

5.1 Effect of incorporating the DM’s
preferences

To the best of our knowledge, the P-ACO algorithm [16]
is the most relevant ant colony algorithm applied to solve
project portfolio selection. In order to appraise the effect
of incorporating the DM’s preferences on a
multi-objective optimization algorithm, we implemented
a version of P-ACO that included the preferential model
described in Section3.2. This adaptation was called
P-ACO with preferences (P-ACO-P). Instead of
approximating the Pareto frontier defined by the nine
maximizing objectives of the problem, it searches for the
best compromise expressed by Problem (9). In order to
reflect a credible decision situation, we assign the values
suggested by Fernandez et al. in [15] to the preferential
model parameters. There is no other difference between

P-ACO and P-ACO-P. Both algorithms were programmed
in Java language, using the JDK 1.6 compiler, and
NetBeans 6.9.1 as Integrated Development Environment
(IDE). The experiments were run on a Mac Pro with an
Intel Quad-Core 2.8 GHz processor and 3 GB of RAM.

The P-ACO parameter setting was that suggested in
[16] by Doerner et al. The version that incorporates
preferences has the same setting values.

Table1 shows the experimental results on ten artificial
instances following the case-study features.

The best compromise has been identified from
solutions sets generated by both optimization methods. In
this sense, that best compromise is related to the known
solution set; therefore, it will be called theknown best
compromise, which approximates the true best
compromise. This is a non-dominated solution of Problem
(9) on the original objective space. So, the true best
compromise must belong to the true efficient set, and it
should not be strictly outranked by any other Pareto
solution.

As can be seen from Table1, incorporating
preferences provides a closer approximation to a
privileged region of the Pareto frontier. The version
considering preferences provides solutions that
dominated the 54%, on average, of solutions produced by
the original version of the algorithm. Probably, with many
objectives, P-ACO is sensitive to the existence of
dominant resistant solutions. There is also a significant
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Table 2: Efficiency analysis of NO-ACO

In
st

a
n

ce
Algorithm

Time
Size Non-dominated Solutions Obtains

of the solutions belonging the best

(seconds) solution in to compromise
set O1 ∪O2 NS(O1 ∪O2) in O1 ∪O2

1
SS-PPS 37946.70 4997 4981 12
NO-ACO 5101.78 16 16 15 X

2
SS-PPS 23223.68 4996 4956 10
NO-ACO 2130.98 18 18 18 X

3
SS-PPS 33265.31 4996 4970 21
NO-ACO 3091.89 29 29 28 X

4
SS-PPS 49865.11 4997 4946 24
NO-ACO 4720.02 43 43 40 X

5
SS-PPS 30218.23 4996 4959 12
NO-ACO 4009.47 32 32 32 X

6
SS-PPS 43253.64 4996 4949 18 X

NO-ACO 2743.55 26 26 22 X

7
SS-PPS 29386.18 4973 4973 14
NO-ACO 4512.12 21 21 21 X

8
SS-PPS 38585.35 4996 4940 27
NO-ACO 3901.76 35 35 35 X

9
SS-PPS 35514.66 4996 4936 9
NO-ACO 1238.33 16 16 12 X

10
SS-PPS 46241.69 4996 4956 16
NO-ACO 1467.29 20 20 20 X

Note:O1 andO2 are the solution sets generated by SS-PPS and NO-ACO respectively.
The best compromise is the best solution to Problem (9) onO1 ∪O2.

run-time reduction (in the test cases, this reduction was
76% on average). Also, if the model of preferences
matches with the DM’s preferences, the best compromise
among the set of all portfolios generated is always
identified by P-ACO-P. Furthermore, when the DM has to
choose one alternative as the final decision, the thousands
of portfolios from P-ACO make it difficult to reach a
decision. By incorporating preferences, this drawback is
very strongly reduced.

5.2 Evaluation of NO-ACO solutions

For the problem presented in this section, the only way to
ensure that a solution is the true best compromise is if we
know the whole true Pareto frontier, or at least, the full
non-strictly-outranked frontier. For instances of large size
like those we have addressed, it is not possible to know
with certainty the Pareto frontier. However, there are
methods reported in the literature that can approximate
this frontier with an acceptable error.

In order to verify whether the NO-ACO solutions
acceptably approximate the true Pareto frontier, we have
estimated the Pareto set by means of SS-PPS, as proposed
by Carazo et al. [18,19]. This is one of the most recent
algorithms for portfolio optimization, and experimental
tests prove its high performance, outperforming SPEA2.
SS-PPS solved the case-study instances by finding a
representative sample of up to five thousand efficient

points according to the parameter setting suggested in
[18,19].

NO-ACO was programmed in Java language, using
the JDK 1.6 compiler, and NetBeans 6.9.1 as IDE. The
experiments were run on a Mac Pro with an Intel
Quad-Core 2.8 GHz processor and 3 GB of RAM.

Again we used the values suggested in [15] for the
preferential model parameters. Besides, the NO-ACO
parameter setting used to obtain the results in this section
is: α1 = 0.65, α2 = 0.85, ρ = 0.9, γ = 25, W = 0.60,
repmax = 50 and itermax = 100000. Moreover, the
colony has one hundred ants. This setting was obtained
from exploring parameter values with the objective of
achieving a good algorithmic performance. Taking into
account the results in a wide range of instances, we
consider that these parameter values are robust enough to
maintain an efficient behavior of NO-ACO.

We want to give evidence that our approach
acceptably approximates the best compromise. With this
aim, we solved the same ten instances from Section5.1.
For these, we have approximated: 1) the best compromise
by using NO-ACO, and 2) the Pareto frontier by means of
SS-PPS.

The results are summarized in Table2. On analysing
the data, we may conclude that our algorithm has efficient
behaviour. NO-ACO got close to the Pareto frontier better
than SS-PPS in the most preferred region (the so-called
RoI), that is, the non-strictly-outranked frontier. No

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 4, 1517-1531 (2014) /www.naturalspublishing.com/Journals.asp 1527

Table 3: A sample of the non-strictly-outranked frontier generated by NO-ACO compared to the ranking-based solution

P
o
rt

fo
lio

Values of Number of solutions

objective functions that outranks it

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 strictly weakly
in net flow

score

b
y

N
O

-A
C

O

1 106 806 504 612 107 811 502 605 983 871 473 610 108 847 499 597 0 0 0

2 96 766 467 556 98 786 459 562 988 772 457 565 98 756 454 545 0 0 1

3 98 730 461 562 99 740 475 564 988 796 464 563 95 767 453 541 0 1 2

4 100 742 479 545 94 744 459 565 992 785 451 547 96 745 447 535 0 2 1

5 96 742 462 553 95 751 456 562 999 809 454 562 94 776 452 546 0 2 1

6 98 743 462 550 95 730 473 559 991 765 460 553 95 740 450 541 0 2 5

7 98 746 466 556 98 769 454 569 990 790 447 565 94 770 454 547 0 3 3

8 92 739 469 557 91 753 445 556 990 784 468 565 90 738 440 549 0 4 6

9 98 733 461 556 95 750 448 567 987 791 454 565 97 777 454 556 0 8 7

ranking-based 96 736 471 558 95 762 453 561 944 768 469 565 97 756 436 540 9 0 9

NO-ACO solution is dominated by an SS-PPS one, and
our approach could dominate 16–60 solutions suggested
by the other method. Additionally, our proposal was able
to identify the best compromise from the entire
approximated frontier, using only, on average, 10% of the
time required to estimate the whole Pareto set.

There is evidence of the advantages of incorporating
the DM’s preferences: it decreases the computational
effort and increases the algorithm efficiency on the
solution region that best matches the DM’s formulated
preferences.

In Table 2, the best compromises are related to the
outranking model’s parameters that were seta priori. In
multi-objective optimization, the DM ‘learns’ trade-offs
while he/she finds and judges new Pareto solutions; thus
his/her aprioristic preferences could be modified. Once
the best compromise and others non-strictly outranked
solutions have been obtained and evaluated by the DM,
the model’s parameter setting may be updated, perhaps
using PDA as proposed in [63]. If the parameter values
were modified, with an additional NO-ACO run the final
best compromise should be reached.

5.3 Solving problems with high dimensionality

The test in the previous section was limited to 100
projects and nine objectives. These dimensions exceed
those addressed by most studies in the specialized
literature (e.g. [5,16,17,18,19,68]). These dimensions
are appropriate for most portfolio problems in the
business sector; however, in public organizations, the
problem size may be larger. In order to explore the
capacity of our algorithm to solve instances with a large
size, we generated a set of instances with 500 projects and
16 criteria to optimize.

The interpretation is similar to that described at the
beginning of this section: there is a budget of 250 million
dollars to distribute, and the DM wants to keep a balance
so has grouped the projects into two areas and three

regions and imposed budgetary constraints for each
(30%–70% for each area and 20%–60% for each region).

In addition, the DM has identified 100 relevant
interactions between projects: 20 are cannibalization
phenomena, 30 correspond to redundant projects and 50
are synergies that generate added value.

Unlike the 100-projects case, it is not possible in these
instances to generate an acceptable approximation of the
Pareto frontier that can be used as reference for
comparison purposes. Even the best multi-objective
algorithms are degraded when they attempt to generate it.
This is combined with computation times that would be
intolerable or with an abrupt interruption of the
algorithms if they fail to converge towards the frontier.

In order to test the quality of the solutions suggested
by our proposal, a comparison with a popular acceptable
way of allocating resources can be performed. Among
several heuristics frequently used, we chose one based on
assigning budgetary resources according to
project-ranking information. Here, a project ranking is
built by using a cost-benefit ratio; the benefit is modelled
by a weighted sum, whose weights are adjusted to reflect
the DM’s preferences. The project ranking is built
following the order given by the cost-benefit ratio. Once
the set of projects has been ranked, the resources may be
allocated by following the priorities implicit in the rank
order until no resources are left. This at least ensures the
inclusion of projects that provide more benefit per dollar.
Synergism can be tackled if the project interactions are
modelled as dummy projects that can also be ranked.

Table3 concentrates on only nine of the 164 solutions
found by NO-ACO as an approximation to the
non-strictly-outranked frontier. Our algorithm converges
after 41, 625 seconds. The best compromise that was
found (Solution 1) outperforms the ranking-based
portfolio, even in the Pareto sense.

Another ten instances were generated following the
same features. When they were solved by NO-ACO, we
observed the same behaviour: the ranking-based portfolio
was dominated by the best compromise found by
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NO-ACO. This test gives some evidence of the
applicability of our approach to large-scale real instances.

6 Conclusions and future work

We have presented an original proposal to optimize
interdependent projects portfolios. This proposal is an
adaptation of the well-known ant colony optimization
metaheuristic, but incorporates preferences based on the
outranking model of Fernandez et al. [10]. Our algorithm
(NO-ACO) searches for optimal portfolios in synergetic
conditions and can handle interactions impacting both
objectives and costs. Redundancy is also considered
during portfolio formation. By incorporating preferences,
the selective pressure toward a privileged zone of the
Pareto frontier is increased. Thus, a zone that matches the
DM’s preferences better can be identified. In comparison
with other metaheuristic approach that does not
incorporate preferences, NO-ACO achieves greater
closeness to the region of interest with less computational
effort. Our result seems to confirm the hypothesis from
[10,15]: the incorporation of DM preferences by solving
Problem (9) helps to obtain solutions that dominate others
from leading metaheuristics.

Since it is enriched by preferences, our proposal
acquires the ability to find good solutions (the known best
portfolio) to portfolio problems with higher dimensions
(in project and objective spaces) than those reported in
scientific literature. Compared to the popular
ranking-based method, NO-ACO finds solutions that
outperform to the ranking-based portfolio, both in Pareto
dominance and in strict outranking.

As immediate work we are going to explore the limits
of this approach, by finding the greatest size of the
instances that can be solved with an acceptable
performance. Additionally, we are going to incorporate an
interactive process for updating the preference model
according to the new information gained by the DM from
the optimized solutions.
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