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Abstract: Semi-supervised learning has attracted a significant amount of attention inpattern recognition and machine learning. Among
these methods, a very popular type is semi-supervised support vectormachines. However, parameter selection in heat kernel function
during the learning process is troublesome and harms the performanceimprovement of the hypothesis. To solve this problem, a novel
local behavioral searching strategy is proposed for semi-supervised learning in this paper. In detail, based on human behavioral learning
theory, the support vector machine is regularized with the un-normalizedgraph Laplacian. After building local distribution of feature
space, local behavioral paradigm considers the form of the underlying probability distribution in the neighborhood of a point. Validation
of the proposed method is performed with extensive experiments. Results demonstrate that compared with traditional method, our
method can more effectively and stably enhance the learning performance.
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1 Introduction

Semi-supervised learning has received a significant
interest in pattern recognition and machine learning. It
exploits unlabeled data in addition to the limited labeled
ones to improve the learning performance [1]. Many
semi-supervised learning algorithms have been proposed
during the past decade, among which a very popular type
of algorithms is the semi-supervised support vector
machines (S3VMs).

Examples of this type include the semi-supervised
SVM [2], the transductive SVM (TSVM) [3], and the
Laplacian SVM [4]. S3VM and the TSVM are built upon
the cluster assumption and use the unlabeled data to
regularize the decision boundary. Specifically, these
methods prefer the decision boundary to pass through
low-density regions [5]. The Laplacian SVM is a S3VM
that exploits the datas manifold structure via the graph
Laplacian. It encodes both the labeled and unlabeled data
by a connected graph, where each instance is represented
as a vertex and two vertices are connected by an edge if
they have large similarity. The goal is to find class labels
for the unlabeled data such that their inconsistencies with

both the supervised data and the underlying graph
structure are minimized.

However, while many efficient SVM methods have
been developed for supervised learning, S3VMs still
suffer from inefficiency issues. In particular, the
optimization problem of Bennett and Demirizs S3VM is
formulated as a mixed-integer programming problem and
so is computationally intractable in general. TSVM, on
the other hand, iteratively solves standard supervised
SVM problems. However, the number of iterations
required may be large since the TSVM is based on a local
combinatorial search that is guided by a label switching
procedure. Unlike the TSVM, the Laplacian SVM focuses
on regularization in reproducing Kernel Hilbert spaces
and only needs to solve one small SVM with the labeled
data. But Laplacian SVM utilizes heat kernel weights to
form edge weights when constructing data adjacency
graph. The performance of heat kernel weights highly
depends on parameter selection and how to exactly fix
parameter in different applications may be troublesome.

Currently, Defense Advanced Research Projects
Agency (DARPA) is soliciting innovative research
proposals in the area of machine learning for electronic
warfare applications and sets up the Behavioral Learning
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for Adaptive Electronic Warfare (BLADE) program [6] in
2010. At the same time, more and more research fruits
hold the viewpoint that human behavioral learning can
effectively improve the performance of machine learning
[7,8,9]. Inspired by these booming trends, we propose a
novel approach called Local Behavioral based Laplacian
SVM (LB-LapSVM) to overcome the problem of
parameter selection in Laplacian SVM.

The rest of this paper is organized as follows. Section
2 briefly describes the semi-supervised learning
framework and its extension in Laplacian SVM. Section 3
presents the local behavioral searching method and its
utility in LB-LapSVM. Section 4 performs extensive
experiments. Finally, we provide some concluding
remarks in Section 5.

2 Related work

Inspired by the success of large margin principle, S3VMs
are extensions of supervised SVMs to semi-supervised
learning by simultaneously learning the optimal
hyperplane and the labels for unlabeled instances. It was
disclosed that S3VMs realize the low-density assumption
by favoring the decision boundary going across
low-density regions.

2.1 semi-supervised learning framework

Formally, considering binary classification in
semi-supervised learning, we are given a set ofl labeled
samples{xi,yi}

l
i=1, and a set ofu unlabeled samples

{xi}
l+u
i=l+1, wherexi ∈ R

N andyi ∈ {−1,+1}. Let us now
assume a general-purpose decision functionf . The
regularized functional to be minimized is defined as:

f ∗ = argmin
f∈HK

1
l

l

∑
i=1

V (xi,yi, f )+ γA ‖ f‖2
K + γI ‖ f‖2

I (1)

where V represents a generic cost function of the
committed errors on the labeled samples,HK is a
reproducing kernel Hilbert space (RKHS) induced by the
kernel.γA controls the complexity off in the associated
Hilbert spaceHK , and γI controls its complexity in the
intrinsic geometry of the marginal data distribution. For
example, if the probability distribution is supported on a
low-dimensional manifold,‖ f‖2

I penalizes f along that
manifold I. Note that this functional constitutes a general
regularization framework that takes into account all the
available knowledge.

2.2 Laplacian SVM

The previous semi-supervised learning framework allows
us to develop many different algorithms just by playing

around with the loss function,V , and the regularizes,‖ f‖2.
In this paper, we focus on the Laplacian SVM formulation,
which basically uses a SVM as the learner core and the
graph Laplacian for manifold regularization.

A. Cost function of the errors

The Laplacian SVM uses the same hinge loss function as
the traditional SVM:

V (xi,yi, f )=max{0,1− yi f (xi)} (2)

where f represents the decision function implemented by
the selected classifier.

B. Decision function

We use as the decision functionf (x∗) = 〈w,φ(x∗)〉+ b,
whereφ(·) is a nonlinear mapping to a higher (possibly
infinite) dimensional Hilbert spaceH , and w and b
define a linear regression in that space. By means of the
Representer Theorem [10], weightsw can be expressed in
the dual problem as the expansion over labeled and
unlabeled samplesw = ∑l+u

i=1 αiφ(xi) = ΦΦΦααα, where
ΦΦΦ = [φ(x1), ...,φ(xl+u)]

T and ααα = [α1, ...,αl+u]. Then,
the decision function is given by:

f (x∗) =
l+u

∑
i=1

αiK(xi,x∗)+b (3)

and K is the kernel matrix formed by kernel functions,
K(xi,x j) =

〈

φ(xi),φ(x j)
〉

. The key point here is that,
without considering the mappingφ explicitly, a
non-linear classifier can be constructed by selecting the
proper kernel. Also, the regularization term can be fully
expressed in terms of the kernel matrix and the expansion
coefficients:

‖ f‖2
K = ‖w‖2 = (ΦΦΦααα)T (ΦΦΦααα) = αααT KKKααα (4)

C. Manifold regularization

The geometry of the data is modeled with a graph in
which nodes represent both labeled and unlabeled
samples connected by weightsWi, j, regularizing the
graph follows from the smoothness (or manifold)
assumption and intuitively is equivalent to penalize the
”rapid changes” of the classification function evaluated
between close samples in the graph:

‖ f‖2
I =

1

(l +u)2

l+u

∑
i, j=1

Wi j( f (xi)− f (x j))
2 = fT Lf (5)

where L = D − W is the graph Laplacian,D is the
diagonal degree matrix ofW given by Dii = ∑l+u

j=1 Wi j,

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 4, 1781-1787 (2014) /www.naturalspublishing.com/Journals.asp 1783

Algorithm 1 A Summary of LapSVM algorithm [4].

Input: l labeled examples{xi,yi}
l
i=1, u unlabeled examples

{xi}
l+u
i=l+1

Output: Estimated functionf : RN → R

1: Construct data adjacency graph with(l + u) nodes using
graph kernel. Choose edge weights through heat kernel

weightsWi j = e−‖xi−x j‖
2/4t .

2: Choose a kernel functionK(x,y). Compute the Gram matrix
Ki j = K(xi,x j).

3: Compute graph Laplacian matrix:L = D−W whereD is a
diagonal matrix given byDii = ∑l+u

j=1 Wi j.
4: ChooseγA andγI .
5: Computeα∗ with the SVM QP solver for soft margin loss.
6: Output functionf ∗(x) = ∑l+u

i=1 α∗
i K(xi,x).

and f = [ f (x1), ..., f (xl+u)]
T = Kααα, where we have

deliberately dropped the bias termb.
The LapSVM algorithm is summarized in the

Algorithm 1. From Algorithm1 we can clearly see that
when LapSVM computes edge weights, heat kernel

weights Wi j = e−‖xi−x j‖
2
/4t are used. The value oft

varies in different applications. The performance of
LapSVM will be badly hurt if the value oft is falsely set.
Whats more, when computing edge weights, heat kernel
weights only focus on samplexi andx j. There is plenty
additional information to improve affinity measuring.
From the above analysis, we proposed a novel method
called LB-LapSVM.

3 Local behavioral searching

In many real world situations, human are exposed to a
combination of labeled data and far more unlabeled data
when they need to make a classification decision.
Understanding how human combine information from
labeled and unlabeled data to draw inferences about
conceptual boundaries can have significant social impact.
In the realistic setting where labeled and unlabeled data is
available, semi-supervised learning offers very explicit
computational hypotheses that can be empirically tested
in the laboratory. To help understand description in this
section, we start by providing a translation of relevant
terms from semi-supervised learning to human behavioral
learning.

That is, when stimulus arrives, human use their
supervised experiences from teachers and passive
experiences from nature to complete concept learning
task. During the learning task, human take in to account
of some mechanism in their mind. When concept
category is obtained, the learning task is done.

Inspired by above analysis, we applied human
behavioral learning strategy to LapSVM. In detail, when
computing affinity between samplexi and x j, LapSVM
only focuses on samplexi and x j. However, its not the
case in human behavior. Given a pair of samples, in

Stimulus to human subjectInstance

Concept category

for human to learn
Class

Concept learning

task for human
Classification

Supervised experience

from teacher

Labeled

Data

Passive experience

for human

Unlabeled

Data

Mechanism in the mind

of the human subject

Learning

Algorithm

Fig. 1: Translation from semi-supervised learning to
human behavioral learning.

human empirical cognition, local neighborhood of this
pair samples plays an important role in affinity measuring.
Based on local distribution of feature space, human
behavioral paradigm considers the form of the underlying
probability distribution in the neighborhood of a point.

Instead of selecting a single parametert in heat kernel
weights, we propose to calculate local behavioral
parametersσi and σ j for data pointsxi and x j. The
distance fromxi to x j as ”seen” byxi is d(xi,x j)/σi while
the converse isd(x j,xi)/σ j. Therefore the square distance
d2 may be generalized as
d(xi,x j)d(x j,xi)/σiσ j = d2(xi,x j)/σiσ j. The affinity
between a pair of points can thus be written as:

Wi, j = exp

(

−d2(xi,x j)

σiσ j

)

(6)

Using a specific parameter for each point allows local
behavioral searching of the point-to-point distances
according to the local statistics of the neighborhoods
surrounding pointsi and j. The selection of local
behavioral parameterσi can be done by studying the local
statistics of the neighborhood of pointxi. In order to catch
human thought in neighborhood searching, we choose:

σi=d(xi,xK) (7)

wherexK is theK-th neighbor of pointxi. The selection of
K is independent and is a function of the data dimension
of the embedding space. Distance metricd(xi,x j) is set
the same to LapSVM, e.g.

∥

∥xi − x j
∥

∥. So based on local
behavioral searching, edge weight betweenxi andx j can
be defined as:

Wi, j = exp

(

−
∥

∥xi − x j
∥

∥

2

σiσ j

)

(8)

We provide a visualization of the effect of the
suggested local behavioral searching strategy in Fig. 2.

Without loss of generality, binary classification is
taken into account. In Fig. 2(a), we show input data
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(a) (b) (c)

Fig. 2: The effect of local behavioral searching strategy in LapSVM. (a) Input data points. (b) Heat kernel weights based
affinity measuring. (c) Local behavioral searching based affinity measuring.

points. Squares and triangles each represent one class.
They appear as the shape of a tight cluster resides within
a background cluster. Fig. 2(b) shows the affinity
measuring results based on heat kernel weights. The
affinity between each point and its surrounding neighbors
is indicated by the thickness of the line connecting them.
Generally, the affinities across tight clusters are larger
than the affinities within the sparse background cluster.
We can clearly discover that its not the case in Fig. 2(b).
Thats to say, the standard approach to estimating affinities
fails to capture the data structure. Fig. 2(c) represents the
corresponding visualization of affinities after local
behavioral searching. The affinities across clusters are
now significantly lower than the affinities within any
single cluster. Local behavioral searching approach
automatically finds the two scales and results in high
affinities within clusters and low affinities across clusters.
This is the information required for separation.

The local behavioral based LapSVM (LB-LapSVM)
algorithm is summarized in the Algorithm2.

Algorithm 2 A Summary of LB-LapSVM algorithm.

Input: l labeled examples{xi,yi}
l
i=1, u unlabeled examples

{xi}
l+u
i=l+1

Output: Estimated functionf : RN → R

1: Construct data adjacency graph with(l + u) nodes using
graph kernel.

2: Compute local behavioral parametersσi and σ j through
formula (7) and build the affinity matrixW defined by
formula (8).

3: Compute graph Laplacian matrix:L = D−W whereD is a
diagonal matrix given byDii = ∑l+u

j=1 Wi j.
4: ChooseγA andγI .
5: Computeα∗ with the SVM QP solver for soft margin loss.
6: Output functionf ∗(x) = ∑l+u

i=1 α∗
i K(xi,x).

4 Experiments

We performed experiments on two moons data set and
nine UCI data sets. Based on a survey of related
approaches, we chose to compare the proposed
LB-LapSVM strategy with SVM (using labeled data
only), TSVM, LapSVM. Other approaches lack
out-of-sample extension, use different base-classifiers or
paradigms, or are implementationally not preferable.

We use classification average error rate as the
evaluation measure. The results are reported over 20 runs
of each experiment, with different subsets of training and
testing data. To measure the inductive performance, we
randomly split the data set into two halves and call them
the training and test sets. For each data set, 25% data are
kept aside as test set to evaluate the performance of
learned hypothesis, while the remaining 75% data are
training set, which is partitioned into original labeled and
unlabeled set.

4.1 Two moons data set

The two moons data set contains 200 points belonging to
two non-linearly separable classes with only 1 labeled
example for each class. The RBF kernels are chosen for
each SVM based algorithms. In TSVM, the parameterN
which controls the number of positive points in unlabeled
set is set equal to that in labeled set. In LapSVM,
parametersγA and γI are fixed as 0.03125 and 1. The
value of local searching range in LB-LapSVM is fixed as
7. The best decision surfaces are shown in Fig. 3.

In Fig. 3, the solid rhombus and circle points
represent labeled samples in each class, hollow squares
are unlabeled samples and black lines represent the best
decision surfaces. Fig. 3 demonstrates how SVM and
TSVM fail to find the optimal solution. The LapSVM
decision boundary seems to be acceptable, but the
boundary is also helpless to those most complex areas.
The proposed LB-LapSVM approach can effectively
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Fig. 3: The best decision surfaces of two moons data set.

discover local intrinsic shape and cause the decision
surface to appropriately adjust according to the geometry
of the two classes. So the decision surface is intuitively
most satisfying.

4.2 UCI data sets

In this section, we evaluate SVM, TSVM, LapSVM with
the proposed algorithm on nine UCI data sets shown in
Table 1. Since these approaches are applicable for
two-class problems, we chose the two-class data sets from
UCI data sets. The multiclass data sets in UCI are
converted into two-class data sets by choosing the two
most populated classes. The data sets are further
processed by removing the samples with missing features,
if any, binary encoding the categorical features, if any,
and reducing the dimensionality using PCA to retain 95
percent of the variance.

Table 1: Experimental UCI data sets.

Data set Size Attribute Class Pos/Neg
house 232 16 2 46.6%/53.4%
heart 270 9 2 55.6%/44.4%
vehicle 435 26 2 49.9%/50.1%
wdbc 569 14 2 37.3%/62.7%
isolet 600 51 2 50.0%/50.0%
australian 690 14 2 55.5%/44.5%
breastw 699 9 2 65.5%/34.5%
diabetes 768 8 2 34.9%/65.1%
sat 3041 36 2 50.4%/49.6%

The RBF kernels are chosen for each SVM based
algorithms. As for these UCI data sets, we randomly
select 10, 50 and 100 examples to be used as labeled
examples, and use the remaining data as unlabeled data.
The experiments are repeated for 20 times and the
average error rates are recorded in tables2 to 4.

Tables 2 to 4 summarize the average classification
error rates of these algorithms under different numbers of

Table 2: Average error rate on UCI data sets with 10
labeled examples.

Data set
Average error rate

SVM TSVM LapSVM LB-LapSVM
house 0.123 0.112 0.114 0.106
heart 0.288 0.265 0.253 0.242
vehicle 0.257 0.212 0.241 0.227
wdbc 0.209 0.195 0.188 0.164
isolet 0.194 0.181 0.176 0.179
australian 0.332 0.316 0.311 0.301
breastw 0.043 0.041 0.041 0.038
diabetes 0.358 0.334 0.317 0.314
sat 0.024 0.022 0.018 0.019
ave. 0.203 0.186 0.184 0.177

Table 3: Average error rate on UCI data sets with 50
labeled examples.

Data set
Average error rate

SVM TSVM LapSVM LB-LapSVM
house 0.089 0.067 0.062 0.055
heart 0.252 0.246 0.241 0.228
vehicle 0.146 0.122 0.137 0.128
wdbc 0.135 0.129 0.126 0.121
isolet 0.097 0.094 0.088 0.082
australian 0.279 0.265 0.233 0.226
breastw 0.031 0.029 0.028 0.029
diabetes 0.328 0.314 0.305 0.299
sat 0.023 0.022 0.018 0.017
ave. 0.153 0.143 0.138 0.132

Table 4: Average error rate on UCI data sets with 100
labeled examples.

Data set
Average error rate

SVM TSVM LapSVM LB-LapSVM
house 0.068 0.047 0.032 0.041
heart 0.235 0.231 0.226 0.217
vehicle 0.045 0.041 0.038 0.034
wdbc 0.078 0.071 0.067 0.063
isolet 0.023 0.023 0.020 0.017
australian 0.241 0.227 0.204 0.209
breastw 0.031 0.028 0.028 0.026
diabetes 0.294 0.288 0.284 0.276
sat 0.021 0.018 0.016 0.016
ave. 0.115 0.108 0.102 0.100

labeled examples. The rowave. in each table shows the
average results over all the data sets. For each data set
row, the biggest improvement percentage has been
boldfaced. As can be seen from tables2 to 4, the
proposed LB-LapSVM algorithm achieves highly
competitive performance on most data sets under different
numbers of labeled examples.

Moreover, tables 2 to 4 also show that if the
algorithms are compared through counting the number of
winning data sets, i.e., the number of data sets on which
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one algorithm achieves the best improvement among
compared algorithms, LB-LapSVM is always the winner.
In detail, under 10 labeled examples, LB-LapSVM has 6
winning sets, while LapSVM and TSVM only have 2
winning sets and 1 wining set respectively; under 50
labeled examples, LB-LapSVM has 7 winning sets, while
LapSVM and TSVM only both have 1 winning set
respectively; under 100 labeled examples, LB-LapSVM
has 7 winning sets, while LapSVM only have 3 winning
sets and TSVM with no wining set. So when compared
with traditional methods, LB-LapSVM can more
effectively and stably exploits unlabeled data to enhance
the learning performance.

4.3 Sensitivity to parameter setting

For further studying the performance of the compared
semi-supervised learning algorithms, the averaged error
rates change of the compared algorithms along with the
parameter setting are depicted in Fig. 4. For diversity, two
moons data set and three representative UCI data sets
with 50 labeled examples are chosen. Regularization
parametersγA and γI are varied in steps in the range
[10−6,1], and local behavioral parameterK is tuned in the
range [3,5,7,9,11,13,15]. The results are done by
cross-validation.

Fig. 4(a) clearly shows that the performance of
Laplacian based method strongly depends on setting of
regularization parametersγA andγI . To obtain outstanding
results, it is important to search these parameters on the
right range. SinceγA controls the complexity off in the
associated Hilbert spaceHK and γI controls its
complexity in the intrinsic geometry of the marginal data
distribution, we limit the regularization range at[10−6,1]
based on empirical observations.

To perform fully validation with the sensitivity of
local behavioral parameterK, three representative UCI
data sets are chosen. Results are shown in Fig. 4(b). It is
observed that performance will be badly hurt if the value
of K is too high or too low. Fixing the value ofK at [7,11]
is recommended. The reason can be concluded that local
behavioral searching strategy in LapSVM can exactly
discover the inner geometric structure between labeled
and unlabeled examples. If the value ofK is set too low,
the local behavioral searching scope can not cover all the
affinitive examples and affinity matrix can not fully
represent the inner structure between affinitive examples.
Contrarily, if the value is fixed beyond normal scope,
affinity measuring may suffer interfere from false
distribution of adjacency graph and lead to descendent
trend of final classification precision.

5 Conclusion

We have proposed an algorithm for semi-supervised
learning using human behavioral learning framework to
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Fig. 4: Illustrative examples of parameter selection for
LB-LapSVM. (a) Sensitivity to regularization parameters
γA and γI in two moons data set. (b) Sensitivity to local
behavioral parameterK in UCI data sets.

solve the confusion of parameter selection in LapSVM.
This method brings together the ideas of human learning
theory, manifold learning, and kernel-based algorithms in
a coherent and natural way to incorporate geometric
structure in regularization framework.

A series of experiments has been carried out in order
to evaluate performance of the proposed method and
compare it with other traditional techniques. From these
experiments, it is to be noted that the LB-LapSVM
algorithm is effective and stable under different cases.

The main problem encountered is related to the
computational cost, since a huge matrix consisting of
labeled and unlabeled samples must be inverted. We feel
that smart sampling strategies to select the most
informative unlabeled samples could yield improve
performance, something to be considered in the future.
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