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Abstract: In this paper, we employ the extended tanh function method tofind the exact traveling wave solutions and solitary wave
solutions involving parameters of the Benjamin-Bona-Mahoney-Burgers equation with dual power-law nonlinearity. When these
parameters are taken to be special values, the solitary wavesolutions are derived from the exact traveling wave solutions. These studies
reveal that the Benjamin-Bona-Mahoney-Burgers Equation with Dual Power-law nonlinearity has a rich variety of solutions
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1 Introduction

It is well known that many models in mathematics and
physics are described by nonlinear partial differential
equations (NLPDEs). The theory of solitons has
contributed to understanding many experiments and
complex phenomena in mathematical physics. Thus, it is
of interest to evaluate new solitary wave solutions of these
equations. So that, during the past five decades, a lot of
method was discovered by a diverse group of scientists to
solve the nonlinear partial differential equations. for
example, the modified simple equation method [1,2,3,4],
(

G
′

G

)

-expansion method [5,6,7], modified
(

G
′

G

)

-expansion method [8,9], extended Jacobi elliptic

function method [10,11], exp −ϕ(ξ )-expansion method
[12,13,14], extended exp−ϕ(ξ )-expansion method [15],
Riccati-Bernoulli Sub-ODE method [16,17], the extended
tanh- fuction method [18,19,20,21,22] and so on.
In this paper, we shall use the extended tanh function
method to find the exact and solitary wave solutions of
Benjamin-Bona-Mahoney-Burgers equation with dual
power-law nonlinearity [23]. This equation is an

alternative to the Korteweg-de Vries (KdV) equation, and
describes the unidi-rectional propagation of
small-amplitude long waves on the surface of the water in
a channel. The BBM equation is not only convenient for
shallow water waves but also for hydromagnetic waves,
acoustic waves, and therefore it has more advantages
compared with the KdV equation. The main idea of this
method is finding the exact solutions of any models which
can be expressed by a polynomial ofφ(ξ ) which satisfies
the nonlinear ordinary differential equations
φ ′

= b+ φ2(ξ ) whereξ = x− ct while a,c are arbitrary
constants to be determined later. The degree of the
polynomial can be calculated by the homogenous balance
between the highest order derivatives and the nonlinear
terms. Equating the coefficients of the same power of
φ(ξ ) we get the system of algebraic equation. The
constants of the polynomial can be determined by solving
the system of algebraic equation by any computer
program.
The rest of this paper is arranged as follows: Description
of the method ( the extended tanh function method ) in
Section2. We use this method to find the exact solutions
of the nonlinear evolution equations pointed out above
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and also we make the comparison between our results and
another result that obtained by three different method in
Section3. Conclusions are given in Section4.

2 Basic steps of the modified extended
tanh-function method

Consider the following nonlinear evolution equation

F(u,ut ,ux,utt ,uxx, ....) = 0, (1)

where F is a polynomial inu(x, t) and its partial derivatives
in which the highest order derivatives and nonlinear terms
are involved. In the following,we give the main steps of
this method :
Step 1.We use the wave transformation

u(x, t) = u(ξ ), ξ = x− ct, (2)

where c is a constant, to reduce Eq.(1) to the following
ODE:

P(u,u′,u′′,u′′′, .....) = 0, (3)

where P is a polynomial inu(ξ ) and its total

derivatives,while
{

′ = d
dξ

′}
.

Step 2.Suppose the solution of Eq.(3) has the form:

u(ξ ) = a0+
N

∑
i=1

(

ai φ i + bi φ−i)
, (4)

whereai, bi are constants to be determined, such thataN 6=
0 or bN 6= 0 andφ satisfies the Riccati equation

φ
′
= b+φ2

, (5)

Step 3. Determine the positive integerN in Eq.(4) by
balancing the highest order derivatives and the nonlinear
terms.
Step 4. Substitute Eq.(4) along Eq.(5) into Eq.(3) and
collecting all the terms of the same powerφ i,
i = N,N −1, ...,1−N,−N and equating them to zero, we
obtain a system of algebraic equations, which can be
solved by Maple or Mathematica to get the values ofai
andbi.
Step 5. Substituting these values and the solutions of
Eq.(5) into Eq.(4) we obtain the exact solutions of Eq.(1).

3 The Benjamin-Bona-Mahoney-Burgers
Equation with Dual Power-Law Nonlinearity

Consider the Benjamin-Bona-Mahoney-Burgers equation
with dual power-law nonlinearity [23]

ut + aux+
(

b2u2n + b3u
)

ux + cuxx + kuxxt = 0, (6)

Wherea represents the strength of a defection or drifting,
b2,b3 measure the strength of the two nonlinear terms

with the exponentn being the power law nonlinearity
parameter while the parametersc,k are the dissipative
diffraction coefficient. When(n = 1), Eq. (6) can be
written as the following:

ut + aux+
(

b2u2+ b3u
)

ux + cuxx + kuxxt = 0, (7)

using the transformation u(ξ ) = u(x, t) where
(ξ = x− ct), we get

(a− c1)u′+
(

b2u2+ b3u
)

u′+ cu′′− kc1u′′′ = 0. (8)

Balancing u2u′ and u′′′ we obtain
(2M+M+1= M+3)⇒ (M = 1), so that the solution of
Eq. (8) can be written in the form:

u(ξ ) = a0+ a1φ +
b1

φ
. (9)

Substituting Eq. (9) and its derivatives into Eq. (8) and
collecting all term with the same power of

(

φ i
)

where
(i = 4,3,2,1,0,−1,−2,−3,−4) and equating them to
zero, we obtain the system of algebraic equations.
Solving this system of equation, we obtain:
Case 1.

a =
16bkb2

2b4
3−12b4c2k+3b2kb4

3+2b2
2b4

3

12kb2b2b2
3

,

a0 =
−b2

3+2bc

2b3b2
,a1 =

−b3

b
,b1 =−ba1,c1 =

b2b2
3

6kb2 .

So that, the exact traveling wave solutions of Eq. (8) will
be in the form

u(ξ ) =
−b2

3+2bc
2b3b2

− b3

b
φ − ba1

φ
. (10)

The solitary wave solutions will be in the form:
When(b < 0),we get:

u(ξ ) = −b2
3+2bc

2b3b2
+ b3

√
−b

b tanh(
√
−bξ ) (11)

−a1
√
−bcoth(

√
−bξ ), (12)

or

u(ξ ) = −b2
3+2bc

2b3b2
+ b3

√
−b

b coth(
√
−bξ ) (13)

−a1
√
−btanh(

√
−bξ ). (14)

When(b > 0),we get:

u(ξ ) =
−b2

3+2bc
2b3b2

− b3
√

b
b

tan(
√

bξ )− a1

√
bcot(

√
bξ ),
(15)

or

u(ξ )=
−b2

3+2bc

2b3b2
− b3

√
b

b
cot(

√
bξ )−a1

√
−btan(

√
bξ ),
(16)

When(b = 0),we get:
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The trivial solution.

Case 2.

a =
4bkb2

2b4
3−12b4c2k+3b2kb4

3+2b2
2b4

3

12kb2b2b2
3

,

a0 =
−b2

3+2bc
2b3b2

,a1 = 0,b1 =±

√

6ckb2

b2
,c1 =

b2b2
3

6kb2 .

So that, the exact traveling wave solutions of Eq. (8) will
be in the form

u(ξ ) =
−b2

3+2bc
2b3b2

±

√

6ckb2

b2

1
φ
. (17)

The solitary wave solutions will be in the form:
When(b < 0),we get:

u(ξ ) =
−b2

3+2bc
2b3b2

∓
√

−6ckb
b2

coth(
√
−bξ ), (18)

or

u(ξ ) =
−b2

3+2bc

2b3b2
∓
√

−6ckb
b2

tanh(
√
−bξ ). (19)

When(b > 0),we get:

u(ξ ) =
−b2

3+2bc

2b3b2
±
√

6ckb
b2

cot(
√

bξ ), (20)

or

u(ξ ) =
−b2

3+2bc

2b3b2
±
√

6ckb
b2

tan(
√

bξ ). (21)

When(b = 0),we get:

u(ξ ) =
−b2

3

2b3b2
. (22)

Case 3.

a =
2c2b2(2bk+1)

3kb2
3

,a0 = a1 = 0,

b1 =±b

√

6c1k
b2

,c1 =
2c2b2

3kb2
3

.

So that, the exact traveling wave solutions of Eq. (8) will
be in the form

u(ξ ) =±b

√

6c1k
b2

1
φ
. (23)

The solitary wave solutions will be in the form:
When(b < 0),we get:

u(ξ ) =∓
√

−6c1kb
b2

coth(
√
−bξ ), (24)

or

u(ξ ) =∓
√

−6c1kb
b2

tanh(
√
−bξ ). (25)

When(b > 0),we get:

u(ξ ) =±
√

−6c1kb
b2

cot(
√

bξ ), (26)

or

u(ξ ) = u(ξ ) =±
√

−6c1kb
b2

tan(
√

bξ ). (27)

When(b = 0),we get:
The trivial solution.

Remark:
All the obtained results have been checked with Maple 16
by putting them back into the original equation and found
correct.

Comparison:

In this research, a good numerous comparison between
our results and that obtained by another researchers in
[23]. they used a several methods to obtain exact and
solitary wave solutions for the
Benjamin-Bona-Mahoney-Burgers equation with dual
power-law nonlinearity.
We obtain from our comparison:
Solutions in case 1.
Eq.(11) is similar to Eq. (31) in [23] when
(

∆ =
c(−b2

3+2bc)
a1b2b3

,b = −∆ 2

16 ,a1 =
−b3

b ,λ = c
)

. While

Eqs.(13), (15), (16) are new form of solution for Eq.(8).
Solutions in case 2.
Eqs.(18), (19) is similar to Eqs. (27), (28) in [23] when
(

∆ = 2
√
−b,a2

1 =
6c3k
b2

,c = 2b3b2
√
−b

−b2
3+2bc

)

. While Eqs.(20),

(21), (22) are new form of solution for Eq.(8).
Solutions in case 3.
Eqs.(24), (25) is similar to Eqs. (48), (49) in [23] when
(

n = 1,b = −v2

2 ,c1 =
2(a−vc)

v2(1+kv2)
,ξ0 = 0

)

. While Eqs.(26),

(27) are new form of solution for Eq.(8).

4 Conclusion

The extended tanh function method has been applied in
this paper to find the exact traveling wave solutions and
then the solitary wave solutions the
Benjamin-Bona-Mahoney-Burgers equation with dual
power-law nonlinearity. Let us compare our results
obtained in the present article with the well-known results
obtained by other authors using different methods as
follows: Our results the
Benjamin-Bona-Mahoney-Burgers equation with dual
power-law nonlinearity are new and different from those
obtained in [23]. The obtained exact solutions can be used
as benchmarks against the numerical simulations in
theoretical physics and fluid mechanics.
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