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Abstract: Effective modelling of extreme financial losses is a key investment strategy required by investors for successful assessment
of risk in any financial market. This study compares the modelling capabilities of two extreme value theory (EVT) models via the
conditional extreme value’s (CEV’s) GPD (generalized Pareto distribution) and point process for risk management and risk
forecasting in the BRICS (Brazil, Russia, India, China and South Africa) equity markets. Prior to the application of the two EVT
models, heteroscedasticity in the BRICS returns was filtered out using the generalized autoregressive conditional heteroscedasticity
(GARCH) model. The findings reveal that under the GPD model, the risks in the five BRICS equity markets can all be modelled by
the Gumbel class of distributions. Under the point process approach however, the risk in the Russian equity market can be modelled by
the Fréchet-Pareto class of distributions, while the risks in the Brazilian, Indian, Chinese and South African equity markets can be
modelled by the Weibul class of distributions. Furthermore, in terms of risk levels, the findings show that the Russian IMOEX market
is the most risk-prone, while the least risky is the Indian NIFTY market, with the remaining three markets in between them. That is,
the Russian IMOEX market has the highest level of risk, followed by the South African JALSH market, then the Chinese SHCOMP,
Brazilian IBOV and Indian NIFTY markets, respectively.

Keywords: Conditional extreme value model, Equity markets, Equity risk, GARCH model, Point process approach, Return levels,
Risk management

1 Introduction

After series of global financial crises to date, empirical researchers are coming up with continuous modelling of extreme
events associated with risk in the financial field. More especially, investors and traders are deeply concerned with daily
activities and any unusual or rare movement in the markets where investment and trading occur. The word BRICS is a bloc
of five leading emerging regional economies of Brazil, Russia, India, China and South Africa. The BRICS are developing
nations with high potentials and comparative good economic performance regionally and globally [1]. In particular, the
four BRIC (Brazil, Russia, India, and China) markets are considered the largest and fastest growing economies among
the global emerging markets and are also reputed in the literature as the global economic growth’s engines [2]. With track
of time and globalization, emerging financial markets get bigger and are becoming more developed, hence investors are
showing more interest and better attractions to them [3].

Risks are adverse market movements that are of major concern to investors and risk managers. The practice of
advanced detection of risks, analysing them and taking preventive measures to alleviate the risks is known as risk
management. Financial risks are posed by rare or extreme events existence at the tails of the returns’ distributions and the
behaviour of an investment portfolio during a financial crisis is an important element of risk management. The study of
risk in the tails of equity returns is a crucial area in stock markets research because the general view about investing is
that the future could either yield good profits or worrisome losses as an aftermath of investment. Rare events may
materialize as large negative or positive investment returns, major defaults, the collapse of risky asset prices, or a stock
market crash.

Because of the rising need for financial risk management and the series of global financial crisis, forecasting of risk
has become a critical issue for stakeholders in basically all finance markets across the globe. The traditional approach used
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for modelling risk was through the use of the value-at-risk (VaR) and expected shortfall (ES) methods, whose concepts
are based on the normal distribution assumption. Furthermore, this traditional VaR’s estimates are based upon the concept
of homoscedasticity, which assumes that the standard deviation of returns does not change over time. Because of this,
Engle [4] claims that a much better estimates can be obtained from models that are explicitly based on the concept of
heteroscedasticity, which allows the standard deviation to change over time [5].

As opposed to the “normal” concept, financial returns are known to exhibit fat tails and normal distribution cannot
effectively model such return’s behaviour. Fat tails in the financial returns indicates that extreme outcomes take place
much more frequently than what the normal distribution assumption can predict [6]. The deficiency of the VaR and ES
models, due to their normal assumption, can be modified using an extreme value theory (EVT) based method of VaR
approach [7]. Modelling of risk using model frameworks with a normal distribution assumption are known to understate
the result originating from data like the financial returns with fat tails [5],[8], [9].

It has been argued by several authors like de Jesus et al. [10], Santos et al. [11], and McAleer et al. [12] that extreme
events contained in the tail distribution of losses can be taken into account explicitly by extreme value theory [13]. As an
advantage over classical approaches, the EVT is a parametric method which allows for extrapolation of the tail behaviour
to extreme levels. Furthermore, the EVT method does not use the whole dataset but limits it modelling approach to the
tail behaviour of a loss distribution using only extreme values [13].

Karmakar and Paul [6] used the two-stage GARCH-EVT approach of McNeil and Frey [14] to model the tails of
(return) distributions and compute intraday VaR and ES measures for 16 stock markets across North America, Africa,
Asia, Europe, Latin America and Australia. The authors [6] compared the efficacy of the conditional EVT method with
other competing models and observed that EVT outperformed the others. McNeil and Frey used the GARCH model to
filter the return series to get a nearly i.i.d. (independent and identically distributed) residuals (in the first stage), and they
fitted EVT model on the standardized residuals in the second stage [6].

Several other authors have used GARCH-EVT joint approach with other models on various data sets and have
observed that the GARCH-EVT method performed better than the competing models (for VaR estimation) when
compared. GARCH-EVT model was used by Marimoutou et al. [15], Ghorbel and Trabelsi [16], Cotter [17] etc. to
measure VaR in various markets and they observed that the EVT did better than other well-known modeling techniques
in forecasting of VaR’s estimates [6]. Bali and Neftci [18] applied the duo of a Student’s ¢ distributed GARCH model and
the GARCH-EVT model to U.S. short-term interest rates and the authors discovered that more accurate estimates of VaR
were yielded by the GARCH-EVT model than did the Student’s ¢ distributed GARCH model. Karmakar and Shukla [19]
also compared the accurateness of GARCH-EVT method for calculating VaR with other rival models using data from 6
global emerging and developed equity markets. Their findings showed that GARCH-EVT method performed best in the
estimation of VaR.

In another study, the point process approach of extreme value models was used by Smith [20] to model the daily returns
for General Electric, Pfizer and Citibank from 1982 to 2001. Volatility was first filtered from the data using GARCH(1,
1) model, after which the returns were modelled to analyse the VaR (value at risk). The researcher resolved that in
order to obtain a satisfactory extreme value modelling outcome, it is better to remove heteroscedasticity and short-range
serial correlation from the return before applying extreme value theory (EVT) models. Many EVT and GARCH based
models were estimated by Ergun and Jun [21] to predict intraday VaR for the returns of S & P 500 equity index futures.
The researchers’ findings showed that the EVT-GARCH based models which take into account conditional kurtosis and
skewness provide accurate forecast of VaR. Chavez-Demoulin and McGill [22] used EVT-Hawkes process to measure
high frequency intraday VaR. The authors observed that a suitable estimate of high quantile risk measures for the U.S.
market’s financial time series was provided by the process.

This study applies the GARCH-EVT approach to model financial risk in the BRICS stock markets. The GARCH
model will be used to filter out heteroscedasticity in the returns, while the univariate EVT via the conditional extreme
value (CEV) model and the point process approach will be used to model the risk in each of the markets. To the best of
the authors’ knowledge, no study has been done on modelling the BRICS equity markets’ risk and even more so, none
has been done using the application of these two proposed EVT models.

In statistics and econometrics, probabilities of left tail are closely associated with the likelihoods of extreme downward
movements in the market [23]. Even though both the “gains (i.e. positive or right tails)” and “losses (i.e. left or negative
tails)” of equity return distributions are of invaluable modelling interest from a risk management point of view, much more
studies on extreme equity returns have focused on losses when compared to gains, and large booms are usually considered
less important than large crashes [6]. This study focuses on modelling the losses or negative tails of the distribution of the
BRICS equity markets. This is because the left tail is of more interest from a risk management viewpoint [24], and a more
practical risk measure should be related to large adverse movements, or large losses in the market [25]. For the rest of the
paper, Section 2 discusses the models applied, Section 3 presents the empirical analyses and findings, and Section 4 gives
the conclusions.
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2 Models

To ensure a comprehensive understanding of the statistical theories of EVT models, this study begins with the description
of the two fundamental approaches involving the traditional block maxima method (BMM) and the peaks-over-threshold
(POT) method. The peaks-over-threshold (POT) method is tailored down to the conditional extreme value (CEV) model
and the point process approach since both methods are based on the choice of a reasonably high quantile threshold.

2.1 Block maxima method

With block maxima model, extreme losses are divided into identical blocks where maximum loss in each block is the
largest observation. This procedure is termed “block maxima” with each local block containing maximum loss. Thus,
the extreme losses can be characterized by the local block maxima which are the data to be fitted or modelled using this
method. The generalized extreme value distribution (GEVD) as stated in equation (1) is the asymptotic approximation of
the block maxima observations [26,27].

G (x) = exp [— <1+5’CT>+ ] (1)
for {x|1+¢& (=£) > 0},

where &, pt and 6 > 0 denote the tail shape parameter, the location parameter representing the center of the distribution,
and scale parameter (i.e. the size of the deviations about (1) respectively.

In risk management analysis, the distribution of the block maxima has a light tail with finite upper bound for the
Weibull distribution, an exponential tail (that is unbounded) for the Gumbel distribution and a heavy tail that includes
polynomial decay with no upper limit for the Fréchet distribution [28]. As a limitation, the block maxima method can
miss out some of the required high realizations and retains some lower (central) ones [29]. For this reason, preference is
usually given to the peaks over threshold (POT) method because it uses all necessary high realizations, which makes it
more reliable.

wr|—

2.2 Peaks over threshold approach

This approach can be described by defining an extreme event as a value that exceeds a high enough threshold and uses
only excess observations (i.e. peaks or exceedances) above the threshold for statistical inference. Every point over the
chosen threshold is considered an extreme observation set aside for risk modelling. This method is demonstrated under
two categories of threshold selection models: the conditional extreme value (CEV) and point process (PP). The limiting
distribution of the first model is the generalized Pareto distribution (GPD) while the second model can be approximated
by a non-homogeneous Poisson distribution.

Semi-parametric models and fully parametric models are the two analytical frameworks that use POT class of models.
The former is built around the Hill estimator and other related estimators [30], while the latter is based on the GPD or
generalized Pareto distribution [31]. When applied correctly, both methods are equally relevant but this study will prefer
the use of the fully parametric style because it is easier to estimate using the maximum likelihood approach (see Coles
[29] for details).

2.3 The conditional univariate extreme value model

The univariate version of the conditional extreme value (CEV) model fits the GPD to marginal variables [32]. Hence, the
GPD will be fitted to exceedances above a selected threshold for each of the BRICS markets [29].

2.4 Threshold-excess model

Given that the family of a class of approximating distribution to the tail of an arbitrary distribution function F of a random
variable X is

G(x):]—n[l—i—é(x;u)]é, x>u, )

u
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where € # 0, n =Pr(X > u), and o > 0 for a family defined on {x —u :x—u >0 and (1 +&(x—u)/0,) > 0}. This
indicates that for a sufficiently large threshold, and on the condition that an individual observation exceeds the threshold
u (i.e. x > u), F(x) ~ G(x) with parameters 1, &, and & [29].

2.5 Threshold selection

In order to select a sufficiently high threshold for the univariate risk modelling, cautious trade off between bias and
variance must be ensued. This is necessary to avoid having too high threshold with few realizations with which to make
inferences [33], and which can also result in increase of the variance of the parameter estimate because of the reduced
sample [34], or too low threshold to avoid bias where non-extreme or central observations are selected in place of extreme
ones. In practice, the threshold is required to be suitably high to ensure a reliable asymptotic GPD approximation, hence
reducing the bias [35]. This study applied two threshold selection approaches via the “extreme value mixture models”
(see [34], [35]) and “threshold stability plot” (see [34], [36]).

2.6 Point process

Like the GPD approximation to excesses above high thresholds, the point process can equally be used to describe
exceedances over a sufficiently high threshold. A region is described above the selected threshold such that points in the
region signify the extreme events or risk for modelling. The point process approach incorporates other EVT models
including the r largest order statistics, the block maxima and the threshold excess models. The development of these
EVT models is a result of the representation of the point process, which forms a good reason for considering the
approach [29].

The technique of a point process on a set K is a stochastic approach for the existence and position of events represented
as points that are randomly distributed in space. This process can be used to describe the behaviour of extreme events
concentration at the tails of the markets, where K denotes a time period. For each of the selected markets (random
variables), a set of non-negative integer values N(K) can be defined such that K C K. N(K) is the number of points
(events) in each set K and it signifies the number of events, like stock market crashes, that can occur within a specified
period of time.

Furthermore, let the intensity measure of the process be defined as

P(K) = E{N(K)}. 3)

This is the average number of events or points in any given subset K C K. Also, the derivative function of the intensity
measure, with the assumption that K = [ky,x;] x ... X [kp,x,] C R, defines the intensity function of the process as

dP(K
= 4 4)
dxi ---dx,
The point process models can be applied statistically by estimating the process using a set of observed events (points)
X1, ..., Xy in an interval or a specified region K. Traditionally, the one-dimensional homogeneous Poisson process is the
canonical point process and it is a process on K C R with a A > 0 parameter [29] where it satisfies the following:
1. N(K) ~Poi(A(hy —h;)) VK = [h1,h2] C K. Here, the number of events in a specified interval N(K) follows a Poisson
distribution whose mean A is proportional to the length of the interval (hy — hy).
2. The number of point events, say N(K;) and N(K3) taking place in different intervals (K| and K3) are mutually
independent.

A(x)

This homogeneous Poisson process of parameter A is canonically a model for points occurring randomly in time at a
uniform of A per unit interval of time. The intensity measure and intensity function of this are ®([hy,hy]) = A(hy — hy)
and A (h) = A respectively.

The homogeneous Poisson process can be extended to the non-homogeneous Poisson process if the uniform time rate
is varied for points that occur randomly in time [29]. This non-homogeneous process also possesses the same independent
counts properties but with the adjusted property that for all K = [h, ;] C K, the number of points in the interval K follows
a Poisson distribution with intensity measure (®(K)), i.e. N(K) ~ Poi(®(K)),

where

®(K) = /h :12 A(h)dh.

The Poisson process has a fundamental property such that the events (points) happen independently of one another.
The existence of a point at x € K location does not influence the existence of other points in a region of x, or elsewhere
[29].

@© 2022 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 11, No. 1, 215-239 (2022) / www.naturalspublishing.com/Journals.asp NS e 219

2.6.1 The univariate case

The concept of convergence of random variables is required in order to apply point processes representation for extreme
values modelling. Assume a series of independent and identically distributed (i.i.d.) random variables with a common
distribution function F is represented by X1,X>,...,X,, where M, = max{Xy,...,X,}. The distribution of the normalized
maxima, with sequences of constants {b, } and {a, > 0} can be reasonably approximated by a generalized extreme value
(GEV) distribution as

Pr{(M, — by)/a, < c} — G(c)

G(c)zexp{—{l—ké(c;u)]é}, S

for ¢4 and c_ signifying the upper and lower endpoints of G in that order, and &, y and ¢ (for ¢ > 0) are the shape,
location and scale parameters respectively. Following this, a sequence of point processes (N, ) is defined as

with

No = {(i/(n+1),(X;— by)/an)} for i=1,....n. 6)

The first ordinate ensures that the time axis consistently maps to (0,1) while the second ordinate is scaled to sustain
stability in the behaviour pattern of extremes as n — o [29].
Now for a sufficiently large value of the threshold u, consider a region of the form K = [0, 1] x [u, o] where the point

e . . d
processes sequence N, converge in distribution to a non-homogeneous Poisson process N for any u > c_, i.e. N, = N

as n — oo, This limit occurs since the random variables X; are mutually independent and each of the points in M, has p
probability (in equation 7) of falling in the K region, hence N, (K ) follows a binomial distribution, i.e. N,(K) ~ Bin(n, p).

1

p=1>r{(’(";7n”")>u}z%[1+§(”;“)r. )

By the standard approximation of a binomial distribution to a Poisson limit, as n — oo, the limiting distribution of
N, (K) for any region of the type K = [h,hs] X (u,e0), where [hy,h] C [0,1] is the Poisson distribution having intensity
measure @ (K) i.e. Poi(P(K)) with

B(K) = ns( — ho) [1 e (”;“)]% , ®)

where the intensity measure is the average number of points that occur in any given subset K C K, ny denotes the
number of years of observation, and o, U, and £ are the scale, location and shape parameters respectively. Hence, the
Poisson process is a realistic approximation of the point processes for large but finite sample behaviour on the specified
region where the threshold is sufficiently large [29].

2.7 Formal hypothesis tests for a selected domain of attraction

Any selected domain of attraction, i.e., the Weibull, Gumbel or Fréchet model, for the estimated shape parameter under
the GEVD can be tested using formal hypothesis testing procedures such as the likelihood-based methods. The test is
necessary especially for practical use because the choice of a wrong model can be terrible (in practice) since it will lead to
the choice of erroneous parameters for design. The three models have very different physical meanings due to their tails
description. Hence, the need for proper identification of one of the three subfamilies models is very important practically
as it is theoretically [37].

2.8 The likelihood-based methods

Based on a given set of data x = {x1,...,x, } with sample size n, these methods will be used to test the hypothesis:

H, : & =0 (Gumbel)
H, : & # 0 (Fréchet or Weibull).
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Given a parameter vector £(x; 1) for the log-likelihood with a function ¥ = (i, 0,&), where the three parameters
represent the location, scale and shape respectively. Let the maximum likelihood estimates of ¥ under H, and H; be By =

(flo, 69,0) and Oy = ({11, 61, & ) respectively. These likelihood-based methods can be described under the asymptotically
equivalent test of the “likelihood ratio test” [37].

2.9 The likelihood ratio test

The likelihood ratio (LR) test as stated in equation (9) compares £(x; ¥) with £(x; 9 ). That is, it compares the evaluation
of the likelihood at ¥ with the evaluation of the likelihood at .

LR =2{0(x;B;) — £(x; D)}, )

where LR is a y? with 1 degree of freedom under the null hypothesis H..
For a better accuracy to the approximation of asymptotic distribution of the likelihood ratio test LR, a modification
suggested by Hosking [38] is given as

LR, = <1 - ﬁ) LR, (10)
w

where w is the sample values i.e. the number of exceedances or cluster-maxima above the threshold u. A decision for
the rejection of H, can be made at a level of significance o if

LR.. > xi(1—a). (11)

The critical values x7(1 — &) is the (1 — ¢) quantile of the 2 distribution with 1 degree of freedom [37].

3 Results and discussions

3.1 Data description

The raw price data used for this study include the daily closing equity indices of the Brazilian, Russian, Indian, Chinese
and South African stock markets. The data were obtained from Thomson Reuters Datastream and are for the period 5
January 2010 to 6/ August 2018 with 2126 observations. The Brazilian market index is called the “Bovespa index”,
abbreviated - IBOV; the Russian market index is called the “Moscow Exchange index”, abbreviated - IMOEX; the Indian
market index is called the “NIFTY 50 index”, abbreviated - NIFTY; the Chinese market index is called the “Shanghai
Stock Exchange Composite”, abbreviated - SHCOMP; and lastly, the South African market index is called the “JSE
Africa All Share index”, abbreviated - JALSH.

3.2 Missing values

It was observed for the period under study that seven daily closing indices values were missing in the markets. These were
adjusted using simple imputation methods in “mice” package developed by Buuren and Groothuis-Oudshoorn [39] in R
application software. The cleaned data were averaged in the affected markets to produce average daily closing values.

3.3 Volatility filtration

Before applying the univariate EVT models of the CEV (via GPD fit) and point process for modelling the risk, volatility
needs to be filtered out since it is known that the removal of short-range linear dependence and ARCH effects or
heteroscedasticity from the financial returns makes the EVT modelling more satisfactory [20]. Several candidate
ARMA(p,q)-GARCH(k,v) models were run to obtain a combined model that can best remove linear dependency and
heteroscedasticity in the return series. From the candidate models, ARMA(1, 1) and GARCH(1, 1) are jointly and
parsimoniously selected as the most adequate for the Brazilian, Russian, Indian, Chinese and South African equity
markets.
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Table 1: ARCH LM test.

Brazil Russia India China S/Africa
(Bovespa) | (IMOEX) | (NIFTY) | (SHCOMP) | (JALSH)
ARCH LM test (5) 74.69051 146.3231 | 136.7945 275.4920 126.4324
p-value (5) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
With GARCH(1, 1):
ARCH LM test (5) 0.3741 0.1038 0.4484 1.4610 0.9945
p-value (5) (0.9200) (0.9861) (0.8987) (0.6026) (0.7346)

ARCH LM test (5) denotes ARCH effects up to the 5" order with p-values in brackets at 5% level of significance.

The fitting of this joint ARMA(1, 1)-GARCH(1, 1) model is carried out under seven error distributions of a normal,
skewed-normal, Student’s 7, skewed-Student’s ¢, generalized error distribution (GED), skewed-GED and the generalized
hyperbolic distribution (GHYP). ARCH LM test is used to test for the presence of ARCH effects before and after fitting
the GARCH(1, 1) model on the residuals of the return series. As for the outcomes, similar results were obtained for the fit
under all the seven error distributions. However, due to space constraint, only the results under the Student’s ¢ are shown
as displayed in Table 1. From the table, before fitting GARCH(1, 1) model, the p-values under each of the five markets are
highly significant at 1%, indicating the presence of ARCH effects, but after fitting GARCH(1, 1) model on the residuals,
the ARCH effects were filtered out as shown by the outcomes of the p-values that are all greater than 0.05.

3.4 Risk modelling

The risk in each of the five BRICS equity markets is modelled using the univariate versions of the two models: the CEV
and point process.

3.5 The conditional univariate extreme value (CUEV) model

This is the univariate version of the CEV model that fits the GPD to marginal variables. Hence, the GPD will be fitted to
each of the BRICS return’s residuals to obtain the magnitude of the risks in the markets. For consistency and
comparison, the same steps are followed in the modelling and analysis of risk in each of the markets. These steps

include: threshold selection and diagnostics, sensitivity analysis for a suitable threshold choice, declustering of threshold
exceedances, parameters’ estimation and diagnostics, return levels analysis and diagnostics.

3.6 Large positive and negative residual observations

From the GARCH regression equation of the financial return r; stated as

Iy :u+8[ (12)
The residual & becomes,
& = 1t — M, 13)
gt = r,*f’,, (14)

where r; and 7; are the return observations (observed values) and the predicted or estimated values respectively. If

& > 0, then r; > 7y, otherwise it is, (15)
8[<0:>rl<;'\'l. (16)
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(a) Plot of positive residuals (b) Density of positive residuals
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Fig. 1: IBOV: Positive residuals.

Equation (15) implies that when the observed return value r; is greater than the estimated or predicted value 7, the
residual is positive & > 0 and that amounts to under-prediction, which corresponds to financial losses. Otherwise, it is
over-prediction with a negative residual & < 0 and it relates to gains (equation 16). That is, large or extreme positive
and negative residuals relate to losses and gains respectively [14]. This study is primarily interested in modelling the
unexplained large positive residuals which reflect extreme financial losses in the BRICS return series.

3.7 Positive residual observations

The modelling of the risk in each of the markets is restricted to the positive residuals of the entire equity observations.
From the original equity data with 2126 number of observations, there are 1058, 1034, 1073, 1113 and 1095 positive
residual observations in the Brazilian IBOV, Russian IMOEX, Indian NIFTY, Chinese SHCOMP and South African
JALSH markets respectively. Figure 1, panels (a) and (b), shows the visual of the positive residual observations and their
corresponding density for the Brazilian IBOV market. The visual plots of the other four markets are not displayed because
of space.

3.8 Threshold selection

Two threshold selection models are used in the BRICS markets for the selection of an appropriate threshold. The first
model is the “extreme value mixture models” and the second is the “shape threshold stability plot”. The latter model is
used to verify the outcome of the former model.

The extreme value mixture models can be implemented under the parametric, semi-parametric and non-parametric
approaches. This study used the non-parametric approach over the other two approaches because it provides the best tail
estimator if the population distribution (of the market’s return) is unknown [34], and furthermore, it is more robust to bulk
model than the parametric technique [40]. In the non-parametric mixture model, we have the bulk model where a kernel
density is fitted and a GPD is fitted to the tail. The resulting mixture model is then called the Kernel-GPD (KenGPD)
model. That is, the bulk model under the threshold is the standard kernel density estimator and the tail model is a GPD
above the threshold. The threshold can be estimated using either the bulk model based or the parameterized tail fraction
approach.

Following the threshold selection steps of Hu and Scarrott [34], this study combined the plots of the bulk model based
tail fraction and the parameterized tail fraction approaches on the same diagram and used their diagnostic plots to assess
which of the two gives a better threshold’s parameter estimate (see Figure 2 for the Brazilian IBOV market). The figure
shows the output of the bulk model based tail fraction (blue solid line), where the threshold value u = 2.1731. For the
parameterized tail fraction (red solid line) approach, u = 2.1725 is obtained. These threshold values are approximately
the same, hence they overlapped, where the red colour of the density and threshold line of the parameterized tail fraction
almost completely overshadows the blue colour of that of the bulk model based tail fraction.
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Histogram of positive residuals
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For the Russian IMOEX market, the combined plots of the bulk model based (blue solid line) and the parameterized
tail fraction (red solid line) approaches are displayed in Figure 12 in the Appendix. The figure shows the output of the bulk
model based tail fraction with threshold u = 2.6890, and that of the parameterized tail fraction approach at u = 3.0847.
Because of space, only the threshold outcomes of the three remaining markets (i.e., NIFTY, SHCOMP and JALSH) are
presented, their plots are not displayed. For the Indian NIFTY market, threshold values u = 1.9694 and u = 1.9689 are
obtained for the bulk model based and the parameterized tail fraction approaches respectively. For the Chinese SHCOMP
market, a threshold value u = 2.2112 is obtained for the parameterized tail fraction approach, and u = 1.8178 for the
bulk model based tail fraction. Lastly for the South African JALSH market, on the combined plots, the parameterized tail
fraction approach produced a threshold value u = 2.2112, and the bulk model based tail fraction gave u = 1.8178.

3.9 Diagnostic plots of the bulk and parameterized approaches

For the Brazilian IBOV market (in Figures 3 and 4) and the Indian NIFTY market (not displayed), there is no obvious
difference between the diagnostic plots of the two tail fraction approaches since the threshold values are roughly the same.
But, from a closer scrutiny, the diagnostic plots of the fitted parameterized tail fraction show a slightly higher levels of
accuracy in linearity of the data points when compared to that of the bulk model based. The data points are more closely
aligned on the straight lines of the “return level”, “quantiles”, and “probability” plots than they are observed in the bulk
model based approach for the Brazilian market, and closer alignment of the data points on the straight lines especially on
the probability plot of the Indian market. This therefore gives the parameterized tail fraction a bit of an edge over the bulk
model based for the threshold selection in these markets.

For the Russian IMOEX market (in Figures 13 and 14), and the Chinese SHCOMP market (not displayed), the various
diagnostic plots for assessing the goodness of each of the tail fraction approaches are shown. There is an improvement
in the plots of the parameterized tail fraction when compared to that of the bulk model based. The data points are more
closely aligned on the diagonal lines of the return level, quantiles and probability plots than they are in the bulk model
based approach. Also for the South African JALSH market (not displayed), despite the seeming similarities in the plots
of the parameterized and bulk tail fractions, density estimate seems more consistent with the histogram of the data for the
diagnostic plot of the parameterized tail fraction than it is for the bulk model based.

The parameterized tail fraction approach makes provision for an extra degree of freedom that is used to re-scale
both the bulk and tail components [34]. This enhances and improves the tail fit, since the tail fraction is estimated from
the sample fraction of exceedances. Hence, a better fit below an estimated threshold is allowed by the mixture because
of this re-scaling of the bulk density. This is not the case with the bulk model based tail fraction because it does not
adjust the density below the threshold [34]. Hu and Scarrott [34] also indicated that the bulk model based tail fraction
exposes estimation of the tail to the misspecification of the bulk model. This is a major shortcoming to the use of the bulk
model based which the parameterized tail fraction approach corrects by using an extra parameter for the tail fraction. For
this reason, the parameterized tail fraction approach reduces the effect of the bulk model’s misspecification on the tail
estimates.

However, the diagnostic plots of the two tail fraction methods summarily suggest that the fit of the non-parametric
Kernel-GPD models is satisfactory based on the consistency of the density estimate with the histogram of the data, and
the linearity of the data points in the return level, quantiles and probability plots.

3.10 Extremal index for final threshold choice

Following Ferro [33] and Ferro and Seger [41], a sensible choice of an appropriate threshold is where the extremal
index (0) is greater than or equal to 0.5, hence a minimum of 8 = 0.5 is used in this study for final threshold selection,
required for declustering of the cluster exceedances. In order to determine this appropriate threshold, it is required that the
plot of “normalised inter-exceedance times” against “standard exponential quantiles” should be piecewise-linear with a
breakpoint at the (1 — 8)-quantile, —log® (see Figure 5 and Ferro [33] for details). The sloping line has gradient 8!, and
the vertical line is indicated by the (1 — 6)-quantile. Based on this, a sensitivity analysis will be carried out under each
market to ascertain the plot of a suitable threshold that will be best piecewise-linear with extremal index 6 of (a minimum
of) 0.5.

3.11 Sensitivity analysis

In order to obtain a suitable threshold value where the exceedances are piecewise-linear with a minimum extremal index
of 0.50, a sensitivity analysis was carried out as displayed in Figure 5 for the Brazilian market. The sensitivity analysis
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Fig. 5: IBOV: Sensitivity analysis plots for threshold selection.

is initiated with the approximate threshold value of u = 2.17 obtained from the parameterized tail fraction approach
since its diagnostic plots display slightly higher levels of linearity than the bulk tail fraction approach. Out of the four
sensitivity plots with different thresholds in the figure, threshold u = 2.17 is chosen because it is the most appropriate on
the sensitivity analysis plot in terms of piecewise-linearity with extremal index 6 of 0.6002. This means that exceedances
occur in groups of m = 1.666 =~ 2. In this section, we only displayed the sensitivity analysis plots of the Brazilian
market and none of the plots of the remaining four markets due to space.

For the Russian market, because the diagnostic plots of the parameterized tail fraction approach show more levels of
linearity than the bulk model based, a sensitivity analysis is done starting with its threshold value u = 3.09. From the figure,
a piecewise-linearity of the data points are most observed at the plot with threshold u# = 3.09 than at the other plots. This
threshold gives more asymptotic information about the tail (than the other thresholds) with 80 threshold exceedances and
extremal index 6 of 0.5521. This means that exceedances occur in groups of Wlsm = 1.8113 =~ 2. For the Indian market,
from the set of sensitivity analysis plots, threshold u = 2.25 is chosen because it is the best in the set, and it gives more
tail information (than the other three plots) with 70 threshold exceedances and extremal index 6 = 0.5852. An extremal
index of 0.5852 means that exceedances occur in groups of m =1.7088 =~ 2.

For the Chinese equity market, the estimated threshold value u = 1.9751 from the parameterized tail fraction approach
is used as the starting point for the sensitivity analysis due to its superior diagnostics accuracy. However, the extremal index
6 at this threshold value is lower than 0.5, hence it is not chosen. It is observed in this sensitivity analysis that extremal
index 6 is greater than 0.5 from threshold value u = 2.86 and above. At threshold u = 2.86, the extremal index is 0.5349
with 43 threshold exceedances, hence exceedances occur in groups of m = 1.8695 ~ 2. This threshold estimate gives
more information about the tail with more exceedance observations than the other remaining two thresholds. Based on
this, threshold estimate © = 2.86 is chosen. Lastly, for the South African market, the threshold value u =2.21 obtained from
the parameterized tail fraction approach is used as an initial value for the sensitivity analysis. From the plots, threshold
value u = 2.60 is chosen because it displays the best piecewise linearity of points with extremal index 6 = 0.5117 than the
rest of the plots. This means that exceedances occur in groups of ﬁ =1.9543 = 2.

3.12 Shape threshold stability plot

The traditional shape threshold stability plot is used in this study to verify and give some levels of credence to the
threshold choice from the Kernel density mixture models. As displayed in Figure 6 for the Brazilian market, three potential
thresholds where the plot shows significant departures from linearity are identified around u = 1.0, u = 1.5 and u = 2.2.
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Fig. 6: IBOV: Shape threshold stability plot.

Therefore, it can be seen that the choice of u = 2.2 from the shape threshold stability plot is approximately consistent with
the threshold estimate (u = 2.17) from the Kernel density mixture models.

The plots of the remaining four equity markets are not displayed but the outcomes are presented. For the Russian equity
market, the three potential thresholds where the plot shows significant departures from linearity are identified around u =
1.5, u =2 and u = 3. Hence, the threshold estimate (z = 3.09) from the Kernel density mixture models is approximately
consistent with the choice of u = 3 from the shape threshold stability plot. For the Indian market, from the shape threshold
stability plot, the three potential thresholds identified for significant departures from linearity are u = 1.2, u =19 and u =
2.2. One of these subjective choice of thresholds, i.e. u = 2.2 is approximately consistent with the threshold estimate u =
2.25 from the Kernel density mixture models. Hence, the objective threshold choice of the Kernel-GPD is a fair tradeoff
between variance and bias.

For the Chinese market, significant departures from linearity can be seen at u = 1.3, u = 1.9 and u = 2.4. The threshold
estimate u = 2.4 is not far from the threshold u = 2.86 obtained by the parameterized tail fraction of the Kernel density
mixture models. From the shape threshold stability plot in the South African market, thresholds u =2.5, u =2.7 and u =
3.1 are identified for significant departures from linearity. The threshold choices u = 2.5 and u = 2.7 are close to and are
approximately consistent with the threshold estimate of u = 2.60 from the Kernel density mixture models.

3.13 Declustering

The process of modelling extreme observations using a threshold exceedance model generally faces the problems of
dependence that usually exists because of short-term clustering of exceedances [29]. The EVT approach fits a Poisson
process using the point process model and the GPD (via the CEV model) to “independent” excesses (or exceedances)
above some appropriately high threshold. It is empirically believed that threshold excesses do not essentially exist
separately, but are clustered together most of the time [42]. Hence, to ensure that the exceedances are independent, the
time series undergoes the process of declustering, where the dependent observations are filtered to obtain a set of
threshold exceedances that are approximately independent [29,43].

For the Brazilian market, 123 threshold exceedances are generated at the estimated threshold u = 2.17. After
declustering at this threshold, 71 cluster-maxima are obtained as shown in Figure 7. The declustered exceedances plots
of the four remaining markets are not displayed. For the Russian IMOEX market, the estimated threshold u = 3.09
generated 80 threshold exceedances. After declustering at the threshold, 45 cluster-maxima are obtained. For Indian
NIFTY market, the estimated threshold u = 2.25 generated 70 threshold exceedances, and produced 39 cluster-maxima
after declustering at this threshold. For the Chinese SHCOMP market, the threshold estimate u = 2.86 generated 43
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Fig. 7: IBOV: Declustered exceedances at u = 2.17 (cluster-maxima).

threshold exceedances which were declustered and 23 cluster-maxima are obtained. For the South African JALSH
market, the estimated threshold u = 2.60 generated 76 threshold exceedances. After declustering at this threshold, 36
cluster-maxima are obtained. The cluster-maxima are the maxima of the clusters of exceedances over a high threshold.
They are the independent extreme tail observations on which the GPD will be fitted, and are also called exceedance
residuals [14].

3.14 CEV model: GPD fit to cluster-maxima

Since the univariate version of the CEV model fits the GPD to marginal variables, the GPD will now be fitted to the cluster-
maxima that are generated after declustering the cluster exceendances. These cluster-maxima are collectively classified
as the risks, which are the extreme financial losses, to be modelled in the markets. The risks are modelled by fitting
the GPD to the 71, 45, 39, 23, 36 cluster-maxima observations in the Brazilian IBOV, Russian IMOEX, Indian NIFTY,
Chinese SHCOMP and South African JALSH markets respectively, and the results in Table 2 are obtained, where the
standard errors of the GPD estimates are enclosed in parentheses and the confidence intervals are in the brackets. For
the confidence intervals estimation, the delta method or profile likelihood intervals approach can be used. However, the
application of profile likelihood intervals approach gives better interval accuracy than does the delta method [29]. Hence,
only the estimated results of the profile likelihood intervals approach are presented in the table. The profile confidence
intervals in this study are computed using the “POT” package developed by Ribatet [44] in R statistical software. The
table also includes the sample proportion 7, of points, which are the cluster-maxima exceeding the thresholds. This
sample proportion is the ratio of the number of cluster-maxima w to the total positive residual observations 7.

For the Russian IMOEX market, the positive estimate (§ = 0.14) of the shape parameter as shown in the table denotes
a heavy or fat-tailed distribution and it is a reflection of concavity [29]. The shape parameter estimates for the Brazilian
IBOV, Indian NIFTY, Chinese SHCOMP and South African JALSH markets are £ = —0.05, £ = —0.17, & = —0.25, and
& = —0.05 respectively (see Table 2). These shape parameters’ negative estimates indicate a short tailed distribution that
reflects convexity [J(Coles, 2001). However, since the values of the confidence intervals of the estimated shape parameters
at the three confidence levels in the table are all from negative to positive, i.e. they include zero, a formal hypothesis test
is carried out in Section 3.15 using the likelihood ratio (LR) and the modified likelihood ratio (LR..) tests (as described in
Sections 2.7 to 2.9) to determine if & = 0 or otherwise.

3.15 Formal hypothesis test

The likelihood ratio (LR) and modified likelihood ratio (LR..) tests are used with the null hypothesis that & = 0 against
the alternative hypothesis that & # 0. From the outcome in Table 3, at the 1%, 5% and 10% levels of significance, the
values of the likelihood ratio (LR) and the modified likelihood ratio (LR,,) tests are less than the critical values (CV),
therefore we fail to reject the null hypothesis, implying that the shape parameter & = 0. This suggests a Gumbel domain
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Table 2: GPD parameter estimates and profile likelihood intervals.

Indices CI u n wo| nu="1Y 13 6 Log. lik
90% | 2.17 | 1058 | 71 | 0.0671 -0.05 (0.14) | 0.94 (0.18) | -62.57

Brazil [-0.22; 0.23] | [0.68; 1.24]

IBOV 95% | 2.17 | 1058 | 71 | 0.0671 -0.05 (0.14) | 0.94 (0.18) | -62.57

[-0.22;0.30] | [0.64; 1.31]
99% | 2.17 | 1058 | 71 | 0.0671 -0.05 (0.14) | 0.94 (0.18) | -62.57
[-0.22;0.45] | [0.56; 1.44]
90% | 3.09 | 1034 | 45 | 0.0435 | 0.14(0.16) 1.25(0.22) | -61.63
Russian [-0.05; 0.50] | [0.86; 1.77]
IMOEX 95% | 3.09 | 1034 | 45 | 0.0435 | 0.14 (0.16) 1.25(0.22) | -61.63
[-0.08; 0.59] | [0.79; 1.89]
99% | 3.09 | 1034 | 45 | 0.0435 | 0.14 (0.16) 1.25(0.22) | -61.63
[-0.11;0.78] | [0.68;2.14]
90% | 2.25 | 1073 | 39 | 0.0364 | -0.17 (0.16) | 1.14(0.22) | -37.36
Indian [-0.30; 0.16] | [0.77; 1.63]
NIFTY 95% | 2.25 | 1073 | 39 | 0.0364 | -0.17 (0.16) | 1.14(0.22) | -37.36
[-0.30; 0.24] | [0.72; 1.74]
99% | 2.25 | 1073 | 39 | 0.0364 | -0.17 (0.16) 1.14 (0.22) | -37.36
[-0.30;0.41] | [0.64; 1.98]
90% | 2.86 | 1113 | 23 | 0.0207 | -0.25(0.18) | 0.98 (0.27) | -16.75
Chinese [-0.36; 0.16] | [0.66; 1.53]
SHCOMP | 95% | 2.86 | 1113 | 23 | 0.0207 | -0.25(0.18) | 0.98 (0.27) | -16.75
[-0.36;0.27] | [0.67; 1.68]
9% | 2.86 | 1113 | 23 | 0.0207 | -0.25(0.18) | 0.98 (0.27) | -16.75
[-0.36; 0.53] | [0.67;2.01]
90% | 2.60 | 1095 | 36 | 0.0329 | -0.05(0.20) | 1.16 (0.26) | -39.51
S/African [-0.29; 0.35] | [0.75; 1.77]
JALSH 95% | 2.60 | 1095 | 36 | 0.0329 | -0.05(0.20) | 1.16 (0.26) | -39.51
[-0.29; 0.44] | [0.68; 1.93]
99% | 2.60 | 1095 | 36 | 0.0329 | -0.05(0.20) | 1.16 (0.26) | -39.51
[-0.29; 0.67] | [0.57;2.27]

Table 3: Likelihood ratio test for GPD’s & estimate.

w | & LR cv LR.. cv
Brazilian IBOV 71 | -0.05 | -125.14 | 10%: 2.706 | -120.21 | 10%: 2.706
5%: 3.841 5%: 3.841
1%: 6.635 1%: 6.635
Russian IMOEX | 45 | 0.14 | -123.26 | 10%:2.706 | -115.59 | 10%: 2.706
5%: 3.841 5%: 3.841
1%: 6.635 1%: 6.635
Indian NIFTY 39 | 0.17 | -74.72 | 10%: 2.706 | -69.36 | 10%: 2.706
5%: 3.841 5%: 3.841
1%: 6.635 1%: 6.635
Chinese SHCOMP | 23 | -0.25 | -33.50 | 10%:2.706 | -29.42 | 10%: 2.706
5%: 3.841 5%: 3.841
1%: 6.635 1%: 6.635
S/African JALSH | 36 | -0.05 | -79.02 | 10%:2.706 | -72.87 | 10%: 2.706
5%: 3.841 5%: 3.841
1%: 6.635 1%: 6.635

w 1is the number of cluster-maxima observations and CV is the critical value.
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Fig. 8: IBOV: GPD diagnostic plots.

of attraction for the data, hence the risks in the Brazilian IBOV, Russian IMOEX, Indian NIFTY, Chinese SHCOMP and
South African JALSH markets using the CEV’s GPD fit can be modelled by the Gumbel class of distributions.

3.16 Diagnostics: Model checking

Statistical models are fit to data so as to make reasonable conclusions about the population where the data is drawn.
Model diagnostics are used to ascertain the validity of a model. The accuracy of a model can be checked or judged using
diagnostics to know whether it agrees with the data used to estimate it.

Four diagnostic plots are displayed in Figure 8 and in each of Figures 15, 16, 17 and 18 in the Appendix to assess
the performance of the GPD fit to the 71, 45, 39, 23, 36 cluster-maxima in the Brazilian IBOV, Russian IMOEX, Indian
NIFTY, Chinese SHCOMP and South African JALSH markets respectively. For each quartet plots, the data points in
the quantile plot, probability plot and return level plot are near-linear, and the corresponding density estimate appears
consistent with the histogram of the cluster-maxima. None of these four plots in each market gives any real cause for
concern about the quality of the fitted GPD model. Consequently, the diagnostic plots give support to the validity of the
GPD fit.

3.17 Goodness of fit of the GPD

The goodness of fit tests of Anderson-Darling and Cramér-von Mises are further used to ascertain how well the GPD
model fits the cluster-maxima observations in the IBOV, IMOEX, NIFTY, SHCOMP and JALSH market indices. The
tested hypothesis are:

H, : GPD fits the cluster-maxima well
H; : GPD does not fit the cluster-maxima well

Table 4 displays the outcomes of the test statistics and p-values of the tested hypothesis of the Anderson-Darling
and Cramér-von Mises tests. For both goodness of fit tests, it is observed that the null hypothesis is not rejected since
each test’s p-value is large (greater than 0.05) in the five BRICS markets. This indicates that the GPD fits the generated
cluster-maxima observations well.
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Table 4: Goodness of fit test.
Test GPD values | Statistic values | P-value
Anderson-Darling | o:0.94 0.4209 0.4788
IBOV £:-0.05
Cramér-von Mises | o:0.94 0.0559 0.5126
£:-0.05
Anderson-Darling | o: 1.25 0.3384 0.6136
IMOEX £:0.14
Cramér-von Mises | o: 1.25 0.0420 0.6673
£:0.14
Anderson-Darling | o:1.14 0.3767 0.5964
NIFTY £:-0.17
Cramér-von Mises | o: 1.14 0.0498 0.6260
£:-0.17
Anderson-Darling | o:0.98 0.3958 0.5767
SHCOMP £:-0.25
Cramér-von Mises | o:0.98 0.0537 0.5950
£:-0.25
Anderson-Darling | o:1.16 0.3565 0.6110
JALSH £:-0.05
Cramér-von Mises | o:1.16 0.0458 0.6512
£:-0.05
Table 5: GPD return level (R,) estimates.
IBOV 2-year S-year 10-year 20-year 50-year
R, 7.41 8.00 8.44 8.86 9.39
90% CI (4.73; 10.09) | (4.51;11.50) | (4.27;12.61) (3.97; 13.75) (3.49; 15.29)
95% CI (4.21; 10.60) | (3.84;12.17) | (3.47;13.41) (3.03; 14.68) (2.36; 16.42)
9% CI (3.21; 11.60) | (2.53;13.48) | (1.91;14.97) (1.21; 16.51) (0.16; 18.63)
IMOEX 2-year S-year 10-year 20-year 50-year
R, 16.87 20.03 22.72 25.69 30.10
90% CI (5.58; 28.15) | (3.60;36.47) | (1.36;44.09) (-1.66; 53.05) (-7.07; 67.28)
95% CI (3.42;30.32) | (0.45;39.61) | (-2.74;48.18) (-6.90; 58.29) (-14.19; 74.40)
99% CI (-0.80; 34.54) | (-5.69;45.76) | (-10.72;56.17) | (-17.13;68.51) | (-28.09; 88.29)
NIFTY 2-year S-year 10-year 20-year 50-year
R, 6.76 7.08 7.29 7.47 7.69
90% CI (4.71; 8.81) (4.57;9.59) (4.43; 10.14) (4.27; 10.67) (4.04; 11.33)
95% CI (4.32;9.20) (4.09; 10.07) | (3.88;10.69) (3.66; 11.28) (3.35; 12.02)
99% CI (3.56;9.97) (3.15; 11.00) | (2.81;11.76) (2.46; 12.48) (1.99; 13.39)
SHCOMP 2-year S-year 10-year 20-year 50-year
R, 6.03 6.19 6.29 6.37 6.46
90% CI (4.75;7.31) (4.68; 7.70) (4.61; 7.96) (4.54; 8.20) (4.43; 8.48)
95% CI (4.37;7.69) (4.23; 8.15) (4.11; 8.46) (3.99; 8.75) (3.83; 9.08)
9% CI (3.61; 8.46) (3.32;9.06) (3.10; 9.47) (2.89; 9.85) (2.62; 10.29)
JALSH 2-year S-year 10-year 20-year 50-year
R, 9.12 9.86 10.41 10.93 11.60
90% CI (4.43;13.80) | (3.75;15.98) | (3.11;17.70) (2.38; 19.49) (1.27; 21.93)
95% CI (3.53;14.70) | (2.58;17.15) | (1.72; 19.10) (0.74; 21.12) (-0.71; 23.91)
9% CI (1.78; 16.45) | (0.29;19.43) | (-1.01;21.83) (-2.46; 24.32) (-4.57; 27.77)
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Table 6: Univariate point process parameter (PP) estimates.

CI u u g 6 Log. lik
90% | 2.17 | 693 (1.27) | -0.05 (0.14) | 0.60 (0.47) | 285.32
[4.84;9.03] [-0.28; 0.17] [-0.08; 1.46]
IBOV 95% | 2.17 | 6.93(1.27) | -0.05(0.14) | 0.69 (0.47) | 285.32
[4.44;9.43] [-0.32; 0.22] [-0.22; 1.61]
99% | 2.17 | 6.93(1.27) | -0.05(0.14) | 0.69 (0.47) | 285.32
[3.66: 10.21] | [-0.40:0.30] | [-0.51; 1.90]
90% | 3.09 | 14.73 (4.82) | 0.14 (0.15) 2.93 (2.27) 158.86
[6.80; 22.66] | [-0.10; 0.39] [-0.81; 6.67]
IMOEX 95% | 3.09 | 14.73 (4.82) | 0.14 (0.15) 2.93 (2.27) 158.86
[5.29; 24.18] | [-0.15; 0.44] [-1.53;7.39]
99% | 3.09 | 14.73 (4.82) | 0.14(0.15) | 2.93(2.27) | 158.86
[2.32; 27.15] | [-0.24; 0.53] [-2.93; 8.78]
90% | 2.25 | 6.49 (1.04) -0.17 (0.16) 0.42 (0.32) 153.74
[4.78:8.19] | [-0.43:0.09] | [-0.10; 0.94]
NIFTY 95% | 2.25 | 6.49 (1.04) -0.17 (0.16) 0.42 (0.32) 153.74
[4.46; 8.52] [-0.48; 0.14] [-0.20; 1.04]
99% | 2.25 | 6.49(1.04) | -0.17(0.16) | 0.42(0.32) | 153.74
[3.82;9.16] [-0.57; 0.23] [-0.39; 1.23]
90% | 2.86 | 5.89(0.73) -0.25 (0.18) 0.23 (0.20) 95.95
[4.93:6.85] | [-0.49:-0.01] | [-0.03; 0.49]
SHCOMP | 95% | 2.86 | 5.89 (0.73) -0.25 (0.18) 0.23 (0.20) 95.95
[4.64:7.13] | [-0.56:0.07] | [-0.11:0.56]
9% | 2.86 | 5.89(0.73) -0.25 (0.18) 0.23 (0.20) 95.95
[4.07; 7.71] [-0.71; 0.21] [-0.27; 0.72]
90% | 2.60 | 8.53(2.23) -0.05 (0.19) 0.86 (0.82) 136.88
[4.86:12.19] | [-0.37:0.27] | [-0.48;2.21]
JALSH 95% | 2.60 | 8.53(2.23) -0.05 (0.19) 0.86 (0.82) 136.88
[4.16; 12.89] | [-0.43:0.33] | [-0.74; 2.47]
9% | 2.60 | 8.53(2.23) -0.05 (0.19) 0.86 (0.82) 136.88
[2.79: 14.26] | [-0.54:0.45] | [-1.24;2.97]

3.18 Return levels

Table 5 displays the estimates of the return levels and their corresponding confidence intervals (in parentheses) for the
markets. Since the return series in this study was re-scaled by multiplying by 100, the return levels interpretations are
presented in percentages. For the Brazilian IBOV market, a maximum loss of 7.41% is expected once every 2 years, 8%
once every 5 years, 8.44% once every 10 years, 8.86% once every 20 years, and 9.39% once every 50 years. For the
Russian IMOEX market, a maximum loss of 16.87% is expected once every 2 years, 20.03% once every 5 years, 22.72%
once every 10 years, 25.69% once every 20 years, and 30.10% once every 50 years are shown in the table. For the Indian
NIFTY market, a maximum loss of 6.76% is expected once every 2 years, 7.08% once every 5 years, 7.29% once every
10 years, 7.47% once every 20 years, and 7.69% once every 50 years. For the Chinese SHCOMP, a maximum loss of
6.03% is expected once every 2 years, 6.19% once every 5 years, 6.29% once every 10 years, 6.37% once every 20 years,
and 6.46% once every 50 years. Lastly, for the South African JALSH market, a maximum loss of 9.12% is expected once
every 2 years, 9.86% once every 5 years, 10.41% once every 10 years, 10.93% once every 20 years, and 11.60% once
every 50 years.

3.19 Univariate analysis: Point process

The procedure used for the GPD fit under the CEV model is also applied to the univariate analysis of the point process
model. To enable appropriate comparison between the two models, the same threshold is used. Hence, for the parameter
estimation of the point process model, the Poisson process will be fitted to the same declustered exceedances (i.e. the
cluster-maxima) used for the GPD fit.
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Fig. 9: IBOV: Point process diagnostic plots.

3.20 Point process fit to cluster-maxima

As it is under the GPD parameters estimation, the 71, 45, 39, 23, and 36 cluster-maxima observations are the collective
risk levels in the Brazilian, Russian, Indian, Chinese and South African markets respectively at the chosen thresholds.
Each collection represents different magnitudes or levels of risk in that particular market. The point process is fitted to
each market’s cluster-maxima and the results in Table 6 are obtained. The standard errors of the estimates are enclosed
in parentheses while the confidence intervals are in the brackets. The results obtained for the shape parameter & are very
similar to that of the GPD estimation.

Like the GDP fit, for the Russian IMOEX market, the positive estimate (§ = 0.14) of the shape parameter as shown
in the table for the point process indicates a fat-tailed distribution and it reflects concavity [](Coles, 2001). The shape
parameter estimates for the Brazilian, Indian, Chinese and South African markets are & = —0.05, £ = —0.17, § = —0.25,
and & = —0.05 respectively. The shape parameters’ negative estimates indicate a short tailed distribution that reflects
convexity (Coles, 2001). However, since the values of the confidence intervals of the estimated shape parameters at the
three confidence levels in the table are from negative to positive including zero, a formal hypothesis test is conducted in
Section 3.21 using the likelihood ratio (LR) and the modified likelihood ratio (LR..) tests to ascertain if & = 0 or otherwise.

3.21 Formal hypothesis test

From the outcomes in Table 7, at the 1%, 5% and 10% levels of significance, the values of the likelihood ratio (LR)
and the modified likelihood ratio (LR..) tests are greater than the critical values. Hence, the null hypothesis of & = 0 is
rejected in the five markets in favour of the alternative that & # 0. For the Russian IMOEX market, the positive shape
parameter estimate (é = 0.14) as shown in the table corresponds to an unbounded distribution. Therefore, the risk in the
Russian IMOEX market using the point process approach can be described by the Fréchet-Pareto class of distributions
(see Beirlant et. al [?]).

The negative shape parameter (£ < 0) estimates for the Brazilian, Indian, Chinese and South African markets in the
table correspond to a bounded distribution, i.e. a Weibull domain of attraction. Hence, the risks in these four markets
using the point process approach can be modelled by the Weibull class of distributions, with a finite upper bound.

3.22 Point process diagnostic plots and return levels

As shown in Figure 9, and Figures 19, 20, 21 and 22 in the Appendix, the data points in the diagnostic probability plot and
quantile plot of the point process of the Brazilian IBOV, Russian IMOEX, Indian NIFTY, Chinese SHCOMP and South
African JALSH markets respectively are close to the 45° lines, except for the lone outlier at the extremes of the quantile
plots of the Russian IMOEX market in Figure 19 and the Chinese SHCOMP market in Figure 21. Hence, the point process
fit is satisfactory.

Table 8 shows the point process return level estimates and their corresponding confidence intervals (in parentheses) for
the IBOV, IMOEX, NIFTY, SHCOMP and JALSH indices respectively. The return level estimates from the point process
are similar to that of the GPD in Table 5.
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Table 7: Likelihood ratio test for PP’s £ estimates.

w | & LR cv LR.. cv
71 | -0.05 | 570.64 | 10%: 2.706 | 548.14 | 10%: 2.706
Brazilian IBOV 5%: 3.841 5%: 3.841
1%: 6.635 1%: 6.635
45 [ 0.14 | 317.72 | 10%: 2.706 | 297.95 | 10%: 2.706
Russian IMOEX 5%: 3.841 5%: 3.841
1%: 6.635 1%: 6.635
39 | -0.17 | 307.48 | 10%: 2.706 | 285.40 | 10%: 2.706
Indian NIFTY 5%: 3.841 5%: 3.841
1%: 6.635 1%: 6.635
23 | -0.25 | 191.90 | 10%: 2.706 | 168.54 | 10%: 2.706
Chinese SHCOMP 5%: 3.841 5%: 3.841
1%: 6.635 1%: 6.635
36 | -0.05 | 273.76 | 10%: 2.706 | 25247 | 10%: 2.706
S/African JALSH 5%: 3.841 5%: 3.841
1%: 6.635 1%: 6.635

w 1is the number of cluster-maxima observations and CV is the critical value.

Table 8: Point process return level (R) estimates.

IBOV 2-year 5-year 10-year 20-year 50-year
Ry 7.19 7.93 8.41 8.84 9.38
90% CI (4.79; 9.58) (4.56; 11.30) | (4.32;12.49) (4.02; 13.67) (3.54; 15.23)
95% CI (4.33;10.04) | (3.92;11.95) | (3.54;13.28) (3.10; 14.59) (2.42; 16.35)
9% CI (3.43; 10.94) | (2.66; 13.21) | (2.01; 14.80) (1.29; 16.39) (0.24; 18.53)
IMOEX 2-year 5-year 10-year 20-year 50-year
R, 15.84 19.65 22.53 25.60 30.08
90% CI (5.93;25.75) | (3.72;35.57) | (1.33;43.73) (-1.81; 53.01) (-7.37;67.53)
95% CI (4.04; 27.65) | (0.67;38.62) | (-2.73;47.78) (-7.06; 58.26) (-14.55; 74.71)
99% CI (0.33;31.36) | (-5.29;44.58) | (-10.65;55.71) | (-17.31; 68.51) | (-28.55; 88.71)
NIFTY 2-year 5-year 10-year 20-year 50-year
Ry 6.64 7.04 7.27 7.47 7.68
90% CI (4.75; 8.52) (4.60; 9.49) (4.45; 10.09) (4.29; 10.64) (4.06; 11.31)
95% CI (4.39; 8.88) (4.13; 9.96) (3.91; 10.63) (3.68; 11.25) (3.36; 12.00)
9% CI (3.69; 9.59) (3.21; 10.87) | (2.85;11.69) (2.49; 12.44) (2.01; 13.36)
SHCOMP 2-year 5-year 10-year 20-year 50-year
Ry 5.97 6.17 6.28 6.36 6.45
90% CI (4.78; 7.15) (4.70; 7.64) (4.63;7.93) (4.55; 8.17) (4.45; 8.45)
95% CI (4.43;7.51) (4.26; 8.08) (4.14; 8.42) (4.01; 8.71) (3.86; 9.05)
99% CI (3.72; 8.21) (3.38; 8.96) (3.15; 9.41) (2.93; 9.80) (2.66; 10.25)
JALSH 2-year 5-year 10-year 20-year 50-year
Ry 8.84 9.78 10.37 10.92 11.60
90% CI (4.75; 8.52) (4.60; 9.49) (4.45; 10.09) (4.29; 10.64) (4.06; 11.31)
95% CI (4.39; 8.88) (4.13; 9.96) (3.91; 10.63) (3.68; 11.25) (3.36; 12.00)
9% CI (3.69; 9.59) (3.21; 10.87) | (2.85;11.69) (2.49; 12.44) (2.01; 13.36)

4 Conclusions

4.1 Comparing the performance of the CEV’s GPD and PP models

To start with, the likelihood estimated shape parameters for both the CEV’s GPD and point process models are the same
in the five BRICS equity market. However, since the values of the confidence intervals range from negative to positive
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and cover zero, a formal hypothesis test was conducted. The outcome of the test showed that under the GPD model, the
risks in the BRICS markets can all be modelled by the Gumbel class of distributions. Under the point process approach
however, the risk in the Russian equity market can be modelled by the Fréchet-Pareto class of distributions, while the risks
in the Brazilian, Indian, Chinese and South African equity markets can be modelled by the Weibul class of distributions.
Furthermore, the diagnostics checks carried out using various diagnostics plots for the two models and the goodness of fit
tests for the GPD show that the models’ fits are adequately satisfactory. In addition, the return level estimates are nearly
the same for the two models. In conclusion, the likelihood estimation of the two models are approximately the same, but
the GPD has fewer parameters to compute than the point process.

4.2 Risk hierarchy: comparing the markets’ equity risks

The magnitudes or levels of risk in the BRICS equity markets are compared using the boxplot in Figure 10. The plot
displays the risk hierarchy from the highest to the lowest, with their associated densities in Figure 11. Based on the
relative spread (or variability) of each box in Figure 10, it can be observed that the Russian IMOEX market has the
highest level of risk, followed by the South African (SA) JALSH market, then the Chinese SHCOMP, Brazilian IBOV and
Indian NIFTY markets respectively. This finding shows that the Russian IMOEX market is the most risk-prone, while the
least risky is the Indian NIFTY market, with the remaining three markets in between them. The Brazilian IBOV market is
however very slightly higher than the Indian NIFTY market in risk level as shown in the plot. High investment risk may
either yield potential high returns as a reward or a huge loss to an investor.

The boxplots further show the shapes of the risk in each of the markets based on the concentration of the cluster-
maxima observations on the scale. From Figure 10, the distribution of the risk observations in the IBOV, NIFTY, SHCOMP
and JALSH markets are all skewed to the right, while the IMOEX market is near-symmetric.
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Histogram of positive residuals
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Fig. 15: IMOEX: GPD diagnostic plots.
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Fig. 16: NIFTY: GPD diagnostic plots.
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Fig. 17: SHCOMP: GPD diagnostic plots.
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Fig. 18: JALSH: GPD diagnostic plots.
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Fig. 19: IMOEX: Point process diagnostic plots.
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Fig. 20: NIFTY: Point process diagnostic plots.
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Fig. 21: SHCOMP: Point process diagnostic plots.

Probability plot Quantile Plot

empirical

T T T
0.6 0.8 1.0

empirical model

Fig. 22: JALSH: Point process diagnostic plots.
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