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Abstract: Most recent empirical work implies that the presence of low-dimensional deterministic 

chaos increases the complexity of the financial time series behavior. In this study we propose the 

Generalized Multilayer Perceptron (GMLP), and the Bayesian inference via Markov Chain Monte 
Carlo (MCMC) method for parameter estimation and one-step-ahead prediction. By out-of-sample 

prediction approach, these proposed methods are compared to autoregressive integrated moving 

average (ARIMA) models which have been used as a benchmark. The deterministic Mackey-Glass 
equation with errors that follow an ARCH (p) process (MG-ARCH (p)) is applied to generate the data 

set used in this study. It turns out that GMLP outperforms the other two forecasting methods using 

RMSE, MAPE, and MAE criteria of forecasting accuracy. 

 

Keywords: ARIMA; Artificial Neural Networks (ANNs); Bayesian inference; MG-ARCH (p) 

model; one-step-ahead forecasting 
 

 

1  Introduction 

Obtaining accurate stock prices forecast is one of the main goals of financial and academic 

research institutions which they seek to achieve for the purpose of supporting key financial decisions 

such as selling and hedging. However, accurate forecasting of stock prices remains a major challenge 

under efficient market conditions (Shahwan, 2006). Much effort has been devoted over the past 

decades to the development of time series forecasting models. Traditionally, Autoregressive 

integrated moving average (ARIMA) models are considered as some of the most widely used linear 

models in time series forecasting because of their theoretical elaborateness and accuracy in short-

term forecasting (Jhee and Shaw, 1996). However, ARIMA models cannot easily capture non-linear 

patterns resulting from the existence of a bounded rationality assumption in financial markets 

(McNelis, 2005). In recent years, however, interest in the use of artificial neural networks (ANNs) for 

forecasting and time series prediction has grown steadily (Zhang et al. 1998) as has interests in the 

applications of Bayesian inference in forecasting time series (Mendoza and De Alba, 2006). 

 

In this paper, we will examine the ability of Bayesian inference via Markov Chain Monte Carlo 

(MCMC) method for forecasting time series using simulation data. MCMC is a sampling based 
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simulation technique that generates a dependent sample from a certain distribution of interest. 

Several schemes of implementing MCMC methods are widely used in Bayesian inference such as 

the Gibbs sampler introduced by (Geman and Geman, 1984) and Metropolis-Hasting method 

originally developed by (Metropolis et al. 1953) and further generalized by (Hastings, 1970). These 

two algorithms are simple to implement and are effective in practice when used for Bayesian 

inference (Surapaitoolkorn, 2007). The stochastic Mackey-Glass process is generated using Monte 

Carlo experiment since the chaotic time series has a lot of similarity to economic and financial time 

series (McNelis, 2005). In this paper we compare Bayesian estimation methods with artificial neural 

networks. ARIMA models will be used as a benchmark. The comparability or superiority of the 

proposed models will be investigated using Monte Carlo experiments. The main motivation of this 

approach is due to the existence of little empirical evidence regarding the performance of ANN, 

Bayesian estimation methods and ARIMA models under different characteristics of chaotic financial 

time series. Therefore, using a simulation study which covers a wide range of these characteristics 

will enable us to identify the conditions under which one of these models is superior to others. 

 

The remaining part of the paper is organized as follows. Section 2 describes different proposed 

forecasting methods employed for time series forecasting. The numerical simulation in section 3 

includes generation of the data using Mackey-Glass stochastic process, specification of the 

forecasting models and performance measures. The results are presented in section 4. Finally, section 

5 gives concluding remarks and some suggestions for future work. 

 

2  Forecasting Methods 

2.1  ARIMA Models 

Consider the following stochastic process  Ntyt ,  that can be expressed in terms of its 

conditional moments as follows (Campbell et al. 1997, p. 469) and (Shahwan, 2006, p. 8): 

where 
ttt a    is a standardized shock. ta  is a white noise series with a mean of zero and a 

variance 2

t , 1tF  is the collection of  pttt yyy  ,....,, 21  and  attt aaa  ,,, 21  ,  g  represents a 

linear or nonlinear function, and   2

th  . Accordingly, the stochastic process of the time series ty  

will be a non-linear in mean if the  g  is a non-linear function, whereas a time series with non-linear 

 h  is said to be non-linear in variance. 

A linear autoregressive moving average (ARMA) model of order  qp,  implies that the current 

value of ty  of the process can be expressed as a linear combination of its past values 

 pttt yyy  ,....,, 21  and a random shock series attt aaa  ,,, 21  . Thus, the ARMA model can be 

expressed as follows (Tsay, 2005): 

where    qp  ,....,,,....,, 10  are the parameters of the model. p  and q  are non negative 

integers. Since many time series are non-stationary, differencing one or more times is required. This 

leads to the well-known autoregressive integrated moving average (ARIMA) model. By using the 

back shift operator   with   1 tt yy , ARIMA model can then be written as follows (Pindyck and 

    tttt FhFgy   11  (1) 
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Rubinfeld, 1991): 

where d  is the level of differences used to change non-stationary time series into stationary time 

series. 

Basically, the fitting of ARIMA  qdp ,,  model to a given time series consists of the following 

three phases: (i) Model identification, by analyzing the behavior of the autocorrelation function 

(ACF) and the partial autocorrelation function (PACF), aims to determine the proper orders of 

 qp, , (ii) Parameters estimation by using the maximum likelihood technique, and (iii) Forecasting 

of new values based on the estimated parameters. It is worthwhile to mention that ARIMA models 

cannot capture non-linear patterns in time series data. In the following section, we examine artificial 

neural networks, as a non-parametric data-driven approach with the capability of capturing non-

linear patterns that expected to be existed in the data of volatile financial markets. 

 

2.2  Artificial Neural Networks (ANNs) 

The artificial neural networks (ANNs), as representative of a more general class of non-linear 

models, are probably one of the most frequently used tools in finance and economics. Well-known 

applications of this model include credit approval, bankruptcy prediction, and time series prediction 

[See Jensen (1992); Raghupathi et al. (1996) and Tam and Kiang (1996)]. With regard to one-step-

ahead prediction 1
ˆ
ty , artificial neural networks determine the function  f  using the historical 

observations  nttt yyy  ,....,, 1  with  Nn ,.....,1  denoting the number of input units as follows 

(Shahwan, 2006): 

An ANN model is defined in terms of subsidiary decisions such as selecting the architecture of 

the artificial neural networks, determining the number of hidden layers, the number of hidden 

neurons, the number of input nodes in the input layer, the type of activation function, the values of 

the learning rate and the way the data is to be divided into training, cross validation, and test sets 

(Shahwan, 2006). Based on Occam's razor principle, the simpler network will be selected to strike a 

balance between training performance and network complexity (Azoff, 1994). A more detailed 

review of guidelines, rules, and their implications to the ANN output when specifying the optimal 

ANN is provided by Azoff (1994); Zhang et al. (1998); and Shahwan (2006). In the current study, 

the Multilayer feedforward with jump connections will be used to conduct one-step-ahead 

forecasting. This type of neural networks can be considered as a generalization of the MLP (GMLP). 

Fig. 1 depicts the idea of GMLP where each input node in the input layer is directly connected to the 

output layer. The GMLP with a "tanh sigmoidal activation function" in the hidden layer and an 

"identity transfer function" in the output layer has the following structure (Tsay, 2005): 
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where tix , , Ii ,,2,1  , are input variables. 0,kw  and 0  are constants terms, ikw ,  are the synaptic 

weights of input variables and tkn ,  is a linear combination of these input variables observed at time 

t , Tt ,,2,1  . Hence, the tkn ,  is squashed by the tanh sigmoid activation function and becomes 

tkM ,  at time t . Note that a set of *k  neurons  k  can be found in the hidden and output layers, k  

denotes the coefficient vector between the hidden and output layer, and iv  is the coefficient vector 

between the input and output layer. Thus, a feedforward network jump connection with a linear 

function in the output layer can be considered as a generalization of the linear regression model with 

non-linear terms (Shahwan, 2006). Consequently, if the underlying function between the input and 

the output is a pure linear, the coefficient sets   and w  will be zero, yielding a linear model [see 

Gonzalez (2000), Tsay (2005) and McNelis (2005)]. 

 

 

Fig. 1. Feedforward network with jump connection (Shahwan, 2006, p.23). 

2.3  Markov Chain Monte Carlo (MCMC) Method  

As an alternative to the classical ARIMA models, it is possible to apply Bayesian inference. De 

Alba and Mendoza (2007) proved that Bayesian procedures can be more effective, if only a small 

amount of past data is available, than the classical ARIMA models. It is also preferred to use it in the 

presence of cycles and trends in the time series data. In this section, we describe how to carry out 

Bayesian inference for the simulated data using a Gibbs sampling method. Following Koop (2003), 

Gibbs sampling for independent Normal-Gamma prior is implemented to obtain the Bayesian 

estimates. As mentioned in section (2.1), an autoregressive model of order p ,  pAR  as a linear 

combination of its p  past values is defined as follows: 

tptpttt ayyyy    22110  (8) 
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where  
p ,....,, 10  are the parameters of AR  p  model. The Bayesian approach to the 

parameters estimation of a stochastic process starts by determining the likelihood function )/( yp  

where ),,,( 21 Nyyyy   is the observed time series and ),,,,(),( 10 hh p   is the vector 

of unknown parameters.  

Where 
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The estimates of the parameters h  and   are performed by MCMC method via Gibbs sampling 

technique. The form of the above likelihood suggests that the natural conjugate prior is an 

independent Normal-Gamma. In particular, we assume )().(),( hpphp    with )(p  being 

Normal and )(hp  being Gamma: 

where 2s and v  are the prior mean and degrees of freedom of h , )/( yE    is the prior mean of 

 , and Gc  is the integrating constant for the Gamma probability density function. 

Bayes’ theorem allows us to combine the likelihood function with the prior in order to form the 

conditional distribution of h  and   given the observed data y , that is, 

The aim of MCMC simulation is to generate a sample },,2,1),,({ )()()( mjh jjj    from the 

conditional densities ),/( yhp  and ),/( yhp   obtained from the joint posterior density )/,( yhp  . 

This sample is then used to infer the point estimates of the parameters   and h . For instance, the 

Bayesian point estimates ̂  and ĥ  are given by: 

As mentioned above, we will use Gibbs sampler as a simulation strategy in our study. One of 

the main advantages of this sampler is that it is often easier to implement than any of the other 

MCMC methods. The Gibbs sampler is also flexible in the sense that its output may be used in order 

to make a variety of posterior and predictive inferences. Following (Geman and Geman, 1984), The 

Gibbs-Sampler algorithm is briefly described in the following steps: 
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Step (1) Assign initial values to the parameters: 
)0(  and )0(h ; 

Step (2) Obtain a new observation 
)1( j  from the conditional density ),/( )( yhp j ; 

Step (3) Obtain a new observation 
)1( jh  from the conditional density ),/( )1( yhp j ; 

Step (4) Stop if the convergence of the Markov chains has been detected. Otherwise, do 1 jj  

and return to step 2. 

After a sufficiently large number of iterations, the set of observations ),( )()( jj h  converges and 

it can be treated as a sample from the joint posterior density )/,( yhp  . 

3  Numerical Simulation and Model Specification Methods 

In the current simulation experiment, we aim to simulate the price behavior of financial time 

series using the stochastic Mackey-Glass process. The Mackey-Glass equation was originally 

developed for modeling white blood cells production (Calvo and Jabri, 2000). The prime motive in 

selecting this stochastic process is that real economical dynamics is a mixture of deterministic and 

stochastic chaos (Holyst et al. 2001). Following Kyrtsou and Terraza (2003), the discrete version of 

the deterministic Mackey-Glass equation is: 

where tr  is the return of the time series. We must note that the choice of lags c  and   are vital in 

determining the dimensionality of the system. 

In finance, asset return volatility exhibits volatility clustering in the sense that periods of high 

volatility tend to be followed by high volatility and periods of low volatility tend to be followed by 

low volatility (Poon, 2005, p. 7). Hence, the basic assumption of the current simulation is that the 

conditional variance of the stochastic Mackey-Glass process follows an autoregressive conditional 

heteroscedastic process of order one, ARCH (1). A time discretized realization of that process is: 

 

where ty  denotes the price at time t . 0  is constant,   is the volatility, 1  is the weight assigned to 
2

1ta , and t  is a random sample drawn from a standardized normal distribution with mean zero and a 

standard deviation of one.  

The set of parameters used to generate the aforementioned stochastic process are 5.120 y  as an 

initial price. Another important parameter that must be determined is the volatility  . Following 

Shahwan (2006), the estimated volatility of hog prices in the German spot market is about 14.60%. 

Accordingly, 2

0  is set to be 0225.0  as an initial variance. Each value of 1 , 2c , 1.2d , 

05.0 , 2.00  , and 5.01   are derived from Kurtsou and Terraza (2003, p. 261). 
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The sample size for the generated data consists of 500 observations. The forecasting 

performance of the proposed model is assessed by an out-of-sample technique. Each time series is 

divided into 450 observations as a training set and 50 observations for testing. The training set is used 

for model specification and then the testing set is used to evaluate the established model. Three 

criteria are used to evaluate the accuracy of each model. The root mean square error (RMSE), Mean 

absolute percentage error (MAPE) and Mean absolute error (MAE) are employed to measure the 

forecasting error. These statistical measures of out-of-sample predictions are: 

where ty  and tŷ  are the actual and the predicted price, respectively, at time t . T  is the number of 

observations in the test set.  

The Structure of ARIMA model is determined through the following steps: (i) a natural 

logarithm is applied to each value of ty  as an attempt to stabilize the data set. (ii) Investigation of the 

time series stationarity by applying the augmented-Dickey Fuller test (ADF). ADF statistics is (-

0.543) and lies inside the acceptance region at 5% level of significance. Therefore, we can not reject 

the presence of unit root which indicates the non-stationary of the time series. Therefore, the first 

order difference is applied. (iii) Analyzing the Autocorrelation (ACF) and the partial autocorrelation 

(PACF) for the time series as shown in fig. (2), each of p  and q  can be inferred. The best estimated 

ARIMA model for the data set has the structure  2,1,1 . Without prejudging the nature of nonlinearity 

existed in our data set, the residuals of ARIMA model have been tested for the presence of 

nonlinearity using the BDS test
1
. Following Kanzler (1999, p. 33), the dimensional distance of 1.5 

has been selected to yield a better approximation as shown in Table (1). These results indicate that 

there is a non-linear structure in our data set. The significant evidence of nonlinearity implies that the 

use of nonlinear model such as ANN might be accurate in fitting the time series. Additionally, we 

test for the presence of GARCH effects using Engle's ARCH test and Ljung-Box Q-statistic. The 

results in Table (2) indicate that such effect exist in the data. Hence, the time series is nonlinear in 

terms of variance. 
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The BDS test examines for (iid) versus general nonlinearity in the time series. 
 

 
2

1

ˆ
1




T

t

tt yy
T

RMSE  (19) 







T

t t

tt

y

yy

T
MAPE

1

ˆ100  (20) 





T

t

tt yy
T

MAE
1

ˆ
1  (21) 

Estim ated Autocorrelations for Col_1

lag

A
u

to
c

o
r
re

la
ti

o
n

s

0 5 10 15 20 25

-1

-0.6

-0.2

0.2

0.6

1



96                          Tamer Shahwan, et al.:  A Comparison of Bayesian Methods and Artificial ..... 

 

(a) 

 

 
(b) 

         Fig. 2. ACF (a) and PACF (b) for the time series  

        Table 1. The BDS test on the residuals of ARIMA model for the Mackey-Glass series. 

           
*indicates the rejection of null hypothesis of (i.i.d) at the 5 % significance level 

          Table 2. The Ljung-Box Q statistic and Engle's ARCH test for the Mackey-Glass series. 

Test Lags 

 Q(5) Q(10) Q(15) Q(20) 

The Ljung-Box Q statistics on the residual of ARIMA 2.35 13.38 18.92 25.03 

The Ljung-Box Q statistics on the squared residual of 
ARIMA 

92.34* 129.3* 131.7* 137.3* 

Engle's ARCH test 70.13* 80.15* 84.47* 86.77* 

            
* indicates statistical significance for the presence of GARCH effects at the 5% level 

The specification of ANN model is now in turn, the generalized MLP network used has six 

inputs, one hidden layer and one output unit. A genetic algorithm is used to optimize numbers of the 

hidden nodes, the value of the learning rate, the momentum term and the weight decay constant. The 

hyperbolic tangent function is chosen as a transfer function between the input and the hidden layer. 

The identity transfer function connects the hidden with the output layer. The GMLP is trained by 

back propagation algorithm. To avoid the memorization problem "overfitting" during the training 

process of ANN model, a cross-validation approach will be applied. 20% of the training set (90 

observations) had to be used for cross-validation in the back-propagation approach. Haykin (1999), 

Principe et al. (2000) and Shahwan (2006) illustrate that the use of cross-validation approach 

enhances the generalization capability of the neural network model. Batch updating is chosen as the 

sequence in which the patterns are presented to the network. 

To set up MCMC methods, the actual observations of the time series ty  are transformed by 

applying a logarithmic transformation. Then, the transformed time series tZ  is normalized as 

Dimensional distance of 1.5 Embedding dimension (m) 

2 3 4 5 
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follows: 

where   and   are the sample mean and standard deviation of the generated time series. The 

sample mean and variance of our data are (-4.9433) and (0.071692), respectively. We allowed the 

MCMC simulation to run 1000S0   iterations in order to burn-in the Gibbs sampler and remove the 

effect of the starting values of  , i.e., )5.4,4,1(0  , and then allowed it to run for an additional 

9000S1   iterations in order to generate a random sample from the posterior distribution. We set the 

initial draw for the error prediction to be equal to the inverse of OLS prediction estimate of 2 , i.e., 

  19407692.011
22

0  Sh . 

To see whether the estimated results using MCMC methods are reliable or not we obtain what 

we call as MCMC diagnostics. Geweke (1992) suggested a convergence diagnostic (CD) given by; 

where AS  and CS  are the set of first and the last draws, respectively. Following Koop (2003), it has 

been found that setting 11.0 SS A  , and 14.0 SSC   works well in many forecasting application. Let 

ASĝ  and 
CSĝ be the estimate of )/)(( ygE  using the first AS  replications after the burn-in and the 

last CS  replications, respectively. AA S̂  and CC S̂  are the numerical standard errors of CD 

estimates. The convergence of MCMC algorithm has occurred as CD is less than 1.96 in absolute 

value for all 310 ,,  . Fig. (3) shows the histogram of the samples generated via MCMC 

simulation using the Normal Gamma prior density. 
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        Fig. 3. The predictive density for MG- ARCH (1) series 

4  Results 

ARIMA model is estimated with the help of Statgraphics Plus software. The software package 

NeuroSolutions V5.05 was employed for the estimation of the Generalized Multilayer Perceptron 

(GMLP). The Bayesian estimates using the Normal-Gamma prior via the Gibbs-Sampling algorithm 

were carried by Koop's Matlab code which was slightly improved to be popular with our data set. We 

compare the accuracy of the proposed Bayesian method for forecasting time series with GMLP and 

ARIMA models using the out-of-sample approach. Table (3) shows the comparison of forecasting 

errors using different criteria for the proposed methods of our MG-GARCH (1) series. 

The accuracy criteria of RMSE, MAPE, and MAE shown in table (3) indicate that the GMLP 

method outperforms the other two methods in one-step-ahead forecasting. Based on Morgan-
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Granger-Newbold test, the difference in prediction errors of the three different forecasting methods 

are statistically significant at the 5% level. These results are with our expectation that GMLP will 

dominate the linear models when the stochastic process of our data set follows a more complex and 

nonlinear patterns. It is also remarkable to note that the estimated ARIMA  2,1,1  model dominates the 

MCMC according to the above mentioned accuracy criteria. Our findings are compatible with the 

results of De Alba and Mendoza (2007) that standard forecasting procedures, like ARIMA, models 

will yield better forecasting than our proposed Bayesian method for lengthy time series. 

Table 3. Forecasting errors of ARIMA, GMLP, and Bayesian methods for MG-ARCH (1) series  

Methods RMSE MAPE MAE Rank 

ARIMA 

 

residuals of ARIMA 

0.1146 0.5522 0.0839 2 

GMLP 0.0981* 0.4994* 0.0773* 1 

Bayesian 0.6193 3.1812 0.4854 3 

*indicates statistical significance in the forecasting accuracy at the 5 % level 

Bold letter indicates minimal error 

5  Conclusions 

This study has compared the Bayesian inference with artificial neural networks (ANNs) 

methods in forecasting chaotic financial time series. It has also applied traditional ARIMA models 

as a benchmark. The findings imply that ANNs are more relevant to fit a high-dimensional 

chaotic process than the Bayesian and ARIMA methods. However, ANNs demand a lot of 

specification procedure in determining its optimal structure. It is a time consuming model 

compared to ARIMA. Unfortunately, there is no fixed method for specifying of ANNs' 

parameters. The selection almost depends on heuristics.  The study also confirms that there is no 

improvement in the forecast accuracy gained by using the MCMC method. Therefore, it is 

recommended to extend the MCMC model adopted in this study by using other prior 

distributions, and different MCMC algorithms. Moreover, there is a need to investigate the 

accuracy of these forecasting methods; MCMC; ANNs; ARIMA; using different simulated data as 

well as real data sets. 
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