
J. Stat. Appl. Pro. 11, No. 1, 147-153 (2022) 147

Journal of Statistics Applications & Probability
An International Journal

http://dx.doi.org/10.18576/jsap/110111

Stress-Strength Reliability from Odd Generalized

Exponential-Exponential Distribution with Censored

Data

M. O. Mohamed∗ and Ahmed H. A. Reda

Mathematical Department, Zagazig University, Faculty of Science, Egypt

Received: 18 Dec. 2020, Revised: 20 Feb. 2021, Accepted: 2 May 2021

Published online: 1 Jan. 2022

Abstract: Reliability and survival analysis is important in lifetimes of the units in an experiment which depend on modeling of events

which depend on time, systems, components, or random variables. This paper proposes an inferences model for a simple stress-strength

model with Type-II censored sample. This case is studied in our paper with Odd Generalize Exponential-Exponential distribution

(OGEE), by using the point and interval estimation parameters of (OGEE) distribution for type-II censored . have been studied and

compared with Mean square errors to decide which method is more suitable for studying the reliability with the model of stress-strength.

The data were generated by using the Monte Carlo study of simulated samples.

Keywords: Odd generalize exponential-exponential distribution; type-II censored sample; stress- strength model, maximum likelihood

function

1 Introduction

The problem of estimating and testing the reliability based on stress-strength modeling, R = (X < Y ) is a measure of
component reliability when it is subjected to random stress X and has strength Y . In this context, R can be considered as
a measure of system performance and naturally arise in electrical and electronic systems. Other interpretation can be that,
the reliability,R, of the system is the probability that the system is strong enough to overcome the stress imposed on it.
The component failing if and only if at any time the applied stress is greater than its strength. Other applications for the
reliability parameter exists when X and Y have different interpretation, such as when Y is the response for a control group
and X is the response for the treatment group.

Many authors have studied the stress-strength parameter [1] they consider the statistical inferences of the unknown
parameters of a Weibull distribution when the data are Type-I censored. It is well known that the maximum likelihood
estimators do not always exist, and even when they exist, they do not have explicit expressions. They propose a simple
fixed point type algorithm to compute the maximum likelihood estimators, when they exist. They also propose
approximate maximum likelihood estimators of the unknown parameters, which have explicit forms. Barbiero [2]
studied statistical inference for the reliability of stress-strength models when stress and strength are independent Poisson
random variables. Also, [3–11] discussed the different distributions for stress-strength model.

This paper tends to estimate stress- strength model R = (Y < X) where strength and strength are two independent
Type-II with OGEE distribution. Assume those scale parameters are known. The importance of OGEE distribution is
the flexibility in modeling lifetime data for better representation of the phenomenon contained in the data set. For more
information on OGEE distribution, see [12]. According to paper [12], the new distribution OGEE can be represented for
its Pdf and Cdf.

f (x) = λ θeθxe−λ (eθx−1)
, (1)

F(x) = 1− e−λ (eθx−1)
, x > 0, λ > 0, θ < ∞. (2)
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The maximum likelihood estimate and exact confidence interval of R is derived. Besides, Bayes estimator of R is derived,
and all of these estimators are obtained based on mean square errors. The paper is organized as follows. In Section (2),
system reliability. Maximum likelihood estimator is shown in Section (3), exact C.I is shown in Section (4), the Bayes
estimator is shown in Section (5) and Bootstrap C.I are obtained in Section (6). For simulation, the studies’ proposal is
shown in Section (7). Tables are represented in Section (8). Finally, conclusions appear in Section (9).

2 System Reliability R

Let X and Y be two independent OGEE random variables with parameters (λ1,θ ) and (λ2,θ ), respectively. Thee reliability
of system is defined as follows:

R = P(Y < X) =

∞
∫

0

P[Y < X |Y = y]dy,

R =

∞
∫

0

1− e−λ1(e
θx−1)λ2θexθ e−λ2(e

θx−1)dx =
λ2

λ1 +λ2

. (3)

3 Maximum Likelihood Estimator

Assume that two independent random samples X1,X2, · · · ,Xn and Y1,Y2, · · · ,Yn are observed from OGEE ∼ (λ1,θ ) and
OGEE ∼ (λ2,θ ). respectively. The likelihood function of λ1 and λ2 for the observed samples is:

L(X1,X2, · · · ,Xn,Y1,Y2, · · · ,Ym;λ1,λ2θ ) =
n!

(n− r1)!

r1

∏
i=0

λ1θeθxie−λ1(e
θxi−1)

[

e−λ1(e
θxr1 −1)

]n−r1

m!

m− r2

r2

∏
j=0

λ2θeθy j e−λ2(e
θy j−1)

[

e−λ2(e
θyr2 −1)

]m−r2

.

The estimations λ̂1 and λ̂2 of the parameters λ1 and λ2, respectively, can be obtained as the solution the the likelihood
equations

∂ l

∂λ1

=
(r1 + 1)

λ1

− e
θ

r1
∑

i=0
xi

+(r1 + 1)− (n− r1)(r1 + 1)
(

eθxr1 + 1
)

= 0. (4)

And

∂ l

∂λ2

=
(r2 + 1)

λ2

− e
θ

r2
∑

j=0
xi

+(r2 + 1)− (m− r2)(r2 + 1)
(

eθyr2 + 1
)

= 0. (5)

From Equations (4) and (5), the estimators λ̂1MLE and λ̂2MLE are given by

λ̂1MLE =
(r1 + 1)

e
θ

r1
∑

i=0
xi − (r1 + 1)+ (n− r1)(r1 + 1)(eθxr1 + 1)

,

λ̂2MLE =
(r2 + 1)

e
θ

r2
∑

j=0
y j

− (r2 + 1)+ (m− r2)(r2 + 1)(eθyr2 + 1)

,

Once the estimators λ̂1MLE and λ̂2MLE, are derived and using the invariance property of the MLEs in (3), the MLE of R

denoted as R̂MLE becomes

R̂MLE =

(r2+1)

e

θ

r2
∑

j=0
y j

−(r2+1)+(m−r2)(r2+1)(eθyr2 +1)

(r1+1)

e
θ

r1
∑

i=0
xi
−(r1+1)+(n−r1)(r1+1)(eθxr1 +1)

+ (r2+1)

e

θ
r2
∑

j=0
y j

−(r2+1)+(m−r2)(r2+1)(eθyr2 +1)

(6)
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4 Asymptotic distribution and confidence interval of R

based on the asymptotic, see [13, 14]. The general conditions of the MLEs of λ̂1 and λ̂2 distribution of the MLEs
immediately follows from the Fisher information matrix of λ1 and λ2. That is, as n,m → ∞ and n

m
→ k, where 0 < k < 1,

it follows that:
[√

n(λ̂1 −λ1),
√

m(λ̂2 −λ2)
] D−→ N2(0,δ (λ )),

where

δ (λ ) = I−1(λ ) =

(

I11 I12

I21 I22

)−1

, (7)

and the matrix I(λ ) is the Fisher information matrix of the parameter vector λ = (λ1,λ2), and the i jth element is given by

the second partial derivatives Ii j =
∂ 2 lnL(λ )
∂λ1∂λ2

, i, j = 1,2. From the asymptotic properties of the MLEs of λ1 and λ2, one can

easily get,

√
n(R̂−R) =

√
n

(

λ̂2

λ̂1 + λ̂2

− λ2

λ1 +λ2

)

D−→ N2(0,σ
2),

where

σ2
R̂1

=
(r1 + 1)(r2 + 1)(λ1 +λ2)

2

λ 2
1 λ 2

2

. (8)

A (1−α)100% approximate confidence interval of R can be constructed based on the asymptotic results obtained. This
asymptotic confidence interval is given by

R̂±Z1− α
2 σ̂ , (9)

where σ̂ is the asymptotic standard deviation of R̂.

5 Bayesian estimation of R

In this section, the Bayes estimator of R denoted as RB is obtained with non-informative prior, where the equation to find
fisher information as follow:

I(λ1) =−E

(

∂ 2 log(λ1)

∂λ 2
1

)

. (10)

The Fisher information measures the sensitivity of an estimator. Jeffrey’s [9] be considered as a prior for the likelihood
function L(θ ). The Jeffrey’s prior is justified on the grounds if its invariance under parameterization according to [15].
Then, the prior distribution for λ1B and λ2B respectively

π(λ1B)∝
1

λ1B

and π(λ2B)∝
1

λ2B

. (11)

Based on the above assumptions and from Equation (11), the joint density of the data λ1B and λ2B cab be obtained as

L(X1,X2, · · · ,Xn,Y1,Y2, · · · ,Ym,λ1B) = L(X1,X2, · · · ,Xn,Y1,Y2, · · · ,Ym,λ1B)π(λ1B)

and
L(X1,X2, · · · ,Xn,Y1,Y2, · · · ,Ym,λ2B) = L(X1,X2, · · · ,Xn,Y1,Y2, · · · ,Ym,λ2B)π(λ2B).

Therefore, the posterior density of these data, λ1B and V2B given the data can be obtained as follows:

π∗(λ1B) = L

(

λ1B

X1,X2, · · · ,Xn,Y1,Y2, · · · ,Ym

)

=
L(X1,X2, · · · ,Xn,Y1,Y2, · · · ,Ym,λ1B)π(λ1B)

1
∫

0

L(X1,X2, · · · ,Xn,Y1,Y2, · · · ,Ym,λ1B)π(λ1B)dλ1B

and

π∗(λ2B) = L

(

λ2B

X1,X2, · · · ,Xn,Y1,Y2, · · · ,Ym

)

=
L(X1,X2, · · · ,Xn,Y1,Y2, · · · ,Ym,λ2B)π(λ2B)

1
∫

0

L(X1,X2, · · · ,Xn,Y1,Y2, · · · ,Ym,λ2B)π(λ2B)dλ2B

. (12)
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From Equation (12), the posterior density of these data λ1B and λ2B are given by:

π∗(λ1B) =

λ
r1
1 e

−λ1

{

e
θ

r1
∑

i=0
xi
+(r1+1)−(r1+1)(n−r1)

[

e
θxr1 +1

]

}

×
{

e
θ

r1
∑

i=0
xi

+(r1 + 1)− (r1 + 1)(n− r1)
[

eθxr1 + 1
]

}

r1

Γ (r1 + 1)
(13)

π∗(λ2B) =

λ
r2
2 e

−λ2

{

e

θ
r2
∑

j=0
y j

+(r2+1)−(r2+1)(m−r2)
[

e
θyr2 +1

]

}

×
{

e
θ

r2
∑

j=0
y j

+(r2 + 1)− (r2+ 1)(m− r2)
[

eθyr2 + 1
]

}

r2

Γ (r2 + 1)
(14)

From Equations (13) and (??), the estimators λ̂1B and λ̂2B are given by

λ̂1B = E

(

λ1

X1,X2, · · · ,Xn,Y1,Y2, · · · , ,Ym

)

=

∞
∫

0

λ1π∗(λ1B)dλ1,

λ̂2B = E

(

λ2

X1,X2, · · · ,Xn,Y1,Y2, · · · , ,Ym

)

=

∞
∫

0

λ2π∗(λ2B)dλ2. (15)

Once the estimators λ̂1B and λ̂2B, are derived and using the invariance property of the MLEs in (3), the MLE of R denoted
as R̂B becomes

R̂B = f racλ̂2Bλ̂1B + λ̂2B. (16)

Use the estimators λ̂1B and λ̂2B to estimate the bootstrap sample X∗
1 ,X

∗
2 , · · · ,X∗

n and Y ∗
1 ,Y

∗
2 , · · · ,Y ∗

m the compute the

estimated value of R̂B by Bayes which shown in (16).

Calculate the bootstrap MSE by

M̂SEBB =
1

N

N

∑
i=1

(R̄( j)− R̄B).

The asymptotic (1−α)100% confidence interval is given by

(

R̄−Z α
2

√

M̂SEBB , R̄+Z α
2

√

M̂SEBB

)

. (17)

6 Simulation study

In this section some numerical experiments reported and performed by using MATHCAD PROGRAM 2001, to evaluate
the behavior of the proposed methods for different effective sample sizes, different sampling schemes and different
parameter values . The performances of the MLEs and the Bayes estimates are compared in terms of biases , mean
squares errors (MSEs) loss function . Bayes estimates, are computed based on non-informative . Monte Carlo simulation
is performed to test the behavior of the proposed estimators.

The simulations are based on 10000 replications and the results are presented in Tables (1) for MLE. In Table (2) for
Bayes estimators and in Table (3), both CI and B-CI using Equations (9) and (17), respectively.

The results are shown in Table (1). All simulations are based on the following sample sizes; n and m = 5,10,15,25 and
50 where λ1 and λ2 = 0.1,0.2,0.5,0.001,0.06, respectively. Table (2) shows the results of Bayes estimation of R.
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7 Tables

Table 1: MI method estimation of R̂MLE

(n,m) λ1 λ2 λ̂1MLE λ̂2MLE R R̂MLE Bias MSE

(5,5)
0.1 0.2 0.092 0.205 0.666 0.619 0.0046462 0.022

0.5 0.5 0.545 0.555 0.500 0.524 0.1550000 0.569

0.001 0.06 0.001202 0.66 0.983 0.950 −0.004642 0.001262

(5,10)
0.1 0.2 0.11 0.192 0.666 0.616 0.002212 0.015

0.5 0.5 0.495 0.495 0.5 0.655 0.121 0.062

0.001 0.06 0.001226 0.062 0.983 0.951 −0.002962 0.001144

(10,10)
0.1 0.2 0.105 0.211 0.666 0.626 0.012 0.012

0.5 0.5 0.542 0.542 0.5 0.562 0.125 0.062

0.001 0.06 0.00102 0.062 0.983 0.952 −0.001512 0.00102

(15,15)
0.1 0.2 0.099 0.210 0.666 0.624 0.019 0.006251

0.5 0.5 0.529 0.502 0.500 0.559 0.126 0.049

0.001 0.06 0.0011 0.062 0.983 0.952 −0.001215 0.001006

(15,25)
0.1 0.2 0.101 0.206 0.666 0.622 0.009021 0.0056092

0.5 0.5 0.511 0.522 0.5 0.552 0.106 0.02

0.001 0.06 1.026e−2 0.062 0.983 0.952 −0.001456 0.001002

(25,25)
0.1 0.2 0.102 0.219 0.666 0.625 0.012 0.00511

0.5 0.5 0.454 0.529 0.5 0.552 0.115 0.021

0.001 0.06 0.00102 0.062 0.983 0.954 −0.000926 0.0009696

(50,50)
0.1 0.2 0.102 0.202 0.666 0.621 0.016 0.00252

0.5 0.5 0.504 0.505 0.5 0.566 0.104 0.019

0.001 0.06 0.00101 0.061 0.983 0.954 −0.00106 0.000991

Table 2: Bayes estimation of R

(n,m) λ1 λ2 R R̂B
Bayes with MSE

Bias MSE

(5,5)
0.1 0.2 0.666 0.61 −0.059 0.045

0.001 0.06 0.983 0.966 −0.00522 0.00129

(5,10)
0.1 0.2 0.666 0.615 −0.051 0.026

0.001 0.06 0.983 0.965 −0.00629 0.00125

(10,10)
0.1 0.2 0.666 0.611 −0.025 0.016

0.2 0.1 0.333 0.225 −0.125 0.021

0.001 0.06 0.983 0.95 −0.004254 0.001064

(15,15)
0.1 0.2 0.666 0.611 −0.025 0.016

0.2 0.1 0.333 0.266 0.102 0.016

0.001 0.06 0.983 0.95 −0.004254 0.001064

(15,25)
0.1 0.2 0.666 0.615 −0.009621 0.006696

0.2 0.1 0.333 0.266 −0.102 0.015

0.001 0.06 0.983 0.952 −0.002466 0.001005

(15,25)
0.1 0.2 0.666 0.61 −0.0002666 0.005291

0.2 0.1 0.333 0.251 −0.069 0.005621

0.001 0.06 0.983 0.952 −0.002055 0.0009949

(15,25)
0.1 0.2 0.666 0.614 0.005201 0.00292

0.2 0.1 0.333 0.224 −0.046 0.004

0.001 0.06 0.983 0.952 −0.001292 0.0009504
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Table 3: MI method estimation of R̂MLE

(n,m) R Cl B−Cl (n,m) R Cl B−Cl

(5,10)
0.666 (0.612, 0.676) (0.613, 0.699)

(15,25)
0.666 (0.603, 0.669) (0.612, 0.679)

0.333 (0.255, 0.355) (0.252, 0.393) 0.333 (0.245, 0.351) (0.255, 0.399)

0.983 (0.950, 0.999) (0.950, 0.991) 0.983 (0.954, 0.994) (0.941, 0.996)

(10,10)
0.666 (0.612, 0.683) (0.609, 0.676)

(25,25)
0.666 (0.610, 0.676) (0.612, 0.689)

0.333 (0.264, 0.395) (0.266, 0.391) 0.333 (0.265, 0.369) (0.246, 0.366)

0.983 (0.953, 0.996) (0.945, 0.999) 0.983 (0.954, 0.993) (0.940, 0.996)

(15,15)
0.666 (0.606, 0.686) (0.604, 0.685)

(50,50)
0.666 (0.613, 0.690) (0.632, 0.694)

0.333 (0.265, 0.369) (0.264, 0.369) 0.333 (0.269, 0.363) (0.250, 0.361)

0.983 (0.953, 0.995) (0.940, 0.995) 0.983 (0.955, 0.990) (0.939, 0.996)

Fig. 1: Comparing between MSEs of estimated values of R by using MLE method and Bayes method.

8 Conclusion

In this paper, the problem of estimating R = P(X < Y ) for the OGEE distribution was studied, the results were tabulated
in Tables 1, 2 and 3, we observed that :

1. The MSE of the estimates of R decreases as the increases for (n,m).
2. The performance of the Bayes estimators based on MSEs are better than MSEs of MLE.
3. The average lengths of all intervals decrease as (n,m) increases.
4. The length of asymptotic confidence interval of MLE is smaller than the Boot-strap Bayes confidence intervals.
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