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Abstract: We propose a new modification to Adomian decomposition ntefbonumerical treatment of the time-dependent Emden-
Fowler-types equations with the Neumann and Dirichlet liauy conditions. In new modified method, we use all the bonnda
conditions to derive an integral equation before estainlgsthe recursive scheme. The new modified decompositiohadetMDM)

will be used without unknown constants while computing thecgssive solution components. Unlike the recursive selehat result
from using the ADM, the new MDM avoids solving a sequence oflim@ar algebraic or transcendental equations for thevalion of
unknown constants. Moreover, the proposed techniquei@btelenough to overcome the difficulty of the singular paint = 0. Five
illustrative examples are examined to demonstrate theracg@and applicability of the proposed method.
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1 Introduction well-known that the Lane—Emden equation is used in
modelling a thermal explosion in either an infinite
It is well known that the time-dependent Emden-Fowler cylinder (a = 1) or a spherga = 2), wherea is the
equations can describe either heat diffusion or wave typeshape factor of the equation. I18]] Harley and Momoniat
equation. Many problems in the literature of the diffusion studied this problem, where approximate first integrals
of heat perpendicular to the surfaces of parallel planes aravere obtained and employed to study the qualitative

modeled by the heat equation: features of the solutions. For more information on
a2u(x,t) N a au(x.t) T ;ezeg;tly works on Lane-Emden equations, see details [
ox? X 0X ’ However, the time-dependent Emden-Fowler equation
h(xt) = ﬁUéX,t)7 O<x<l. 1) of the wave type, with singular behavior, is of the form:
2%u(x,t) o du(xt) ;
Here, f(x,t)g(u) + h(x,t) is the nonlinear heat source, w2 Tx ax Hafxtou)
u(x,t) is the temperature, artds the dimensionless time 92u(x,t)
variable. For the steady-state case, andhfart) = 0, Eq. +hxt) = —5—, 0<x<l. 3)
(1) is the Emden-Fowler equatiof][given by ot ) . .
a Here, f(x,t)g(u) + h(x,t) is the nonlinear source,is the
U+ — Uy +af (x)g(u) = 0. (2) dimensionless time variable, andi(x,t) is the
X displacement of the wave at the positioand at time.
For f(x) = 1 andg(u) = u", this equation is known as the In this work, we will concern ourselves on studying

standard Lane-Emden equation of the first kind, whereashe heat type and the wave type of the
the second kind is obtained wheg(u) = €. It is Emden-Fowler-types equationdl)(and @) with the
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Neumann and Dirichlet boundary conditions: equations with the Neumann and Dirichlet boundary
conditions of the form %), (3) and @). However, the

uxt| g (Ut = g(t) (4 lime-dependent Emden-Fowler-types equations with
X |yo x=1 =9 initial conditions were studied (for details se&1[12,

13]). Note the convergence of Adomian decomposition
Recently, many researche 7,8,9,10] have shown method was established by many authors (for details see
interest to the study of ADM for different scientific [14,15,16]). For more information on recent works on
models. According to Wazwaz ]], we define the partial ADM for differential eugtions, see detaild7,18,19,20,
differential singular operatokyy ;= X~ “gx (x 5x) then 21,22].

Eqg. (1) can be rewritten as In this work, we aim to develop a modified
decomposition method (MDM), to study the series
Lt = U —af (x,t)g(u) —h(xt). (5)  solution of the Emden-Fowler-types equatiohs (3) and

i . ) (4). The presence of singularity at= 0, as well as strong
Let us formally define the left-inverse integral operator nonlinearity, such problems pose difficulties in obtaining

[11 « < their solutions. The proposed method, that will be
1 o presented later, is based on the ADM. However, in the

Lot = /?/X []dxds. proposed scheme, we will use all the boundary conditions

0 0 to derive an integral equation before establishing the

recursive scheme for the solution of the considered
problems. Thus, we develop MDM without any unknown
u(x,t) = c(t) + Lt —af (x,t)g(u) — h(x.t)], c(t) = u(0,t). constant while computing the successive solution
(6)  components. Unlike most of earlier recursive schemes

which use ADM, the MDM avoids solving a sequence of
The ADM gives the solutiomi(x,t) by an finite series of nonlinear algebraic or transcendental equations for

Operating withL;* on both the sides ofj yields

components unknown constant. We will examine five numerical
N examples to show the reliability and efficiency of the
u(x,t) = ZO“J' (x,t), @) proposed method.
J:

and the nonlinear functiog(u) by an infinite series of 5 The modified decomposition method
Adomial polynomials 7]

u) = XOAJ, (8)
J:
In order to overcome the singular behaviorxat 0, we
where rewrite the Emden-Fowler equatiob) @s follows:

1 dn °
= Y - ) Ju Ju
A= dAn{Q(JEOYJ)\ )]H’ j=012,... &[Xa&] « {E_af(xt)g( )—h(x,t)},0<x<l,

(10)

2.1 Emden-Fowler heat-type equation

Substituting the series fron7and @) into (6) we obtain
o with the Neumann and Dirichlet boundary conditions:

;Ou,(xt ) =c(t {zo——af (%,t) %Aj—h(x,t)}. N

Identifying the zeroth componenfy = c(t), the ADM X «e0
admits the recursive scheme: a

=0, u(xtl=gt), 0<t<T. (11)

Integrating both side of EdLQ) w.r.t. X partially from 0
M af(x, DA —h(xt)], j=1.2 } (9)  tox, and then dividing both sides of the above equation
T T by x* and using the boundary conditid}}| _, =0, we
We note that the above scheme depends(on where in  obtain the Volterra integro-partial-differential equoati
order to determine it, we have to impose the boundary
conditions. This in turn leads in general to a sequence of ,
nonlinear (transcendental) of equations. It is obvious tha —- /E {
for solving such a system foc(t), a huge size of
computational work is needed.
To the best of our knowledge, no one has applied theWe again integrate Eq1p) w.r.t. x partially fromxto | and
ADM to solve the time-dependent Emden-Fowler-typesusingu(x,t)|x=; = g(t), we obtain the integro-differential

Up(x,t) =c,
uj(xt) = L [S¢

f(E.0g(u) — h(&t)}d& (12)
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equation Proceeding as before, we obtain the modified
decomposition method for this case as
[
/ 1 /Sfa{du up = g(t),
- | = = | s
s7 ot 1 o dzuj,l

X 0
—af(&,)A] 1 h(at)}dada j=1,23..

We then seek the solution of EdL{) in the form of the  Then, the approximate series  solution
decomposition series Un(x,t) = 3] _ouj(xt).

—af(&,t)g(u) —h(E,t)}dEdS. (13)

=S uj(xt 14
1y jZouJ(X’ ) a9 3 Numerical Results

and the nonlinear terng(u) by an infinite series of In this section we examine some different models of time-

Adomial polynomials dependent Emden-Fowler heat-type as well as wave-type
equations. All the results are calculated using the syraboli
software Mathematica. To show the accuracy of the MDM,

u) = ZDAJ'- (15) the maximum error is defined as:
J:

Substituting Eqgs.14) and (5) into (13) we obtain En =maxiu(t) —¢n(x 1), n=12... (21)

whereu(x,t) is the analytical solutions of the considered

o0 z?u, models andpn(x,t) is the approximate solutions.
Z)u, (x,t) / /E
J:

3.1 Emden-Fowler heat-type equation

—af(&,1) [JZOAJ-] —h(E,t)}dEds.

(16)  with singular behavior at = 0.
This in turn leads to the following recursive scheme Example 1.Consider the following linear time-dependent
Emden-Fowler heat-type equation:
s 2
o 1 [,qf0uj-1 d7u(x,t) 5du(xt) du(xt)
u'*_/?/f{ at a7 e Tx ox ot
X
0 _ (1262 — 20 + 4t%) u(x. 1),
_af(z,t)Aj,l—h(é,t)}déds, j=12.. (22)

Then, the approximate series solution  aswith the boundary conditions:
Un(x,t) = ZT:OUJ' (%,t). au

20, uxt)hei=6, 0<t<T, (23)
0X|y_o

2.2 Emden-Fowler wave-type equation The analytical solution of the problemusx,t) = et
Following the analysis presented earlier, and to overcome _According to the proposed MDML(), the problem
the singular behavior atx = 0, we rewrite the (22-(23) can be written as:

Emden-Fowler wave-type equatios) @s

up(Lt) = €&,
[ 40u 92 17 ,5f0uj 1,
d—x{x ﬂ} X {W—af(xt)g()—h(x7t)}70<x<l /9’5/6 {
18) 0
_ N - (122 — 282 + 4t4&2 )u,-,l}dzds, j=12..
with the Neumann and Dirichlet boundary conditions: (4

oul - _ 0, u(Xt)xw =g(), O0<t<T. (19) Hence, ther-terms truncated series solution is obtained as
Ix|y—o Un(x,t) = 3 ouj(xt).
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In order to obtain the maximum error Table 2: The maximum absolute err&, of Example2

En = max|u — ¢n|, we use the Mathematica Command A =~
‘NMaximize’. Then, the numerical results of error t=1 [0.940007 0.335841 0.159815 0.0829814 0.0449321 0.0249443
E,, n= 1,234,506 are given in Tablel (with time

t = 0.5,1). From Tablel, it can be concluded that, the

error decreases monotonically with the increase of the

integern. Example 3.We next consider the following nonlinear time-

dependent Emden-Fowler heat-type equation:

2%u(x,t) adu(xt) du(xt)

Table 1: The maximum absolute err&, of Examplel >+ — = + f(x, )" (28)
ox X OX ot
= Ep Es Eq Es Es
T=05[0.113889 0.0410658 0.0162361 0.00703156 0.00330148 GBGGE + h(x, t)e2xt) (29)
t=1 |0.940007 0.3358410 0.1598150 0.08298140 0.04493210 4230 ’ ’

with the boundary conditions:

Example 2.Consider the following nonlinear @ =0, U(Xt)|x=z=1In (iﬁ), 0<t<T, (30)
time-dependent Emden-Fowler heat-type equation: Ix|y—o 3+t
_ -2 2
02U(X,t) 5du(x,t)  du(xt) () where  f(xt) = t(tx) +ﬁﬁ (X —t(-1+a+ B))’
e x ax ot T f(xt)e h(x,t) = t?(tx)~2+2 B2, a and are physical parameters.

Lu(xt) The analytical solution of the problem is
+h(x,t)ez"Y, (25) u(X,t):In(3+é¢)B)_

with the boundary conditions: According to the MDM (7), the problem 28)-(30)

Ju can be written as:
| =0 U1 = ~2In(1+1), 0<t<T, (26)

—0

X w1 = (g ).
where f(x,t) = (24t + 16t°¢%), and h(x,t) = 2x2. The \

analytical ~ solution  of the  problem s ui (1) :_/ 1 /SE {0U, 1
uxt) = —2In(14tx?). ) s

According to the proposed MDML1{), the problem +f(E7t)A,-,1+h(£7t)Bj,1}dEds7 i=12..
(25)-(26) can be written as (31)

Uo(1, t)——2|n(1+t) For the nonlinear termse" and e, the Adomian
/ /5 {z?uJ L polynomials are given by

1
Ag=€0;A; = ePuy; Ay = > o (U%‘FZUZ)"'

f(E,t)Aj_1+h(E,t)Bj_l}dEds, j=1,2..
Bo = €%0; By = 26™0uy; By = 2620 (U2 + up) ... (32)

(27)

Hence, then-terms truncated series solution is obtained as
Un(xt) = 3l ouj(xt). The maximum error
En, n= 12 3 4,56 are listed in Table3 (where
1 a=106= 2) and Table4 (wherea = 2,8 = 2). In each
Ag=€"; A;=e%uy; Ay =€ (u§+2u2) cases, we find that the error decreases uniformly with an
2 increases irt. From the same Tables, we observe that the
En decreases whem increases fronm = 1 toa = 2.

The Adomian polynomial for the nonlinear terei are
given as

and for the terne? are as

U 1 u 1 u
Bop—e€?; B = -e?u;; By= —e? (uf+4up) ...
2 8 Table 3: The maximum absolute errdt, of Example3 when

Hence, ther-terms truncated series solution is obtained as® = 1LB=2
E; E> E3 E4 Es [

Ten . ,
Yn(x.t) = 3 _ouj(xt). In this case, the maximum error +—=g5/00930934 0:0530019 0.0102946 0.00936786 0.00156160 15164
En, n=1,2,3,4,5,6 is listed in Table2 (with timet = t=1 |0.0974429 0.0593728 0.0116003 0.00673511 0.00344730084383
0.5,1). From the table, we observe that the error decreases

with an increases in.
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Table 4: The maximum absolute errd, of Example3 when
a=2p=2

Ey E> Es Ey Es Es
T=0.5/0.0315944 0.0029070 0.0018675 0.00022654 0.00019022008022
t=1 |0.0815126 0.0046046 0.0032665 0.00080163 0.0005041800090Q9

3.2 Emden-Fowler wave-type equation

with the boundary conditions:

Ju

1
_ — lyoq =1 — t<T
X o 07 U(X, )|X—1 n(5+t>’ 0<t< ’ (39)

where f(x,t) = —8t, and h(x,t) = (4t>¢—x*).
analytical solution of the problem igx,t) = In(

1
5+x2t ) :

Finally, we consider some models of wave-type equationsyccording to the MDM R0), the problem7)-(39) can be

with singular behavior at = 0.

Example 4.Consider the following nonlinear
time-dependent Emden-Fowler wave-type equation:

02u(x,t)  20u(xt)  d%u(xt) u(xt)
X2 X ox oz foene (39)
+h(x,t)e?*t, (34)

with the boundary conditions:

du
OX|y_o

1
=0 xe1=In{—], 0<t<T, (35
9 U(X, )|X71 n <4+t>7 < = I ( )

x4, The
1
(4+X2t )

According to the MDM RQ), the problem 33)-(35)
can be written as:

where f(xt) = —6t, and h(x,t) = 4t?x* —
analytical solution of the problem igx,t) = In

f(E7t)Aj,l+h(E7t)Bj,1}d£ds7 j=12..
(36)

In this case, the Adomian polynomials for the nonlinear

termse” ande? are given as in the equatiof). Hence,

written as:

f(E7t)Aj,1+h(£7t)Bj,1}d£ds7 j=1,2..
(40)

In this case, the Adomian polynomials for the nonlinear
termse” ande? are given as in the equatiod3). Hence,

the n-terms truncated series solution is obtained as
Un(X,t) = oUj(x,t). The maximum absolute error
En, n=12, é 45,6 are listed in Tablé (t=0.5,1). In this
case, we observe that the maximum error decreases with
an increases af.

Table 6: The maximum absolute err&, of Example5

E; E; E3 E, Es Es
T=05[0.0953102 0.0176375 0.0115035 0.00853207 0.00536796140069
t=1 |0.182322 0.0381574 0.0121871 0.00996439 0.00771276 5008

the n-terms truncated series solution is obtained as ;

Un(x,t) = 3 ouj(x,t). In order to see the accuracy of 4 Conclusion

proposed method, the maximum error

En, n=1,2,3,4,56 are listed in Table5. Here, we We  have investigated the  time-dependent

observe that the maximum error decreases uniformly withEmden-Fowler-types equationsl) (and @) with the

an increases af.

Table 5: The maximum absolute erré, of Example4
Ey E; Es Eq Es Es
0.5[0.0161957 0.0036737 0.0009058 0.0008065 0.0002350 (139601
1 |0.0368578 0.0040331 0.0009966 0.0008882 0.0004039 (0BY02

Example 5.We finally study the following nonlinear time-
dependent Emden-Fowler wave-type equation:

%u(xt)  3du(xt 2
aE@ ) < ;X ) _ P g et (37)
+h(x,t)e?x), (38)

Neumann and Dirichlet boundary conditiond).( We
proposed a modified decomposition method, where we
utilized all the boundary conditions to derive an integral
equation before establishing the recursive scheme. Thus,
we developed MDM without any unknown constant while
computing the successive solution components. Unlike
the most of earlier recursive schemes using ADM (see
[23,24]), the MDM avoids solving a sequence of
nonlinear algebraic or transcendental equations for
unknown constant. This technique is reliable enough to
overcome the difficulty of the singular pointat= 0. The
proposed scheme was tested where convergence was
emphasized for each model. lllustrative examples were
investigated to confirm the applicability of the proposed
method.
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