
Appl. Math. Inf. Sci.9, No. 1, 457-461 (2015) 457

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/090153

A Dependable Computing in Database for Managing
Mass Connection Systems
Chung-Yang Chen and Wen-Lung Tsai∗

Department of Information Management, National Central University, No. 300, Jhongda Rd., Jhongli City, Taoyuan Country 32001,
Taiwan

Received: 21 Apr. 2014, Revised: 22 Jul. 2014, Accepted: 23 Jul. 2014
Published online: 1 Jan. 2015

Abstract: Most operations in database (DB) is based on the deferred update replication technique, especially in distributed
environments. In deferred update replication, transactions are executed on a single host and broadcast to other hosts at commit
time. Upon delivering a transaction, each host confirms it toensure a globally serializable execution. The mechanism issubject
to CAP theorem in order to ensure data consistency and availability. This paper proposes a dependable cache query mechanism in
distributed relational database (DRDB). The key insight ofthe cache query mechanism provides high performance, strong consistency
and availability for mass connection systems. In addition to presenting the cache query mechanism, we elaborate its implementation,
and provide an experiment and analysis of its performance.

Keywords: CAP theorem, cache query mechanism, DRDB, mass connection systems

1 Introduction

DB is a basic component of the information industry, its
development has, at the very least, spanned more than 50
years [16]. For about 40 years, the bulk of DB was in
Structured Query Language (SQL) language until the
development of the relational database (RDB) model [6],
which greatly simplified the difficulty of application
design. Until the 21st century, DB technology kept up
with demand because of the spread of high-speed
networks, the low cost of storage hardware, which made
data storage more convenient. However, DB does not just
emphasis data storage [5] and processing stability but also
looks forward to making good use of more resources to
serve a wider range of applications. Fields in RDB must
find a new way, because too many applications depend on
their development.

In the most serious challenge for RBD, distributed DB
is bound to determine the modern direction of the field.
DRDB is complex, and building it is difficult. Therefore,
any way that helps related system stakeholders conceive
the tradeoffs involved in developing DRDB is beneficial.
CAP theorem [1][7] is basically the tradeoff between
consistency and availability in a distributed environment
is a representative of the general tradeoff between

correctness and instantaneity in an unreliable system.
This concept that it is impossible for a system to achieve
both properties has played a key role in dependable
computing in distributed environments.

CAP stands for consistency, availability, and partition
tolerance. A distributed system cannot achieve all of these
three characteristics but, depending on the requirements
of a project, two can be selected. Therefore, only CA
system (consistent and highly available, but not
partition-tolerant), CP system (consistent and
partition-tolerant, but not highly available), and AP
system (highly available and partition-tolerant, but not
consistent) are possible [7]. For example, shows that
Oracle RAC [10] represents traditional RDB, which
selected consistency and availability and dropped
partition tolerance. NoSQL DB [4], on the other hand,
drops consistency to achieve partition tolerance and
availability. We can learn through this theory that, in
reality, the development of a distributed system is bound
to demand choices, and such the tradeoff is actually no
better than one another, given a comprehensive look at the
full set of applications. Cognitive sciences demand a
focus on the development of dependable research and
technology.

∗ Corresponding author e-mail:tswelu@gmail.com

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/090153


458 C. Y. Chen, W. L. Tsai: A Dependable Computing in Database...

This paper would focus on a cache mechanism in
DRDB, which is compatible with traditional RDB and
uses CAP perspectives to increase its load capacity.
Priority is given to consistency. The nature of the
so-called consistency of RDB is ACID transaction
security. ACID stands for atomic, consistent, isolated, and
durable; these four characteristics must be balanced. This
requirement is fairly common in ticket systems [8]. This
paper aims to improve the performance of DB in order to
help promoting ticket systems and achieve sustainable
results.

2 The proposed cache query mechanism

In a distributed system, a cache mechanism [9][15] is
very important. Because the distributed system
architecture of the network environment, connections, and
network communication costs produce high computation
costs, a priority is placed on cost reduction methods that
make the best use of cache mechanism to reduce
unnecessary network communications requests.

Each cache mechanism in DB on the market only
serves statements of the SELECT cacheable behavior for
the obvious reason that the SELECT statement does not
change the contents of the DB [11]. This paper addresses
the technical challenges of the UPDATE cache.
Intuitively, the UPDATE statement would seem to change
the contents of the DB, so the cache is not meaningless.
However, after careful study, it was seen that the
UPDATE statement did not always cause DB content
changes.

Fig. 1: Excerpt of UPDATE statement [14]

Fig. 1 contains the UPDATE statement in which the
assignments in the SET clause is executed, changing the
DB content. The key to determine whether the content of
the SET has been executed is to establish that the
condition of WHERE. When that condition is not
established, the content of the SET would not be
executed, and the DB would not be changed in any way,
making its features cacheable. This paper studies and
proposes its own cache mechanism for this kind of query
in order to obtain better system performance.

In DB, the natural processing of information is the
most important and time-consuming work. Clear queries
can enable the cache mechanism to reduce unnecessary
requirements for DB processing, leaving more resources
to deal with the real work and ultimately resulting in
higher service performance.

Fig. 2: Cache execution flow

The flow in Fig. 2 presents the most critical component,
the commit cache, which determines what kind of results
are in line with the conditions of the cache mechanism.
Usually, these conditions are unchangeable and placed in
the systems cache memory, so that the next time that
query is made, the system quickly complete its response,
reducing the expenditure of resources.

For the UPDATE statement, a logical ding of the
condition when it is not cacheable is hard to achieve,
because the SET problem is NP-complete. Therefore, the
most efficient way to enter the DB is to actually execute
one and, through the results of the implementation, judge
whether to comply with the conditions of the cache
mechanism.

The UPDATE statement is executed based on the
standard SQL Front-end/Backend protocol [13], which, as
we can see, in addition to the general system error, returns
the contents of the packet format as follows: UPDATE
rows

Where in the rows is a real number of lines changed,
the only possible is when the rows = 0 alerts, the DB does
not produce any changes, the DB does not produce
changes, and the condition is not established. The results
fed into the cache memory, keeping them available for the
next time the same query is received.

Table 1: Comparison between cache on and cache off
Cache on Cache off Ratio

UPDATE 0 1.85 sec 17.83 sec 10.38%
UPDATE 1 40.34 sec 37.51 sec 107.54%

The results of the prior implementation in Table 1 do not
reflect the DB-level performance of the main test cachet.
UPDATE 0, as the execution result, is not in the DB
updated content, and as a result, UPDATE 1 is only the
profile of an item, in order to minimize the cost of the
disk write, so as not to interfere with the rating values.

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 1, 457-461 (2015) /www.naturalspublishing.com/Journals.asp 459

The UPDATE 0 test comparison details the considerable
savings of the resourcesan increase of nearly 90% in the
resources availablewhich prove that the effectiveness of
the cache is very significant. While the UPDATE 1 test
must not be used for the cache, there would still be open
caching inspection procedures, whose results reflect the
cost of their implementation, representing 7.54%. These
comprehensive comparison results indicate the
application of the system to assess such situations and the
suitability of applying this technology.

3 Experiment

3.1 Experiment subject: a ticket system

The ticket system obviously encounters the mass
connection problem. DB can speed up the response to the
requirements of the query. In addition to this technical
problem, other practical considerations also exist.

3.1.1 Resource allocation [17]

This problem usually occurs when there is a large number
of the number of instant connections that exceed the
average load reserve of the unprepared system. Normality
improves the overall amount of load to prepare, or
permission to reduce the probability of the occurrence of
this problem, but the cost of upgrading these resources
needed to alleviate this fear is high.

3.1.2 Compatibility

In a purely commercial system such as the ticket system,
any sales logic changes can cause a chain reaction, causing
considerable distress to the system programmers. The DB
can provide more methods to use and be compatible with
the existing method.

Practically, there are a variety of different types of
ticket systems, but for purposes of the DB, a
defined-context, set-simulated system is the most critical
operating mode. Overall, system design is also a critical
factor. This paper tries to reduce the scope of the
computation’s application in order to understand the
benefits of DB in this context. The first definition of the
application of the system and the test scenarios are as
follows:

–100 vacancies booked by 10,000 people
–Authentication violence into the DB and higher than
practical environment strength

–Tickets that reserve a specific seat
–100 attempts allowed for each ticket; once exceeded,
that seat ends

–Programming language, PHP [12]; web server, Apache
HTTP Server [3]

–Client’s simulated test software, for client ab [2]

Fig. 3 is the pseudo-code for the core program. According
to the pseudo codethe following statement test should be
used:
$ ab -n 200 -c 200 http://server-hostname/ticket.php
This statement can generate 200 simultaneous connections
and produce test results. The statement changes the n -c
parameter to complete the experiment.

Fig. 3: Pseudo code of Simulated ticket system (ticket.php)

3.2 Result and discussion

Programs of the experiment and DB links use only a
query statement to minimize the application process and
meet the test requirements in this section for an UPDATE
statement. When the application needs more time for
processing, the density of work for DB is reduced and
could provide even better work efficiency.

Table 2: Experiment result of simulated ticket system
Connection Cache on Cache off Saved

100 3.34 2.54 -31.50%
200 5.99 7.18 16.57%

1000 23.57 42.58 44.65%
2000 45.67 89.77 49.13%

10000 262.33 455.39 42.39%

In Table 2, when there were only 100 connections, the
Remarks cache mechanism failed to ensure that seats

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


460 C. Y. Chen, W. L. Tsai: A Dependable Computing in Database...

were available and became a burden. Its contribution,
however, increased along with the number of connections.
In this test, stabilization saves more than 40% of the
operating costs. Compared with Table 1, the pure DB test
saves 90% of the cost, but in this test, sharpness is
reduced to 40%. The difference is that this test increases
the processing of the application. Even if the application
of this test is very simple, it still accounts for high
operating costs. Therefore, the practical design, not just
the DB performance tuning and application design has a
decisive impact on the overall efficiency of the
implementation. Two of three must be implemented to
ensure success.

4 Conclusion and future work

In related distributed systems, a cache mechanism is a
crucial component. Through the proposed cache query
cache mechanism for UPDATE, This paper challenges the
practicality of implementing this technology, and the
results successfully expanded the field of view of the
development of basic technologies. Given its important
position in the cache system, the cache must perform part
of the job of the distributed system. To this end, our near
future work will develop cache memory cluster, a faster
and more stable DB cache mechanism.

For distributed DB, data distribution algorithms are a
future major research focus. Consideration of the
parameters of applications could support more efficient
resource allocation and ultimately yield better results.

In addition, many of the applications deployed on
APPs of smart phone have different properties than
traditional application and database services like search
engines and on-line shopping websites. For instance, they
are heavily influenced by propinquity and security; they
are organized around all kinks of social interactions; and
privacy considerations are more immediate. By reviewing
CAP in the context of DRDB, we might better understand
the unique tradeoffs that occur in these types of scenarios.

Acknowledgement

The authors are grateful to the anonymous referee for a
careful checking of the details and for helpful comments
that improved this paper.

References

[1] D. Abadi, Consistency Tradeoffs in Modern Distributed
Database System Design: CAP is Only Part of the Story,
Computer,45, 37-42, 2012.

[2] The Apache Software Foundation, ab - Apache HTTP
server benchmarking tool - Apache HTTP Server,
http://httpd.apache.org/docs/2.2/programs/ab.html.

[3] The Apache Software Foundation, Welcome! - The Apache
HTTP Server Project,http://httpd.apache.org/.

[4] E. Brewer, CAP twelve years later: How the ”rules” have
changed, Computer,45, 23-29, 2012.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, R. E. Gruber,
Bigtable: A distributed storage system for structured data,
ACM Transactions on Computer Systems,26, 4:1-4:26,
2008.

[6] E. F. Codd, A Relational Model of Data for Large Shared
Data Banks, Communications of the ACM,13, 377-387,
1970.

[7] S. Gilbert, N. Lynch, Perspectives on the CAP Theorem,
Computer,45, 30-36, 2012.

[8] B. Gregg, Thinking Methodically about Performance,
Communications of the ACM,56, 45-51, 2013.

[9] O. Khan, M. Lis, Y. Sinangil, and S. Devadas, DCC: A
Dependable Cache Coherence Multicore Architecture, IEEE
Computer Architecture Letters,10, 12-15, 2011.

[10] OracleR, Oracle Real Application Clusters, Available:
http://www.oracle.com/us/products/database/options/real-
application-clusters/overview/index.html, October 26,
2012.

[11] Pgpool Global Development Group, pgpool-
II Tutrial On Memory Query Cache,
Available: http://www.pgpool.net/pgpool-
web/contribdocs/memqcache/en.html, November 14,
2012.

[12] PHP Group, PHP: Hypertext Preprocessor,
http://www.php.net/.

[13] The PostgreSQL Global Development Group, PostgreSQL:
Documentation: 9.2: Message Formats, Available:
http://www.postgresql.org/docs/9.2/static/protocol-
message-formats.html, November 14, 2012.

[14] The PostgreSQL Global Development Group,
PostgreSQL: Documentation: 9.2: UPDATE, Available:
http://www.postgresql.org/docs/9.2/static/sql-update.html,
November 14, 2012.

[15] M. H. Yeo, Y. S. Min, K. S. BOK, J. S. Yoo, The
Optimization of In-Memory Space Partitioning Trees for
Cache Utilization, IEICE TRANSACTIONS on Information
and Systems,E91-D, 243-250 2008.

[16] Wikipedia, Database management system, Available:
http://en.wikipedia.org/wiki/DBMS, October 25, 2012.

[17] W. Zhang, L. Ruan, M. Zhu, L. Xiao, J. Liu, X. Tang, Y. Mei,
Y. Song, Y. Sun, SLA-Driven Adaptive Resource Allocation
for Virtualized Servers, IEICE TRANSACTIONS on
Information and Systems,E95-D, 2833-2843, 2012.

c© 2015 NSP
Natural Sciences Publishing Cor.

http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/
http://www.php.net/
http://www.postgresql.org/docs/9.2/static/sql-update.html
http://en.wikipedia.org/wiki/DBMS


Appl. Math. Inf. Sci.9, No. 1, 457-461 (2015) /www.naturalspublishing.com/Journals.asp 461

Chung-Yang Chen is
an Associate Professor in the
Department of Information
at National Central University
(NCU), Taiwan R.O.C.
He received his Ph.D. degree
in Industrial Engineering
and Engineering Management
at Arizona State University
(ASU) in 2002. He is also

the director of Computing Center in the School of
Management. His current research and teaching interests
include the areas of software engineering, BPR (Business
Process Reengineering), CMMI, project management
methods, and information quality.

Wen-Lung Tsai
is a Ph.D. candidate of
Information Management
at National Central University
(NCU), Taiwan R.O.C.
He is also an engineer in
Innovative DigiTech-Enabled
Applications & Services
Institute, Institute for
Information Industry (III),

Taiwan R.O.C. His research interests include cloud
computing, distributed database, software engineering
and project management.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	The proposed cache query mechanism
	Experiment
	Conclusion and future work

