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Abstract: This paper is devoted to the study of basis properties of e {t} U {e‘(”WSig””ﬁ} S wherep is a real parameter,
ne

in Morrey-Sobolev-type spaces. We find sufficient condgitor the basicity in Morrey-Sobolev-type spaces in termisefualities of
the parameteg.
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1 Introduction various function spaces by several authors. BabehRp |
has proved that the degenerate system of exponentials
{|t|* €™}, with |a| < 5 forms a basis fot, (—77, 1)
Morrey spaces were introduced by MOI’I’EM I]n the but does not form a Riesz basis Wheﬂ;'é 0, whereZ is
setting of partial differential equations and appearedeto b the set of integers. Generalization of this result to a more
quite useful in the study of the local behavior of solutions general degenerate function is given by Gaposhkin [13].
of elliptic partial differential equations, a priori estites N [14], the conditions on the weight functiop, for
and other topics in the theory of PDE. Precisely, it is awhich the systen{e™} _ forms an unconditional basis
useful tool in the qualitative theory of elliptic differéat  for the weighted Besov space have been obtained. Similar
equations 2,3]. Further, it provides a large class of Pproblems have been studied ib5[16]. Basis properties
examples of mild solutions of the Navier—Stokes systemof the systems of sines, cosines and exponentials with the
[4]. In the context of fluid dynamics, Morrey spaces havelinear phase in weighted Lebesgue space have been
been used to model flow when vorticity is a singular studied in [L7,18,19]; see als020,21,22].
measure supported on certain setsRh[5]. There are
sufficiently wide investigations related to fundamental
problems in these spaces in view of differential equations

otential theory, maximal and singular operator theor el
P y g P ysystem of exponentials in Morrey space. Also, 24][the

and approximation theoryc(f. [6] and the references X X .
above). Special interest in the study of Morrey-type _baS|s properties of the perturbed systems of exponentials

spaces arised in harmonic analysis and approximatioff) Morrey space have been investigated. On the other
theory [7,8,9,10,11]. hand, the Riemann boundary value problem in

Morrey-Hardy classes has been studied?§ [

The basis properties of the exponential systems in
Morrey-type spaces are much less studied. In the paper
[23), there were obtained the basis properties of the

The splash of interest to Morrey-type spaces during | this paper we introduce a simple method for
the last decade allow to consider the basis properties of, eqtigating the basis properties of the system
systems in such spaces in order to fill the gaps in the j(nt Bsignnit . .
theory of Morrey spaces. The basis properties oftt}U {e' }nez’ wheref is a real parameter, in

exponential systems have been extensively investigated ithe Morrey-Sobolev space.
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2 Preliminaries and Notation 3 TheMain Result

The main result reads

Throughout this paper, we always denote®wg positive

constant which is independent of main parameters, but it heoremllet 0 < a < 1. The system
may have different values even in the same line. Denotgt} U ei<”+33i9””>t} forms a basis for M, (—, )
the set of natural numbers byand the set of nonnegative e following ineqrheélities are satisfied

integers byNg. We always assume, unless otherwise

stated, thata,p and q are real numbers such that o a
0<a<ll<p<wandpl+qgl=1. _2_q§B<ﬁ,' @

Let I' be a rectifiable Jordan curve on the complex
planeC. By |M|- we denote the linear Lebesgue measure  The proof is based on constructing an isomorphism
of a setM C I'. The Morrey-Lebesgue (or simply, between the spacMW&a and the spac®1.Z, «, which
Morrey) spacelLP? (") is the normed space of all allows using the basis properties of the system
measurable functions dn equipped with the norm ei(n+Bsignn)t} in the spaceM.%, 4 presented in74].

nez
This will be shown in the following lemma.

ol

1
fllLpa(ry = | su / f()P|dt] | < 4o,
1l p. (r) ( BPW er| 1] |> '
Lemma 1.The operator AM.%p « — MW; , defined as
where the supremum is taken over all digksentered on  (AQ) (t) = v(t) = A + [* _u(1)dt, is an isomorphism.
[. LPO(r) is a Banach space andPl(r) = Lp(I),
LPO(F) = Lo (I). The embedding P (") c LP92(I") ProofFirstly, let us show that the operatoA is
is valid for 0< ay < ap < 1. Thus LP@ (1) c L, () for ~ Well-defined. Indeed, sinceP® C Lp C Ly, then, for all
1< p < o. The case of = [~ 7] will be denoted by € MZpa we have
Lpa, - e
Denote byLP? the linear subspace &f-? consisting  [Adjpa = [Vpa < (@mF A|+ sup {%a/l /t u(n)dr pdt}
of functions whose shifts are continuoudi®?, i.e. et LI o o

a 1 e P
(PO {f€lpa:|f(+8)—f()|pa—0 asd—0}. < (2m)® \)\|+|C(Siurl3m{m17a/(/ﬁn\U(r)ldT> dt}

. . = @)% M+ @M P Ul <+ ®
We always assume that a functiod continues
2m-periodically to the real axi®. The closure oLP? in Additionally, V = u € LP?, ThusAl € W&a- Next, we

LP-9 will be denoted by\/”_p’a. show thatAd MW&C{
The Morrey-Sobolev space is denoted Wga and  [AGC+8) —AG() g = IVE+0) VOt = IV(+0) =V()pa

consists of functions which belong, together with their *H"/<'+5)*"/ 0|
derivatives of the first order, to the Morrey space? H »
/ u(t)dr

equipped with the norm
gy = 1 llipe + {17l o - (1) - (k]
teemm [ 1754

Lp.a

+u(-+3)—u()lpa
Lp.a

t+6 p e
/ u(r)dr dt}
t

Denote bW, the linear subspace ¥4}, consisting of +lIu(+8)~uC)llpa -

functions whose shifts are continuous/itj]a. By MW&G By using the absolute continuity of the Lebesgue integral,
we denote the closure of this space with respect to thevhent ¢ (-1, 1), uniformly with respect to, we have

norm (1). ByM.%,, » we denote the direct sum MLP?
andC (C is the complex plane)

t+0
/ u(r)dtr — 0, asd — 0.
t

M$p7a == MLp,C{ EB (C
Also, sinceu € MLP9, we have
Let us define the norm iN.Z}, o in the following way
. A lu(-+93)—u(-)|| pa = 0, asd — 0.
[0y = IUllLpa +IA], 0= (U4;A) € MLpq.
Therefore
We assume here some familiarity with basic concepts
of basis theory and we refer to the book of H&if]. |AG(-+d) — AO(-)||W&G — 0, asd — 0.
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Furthermore, the operatéris a bounded operator. Indeed, {é(“+55i9“")‘} , the Hausdorff-Young inequality holds
by using (3), we obtain that nez

for B > ——. Thatis, for 1< p < 2, we have

a 2q

p

a
1Az, < 2 P A ]+ (27) P (lullyy () + IUllpa -

P © 1/q
— q q
Since <IC_1Iq+nzl\cn (n+B)] +n;\cﬁ(n+ﬁ>| ) <Mull,

ull,. <Cjull_ <C|lul| pa,
I, < Clull, < C o wheres + ¢ = 1. Applying Holder's inequality, we obtain

le-a| + Z\CEH ZICSF
n= n=

hed 1 B hd 1
‘C*Hn;imm \<n+l3)cn\+n;7|n+m| |(n+B)cy |

we immediately have
Az, < COA+[Ullpa) = CllOlvg, ,

for an appropriate constant. Next we show that @ 1 2 a2 12 L
kerA = {0}. LetAG =0, i.e.A + [ _u(t)dT = 0. If we §‘°’1|+n;\n+ﬁlpn;|<n+ﬁ)c"| +n;\n+ﬁlpn;|<n+ﬁ)c"| s
differentiate both sides, we geti(t) = 0, almost | etusnote that, whem> 1, we haven+ 3 # 0. Therefore,
everywhere. ThusA = 0, and sou"= 0. Finally, the  with respect to the condition (2) the inequaly> —3 is
operatorA is onto, since, for ali € MW&G, there exists  yalid.

V= (V;v(-n)) € MZ% s and A(¥) = v. Using the Forp > 2, sinceL™® C Ly C Lo, we have

Banach theorem on inverse operators [27, Theorem 3.4], 12

the inverse ofA is a continuous operator. This completes <\c,l\2+z;’;l|cg(n+/3)|2+zﬁzl\cg(n+/3)|2) <Mjull,

the proof of the lemma. o
and similarly

Itis now easy to provide the (o 1l Sial6n 1+ 3016t <16 11+ 55 e (Shal (0 B)ca P+ S50+ B)Gi ) < o

So, we show that the seri€g? ; |ci| is absolutely
convergent. Therefore, in the series (6), the coeffiabgnt
is uniquely defined. Thus, we have shown the existence
and uniqueness of the expansion (4) forwal M.%p 4.
to the condition (2), the systenﬁei(”*ﬁs‘g”“)‘ , isa  Thus, the systerfl_1} _U{Oo} U{Oﬁ}nzl forms a basis
basis forMLP:9 [24, Corollary 3]. We will provgethat the forMZp, ¢ We can easily show that, for the operator

system{0_1} U {up} U {GF},n > 1 forms a basis for
M.Zp.q, where

Proof(Proof of Theorem 1)t is known that with respect

t
Al=A +/ u(t)dr,
—TT
1 0 the following relations are true
1= <_n) 0o = <1> A(G_1) =t,A(do) = 1, A(0r) = e (B andA(dr) — 8B,

Since A is an isomorphism, the system
B j(n+pB)t i —i(n+B)t . .
o = <|<n+/3)e' )-,Gn’ :< e )mzl. {thu {(—:J(“+Bs'9“")‘} forms a basis foMW2 . This

—i(n+B)1T i(n+p)m
€ ¢ nez

Any elementu’e M.%, o has a unique expansion of the completes the proof.

form
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