

Sohag Journal of Mathematics An International Journal

http://dx.doi.org/10.18576/sjm/110302

Extensions of Riemann-Liouville Fractional Integral Inequalities on Time Scales

Stephen Napio Ajega-Akem^{1,2,*}, Mohammed Muniru Iddrisu³ and Kwara Nantomah¹

Received: 26 Jun. 2023, Revised: 29 Mar. 2024, Accepted: 2 Apr. 2024

Published online: 1 Sep. 2024

Abstract: In this article, we present some inequalities involving Riemann-Liouville Fractional Integrals and establish some extensions of the integrals on time scales. Also, we establish some results through the application of arithmetic-geometric mean inequality.

Keywords: AM-GM inequality, extension, fractional integral inequality, time sacles.

1 Introduction

An arbitrary non-empty closed subset of the real numbers is called a time scale and it is mostly designated by $\ensuremath{\mathbb{T}}.$ The area was exposed to mathematicians by Hilger in 1988 [16]. Hilger only came out with Delta (Δ) derivatives. Nabla (∇) derivatives and their anti-derivatives initially. After the introduction by Hilger, Time Scale Calculus has became familiar with researchers and made a lot of advancement in the research fraternity. The discovery of time scales is a big gain to researchers. In the area of analysis for instance, Time Scale Calculus gives a resourceful tool to merge continuous and discrete problems in one theory. When we chose $\mathbb{T} = \mathbb{R}$, then the theory of time scale turns to real analysis and when $\mathbb{T} = \mathbb{Z}$, it turns to discrete analysis.

The purpose of this paper is to extend Riemann-Liouville Fractional Integral inequalities on time scales and also present some inequalities involving the integrals on time scales. The other parts of this papers are arranged in the following order. Part 2 is the preliminary section which is made up of basic concepts in time scales and some

useful definitions. Part 3, presented the results and discussions section of this paper and part 4 contains the conclusion section.

2 Preliminaries

Here we state some key definitions in the area of time scales, details are the cited reference.

Definition 21 [4,10]Let $\mathbb T$ be a time scale, $t\in \mathbb T$ and $\sigma\colon \mathbb T\to \mathbb T$. Then the forward jump operator is defined as

$$\sigma(t) = \inf\{s \colon s \in T, s > t\}.$$

Definition 22 [4, 10, 17] Let \mathbb{T} be a time scale, $t \in \mathbb{T}$ and $\rho : \mathbb{T} \to \mathbb{T}$. Then the backward jump operator is defined as

$$\rho(t) = \sup\{s \colon s \in T, s < t\}.$$

Let $\mathbb{T}=\mathbb{R}$. Then $\sigma(t)=t$. Also, let $\mathbb{T}=\mathbb{Z}$. Then $\sigma(t)=t+1$. Correspondingly, let $\mathbb{T}=\mathbb{R}$, then $\rho(t)=t$. Let $\mathbb{T}=\mathbb{Z}$, then $\rho(t)=t-1$.

Definition 23 [3]Let $t \in \mathbb{T}$, then t is called right dense if $\sigma(t) = t$. It is called right scattered if $\sigma(t) > t$.

¹Department of Mathematics, School of Mathematical Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana

²Department of Mathematics, St. John Bosco College of Education, P.O Box 11, Navrongo, Ghana

³Department of Mathematics, Faculty of Physical Sciences, University for Development Studies, P. O. Box TL 1882, Tamale, Ghana

^{*} Corresponding author e-mail: akemesteve@gmail.com

Definition 24 [3]Let $t \in \mathbb{T}$, then t is called left dense if $\rho(t) = t$. It is called left scattered if $\rho(t) < t$.

Definition 25 Let $t \in \mathbb{T}$. Suppose $t < \sup \mathbb{T}$ and $\sigma(t) = t$, then t is right-dense.

Definition 26 Let $t \in \mathbb{T}$. Suppose $t > \inf \mathbb{T}$ and $\rho(t) = t$, then t is left-dense.

Points that are both right-dense and left-dense at the same time are referred as dense.

Definition 27 [12] A function $f: \mathbb{T} \to \mathbb{R}$ is called right-dense (rd)-continuous, provided it is continuous at all right-dense(rd) points in \mathbb{T} and its left-sided limits are finite at the left-dense points in \mathbb{T} . All right-dense (rd)-continuous functions are represented by $\mathbb{C}_{rd}(\mathbb{T},\mathbb{R})$.

Definition 28 [7,25] Suppose $f: \mathbb{T} \to \mathbb{R}$ and let $t \in \mathbb{T}^k$, then $f^{\triangle}(t)$ (if only it exist) with the property that, for any $\varepsilon > 0$ there exist a neighbourhood \bigcup of t, thus $\bigcup = (t - \sigma, t + \sigma) \setminus \mathbb{T}$ for some $\sigma > 0$ so that

$$[f(\sigma(t))-f(s)]-f^{\Delta}(t)[\sigma(t)-s]\leq \varepsilon\,|\sigma(t)-s|\,,\,\forall\quad \text{(1)}$$

$$s\in\bigcup.$$

Definition 29 [11] Let $f,g: \mathbb{T} \to \mathbb{R}$ be differentiable at $t \in \mathbb{T}^k$ then the following are valid.

$$(f+g)^{\Delta}(t) = f^{\Delta}(t) + g^{\Delta}(t).$$

$$(\alpha f)^{\Delta}(t) = \alpha f^{\Delta}(t), \qquad \alpha \quad \text{is constant.}$$

$$(fg)^{\Delta}(t) = f^{\Delta}(t)g(t) + f(\sigma(t))g^{\Delta}(t) = f(t)g^{\Delta}(t) + f^{\Delta}(t)g(\sigma(t)).$$

$$\left(\frac{1}{f}\right)^{\Delta}(t) = -\frac{f^{\Delta}(t)}{f(t)f(\sigma(t))}.$$

Definition 210 [10,11] A function $F: \mathbb{T} \to \mathbb{R}$ is called a delta anti-derivative of $f: \mathbb{T} \to \mathbb{R}$ provided $F^{\Delta}(t) = f(t)$ for all $t \in \mathbb{T}^k$, the delta indefinite and definite integrals are defined respectively by the following equations.

$$\int f(t)\Delta t = F(t) + C,$$
 (2)

$$\int_{a}^{b} f(s)\Delta s = F(b) - F(a). \tag{3}$$

Definition 211 [10, 11] A function $G: \mathbb{T} \to \mathbb{R}$ is called a nabla anti-derivative of $g: \mathbb{T} \to \mathbb{R}$ provided $G^{\nabla}(t) = g(t)$ for all $t \in \mathbb{T}_k$, the nabla indefinite and definite integrals are defined respectively by the following equations.

$$\int g(s)\nabla s = G(b) - G(a). \tag{4}$$

$$\int_{a}^{b} g(s)\nabla s = G(b) - G(a). \tag{5}$$

When \mathbb{T} has a left-scattered maximum M, then it is $\mathbb{T}^k = \mathbb{T} - M$. Also, when \mathbb{T} has a right-scattered minimum m, then it is $\mathbb{T}_k = \mathbb{T} - m$.

Definition 212 [26] Let $a_1, a_2 \in \mathbb{T}$, and f^{Δ}, g^{Δ} be left-dense continuous functions. Then

$$\int_{a_1}^{a_2} f(t)g^{\Delta}(t)\Delta t = (fg)(a_2) - (fg)(a_1) - (6fg)(a_2) - (fg)(a_2) - (fg)(a_$$

is the time scale integration by parts.

Definition 213 [8] Let t be any arbitrary point in \mathbb{T} . Then for any given function f defined on \mathbb{T} is Δ -integrable from t to $\sigma(t)$ and is expressed as

$$\int_{t}^{\sigma(t)} f(x)\Delta x = (\sigma(t) - t)f(t). \tag{7}$$

Definition 214 [8,26]The graininess function $\mu: \mathbb{T} \longrightarrow [0,\infty)$ is defined by

$$\mu(t) = \sigma(t) - t. \tag{8}$$

Lemma 21 [11] Let t, $\sigma(t) \in \mathbb{T}$. if $f, g \in \mathbb{C}_{rd}(\mathbb{T}, \mathbb{R})$, then

$$\int_{t}^{\sigma(t)} |f(\tau)g(\tau)| \Delta \tau \leq \qquad (9)$$

$$\left[\int_{t}^{\sigma(t)} |f(\tau)|^{p} \Delta \tau \right]^{\frac{1}{p}} \left[\int_{t}^{\sigma(t)} |g(\tau)|^{q} \Delta \tau \right]^{\frac{1}{q}},$$

where q > 1, $\frac{1}{a} + \frac{1}{p} = 1$.

Definition 215 *[21]* Let $a,b \in \mathbb{T}, a < b,h \colon \mathbb{T} \to \mathbb{R}$ and $\alpha \in [0,1]$. Then diamond- α integral (or \Diamond_{α} -integral) of h from a to b (or on $[a,b]_{\mathbb{T}}$) is defined by

$$\int_{a}^{b} h(t) \diamondsuit_{\alpha} t = \alpha \int_{a}^{b} h(t) \Delta t + (1 - \alpha) \int_{a}^{b} h(t) \nabla t, \quad (10)$$

provided h is delta and nabla integrable on $[a,b]_{\mathbb{T}}$.

 $_{\alpha}^{\beta}\mathbb{J}^{\alpha}f(x)=$

Lemma 22 [5] Let $f(\tau), g(\tau)$ be two \mathbb{C}_{rd} functions, $\sigma(t), t \in \mathbb{T}$ and $0 < \frac{f(\tau)}{g(\tau)} \le \varphi$. Then we have

$$\mu(\tau)f(\tau) \leq \varphi^{\frac{-1}{q}} \left[\int_{t}^{\sigma(t)} |f(\tau)| \diamond \alpha \tau \right]^{\frac{1}{p}} \left[\int_{t}^{\sigma(t)} |g(\tau)| \diamond \alpha \tau \right]^{\frac{1}{q}} \qquad \frac{1}{\Gamma(\beta)} \int_{x}^{b} \left(\frac{(b-x)^{\alpha} - (b-t)^{\alpha}}{\alpha} \right)^{\beta-1} (b-t)^{\alpha-1} f(t) dt, \\ (11) \qquad \qquad b > t.$$

for $0 \le \alpha \le 1$, where p, q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$.

The left and right Riemann-Liouville integrals (R-L I) discovered around 1826 to 1882 by G.F.B. Riemann (1826-1866) and J. Liouville (1809-1882) [2,9] are defined respectively by

$$I_{a+}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} (x-t)^{\alpha-1} f(t) dt$$
 (12)

and

$$I_{b-}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{b} (t-x)^{\alpha-1} f(t) dt, \qquad (13)$$

where f is a continuous function on the interval [a,b]and Γ is the classical Euler gamma function.

Riemann-Liouville integrals are said to have been derived from the well known Cauchy's formula.

Definition 216 *[6]* Let $f \in L_1(a,b)$, then the Cauchy formula is given by

$$\int_{a}^{x} \int_{a}^{x_{n-1}} \dots \int_{a}^{x_{1}} f(t)dt dx_{1} \dots dx_{(n-1)} = \frac{1}{(n-1)!} \int_{a}^{x} (x-t)^{n-1} f(t) dt$$
(14)

for $n \in \mathbb{N}$ and $\alpha \in \mathbb{R}^+$.

There are many extensions or generalizations of (12) and (13) which include the following:

Definition 217 [13] Let $\beta \in \mathbb{R}(\beta) > 0$, then the left and right sided fractional conformable integral operators are defined respectively as follows;

$$\frac{{}^{\beta}_{a}\mathbb{J}^{\alpha}f(x) = }{\Gamma(\beta)} \int_{a}^{x} \left(\frac{(x-a)^{\alpha} - (t-a)^{\alpha}}{\alpha}\right)^{\beta-1} (t-a)^{\alpha-1}f(t)dt, \\
\theta > t$$

and

$$\frac{1}{\Gamma(\beta)} \int_{x}^{b} \left(\frac{(b-x)^{\alpha} - (b-t)^{\alpha}}{\alpha} \right)^{\beta-1} (b-t)^{\alpha-1} f(t) dt,$$

$$b > t.$$

Also see [1,23].

Definition 218 [24] Let f be integrable function, then

$${}_{a}^{\beta} \mathbb{J}^{\alpha} f(x) = \frac{1}{\Gamma(\beta)} \int_{x}^{b} \left(\frac{x^{\alpha} - t^{\alpha}}{\alpha} \right)^{\beta - 1} t^{\alpha - 1} f(t) dt, b > t,$$
(17)

for all $\alpha, \beta > 0$ and Γ is the Euler Gamma function.

Definition 219 [2, 15] Riemann-Liouville k-fractional integrals are defined as

$$\mathbb{J}_{k,a^{+}}^{\alpha}f(x) = \frac{1}{k\Gamma_{k}(\alpha)} \int_{a}^{x} (x-t)^{\frac{\alpha}{k}-1} f(t) dt, \quad x > a, \quad (18)$$

$$\mathbb{R}(\alpha) > 0$$

and

$$\mathbb{J}_{k,b^{-}}^{\alpha}f(x) = \qquad (19)$$

$$\frac{1}{k\Gamma_{k}(\alpha)} \int_{x}^{b} (t-x)^{\frac{\alpha}{k}-1} f(t) dt, \quad b > x,$$

$$\mathbb{R}(\alpha) > 0.$$

where Γ_k is the k -gamma function.

Definition 220 Let k > 0, then Γ_k function is defined

$$\Gamma_k(x) = \lim_{x \to \infty} \frac{n! k^n (nk)^{\frac{x}{k} - 1}}{(x)_{n,k}}, \quad x \in C \setminus kZ^-.$$
 (20)

Definition 221 For $x \in \mathbb{C}$ with $\mathbb{R}(x) > 0$, then the k-gamma function, $\Gamma_k(x)$ is given by the integral

$$\Gamma_k(x) = \int_0^\infty t^{x-1} e^{-\frac{t^k}{k}} dt, \qquad (21)$$

for t, k > 0.

Definition 222 [14, 18] Let $f \in L_1[0, \infty)$. Then the generalized Riemann - Liouville fractional integral $\mathbb{I}^{\alpha,k}f(x)$ of order $\alpha,k\geq 0$ is defined as

$$\mathbb{I}^{\alpha,k}f(x) = \frac{(k+1)^{k+1}}{\Gamma(\alpha)} \int_0^x \left(x^{k+1} - t^{k+1}\right)^\alpha t^k f(t) dt$$

$$\mathbb{I}^0 f(x) = f(x).$$
(22)

Where Γ is the gamma function.

Remark 21 Let k = 0, then equation (22) becomes the known classical Riemann - Liouville fractional integral.

More on the Riemann-Liouville integrals can be found in [19,20,22].

Definition 223 Let p_i, q_i be real positive numbers. Then the Arithmetic-Geometric Mean Inequality is defined as

$$\frac{p_i + q_i}{2} \ge \sqrt{p_i q_i},\tag{23}$$

where equality occurs when $p_i = q_1$.

Definition 224 Let $x : x \in \mathbb{T}$, where $\mathbb{T} = \mathbb{R}$. Then we have

$$f^{\Delta}(x) = f^{\nabla}(x) = f'(x). \tag{24}$$

3 Results and Discussion

We begin the results and discussion with the following definition.

Definition 31 Let $f(\tau)$ be continuous and delta integrable on $[t,\sigma(t)]_{\mathbb{T}}$. Then we define the left and right Riemann-Liouville conformable fractional integral operator as

$$\Delta_{a^{+}}^{\alpha,\lambda}f(\rho) = \frac{1}{\Gamma_{k}(\lambda)} \int_{t}^{\theta} \left(\frac{\rho^{\alpha\beta^{-1}} - \tau^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \right)^{\frac{\lambda}{k} - 1} \times (25)$$

$$\tau^{\frac{\alpha}{\beta} - 1} f(\tau) \Delta \tau, \quad \theta > t$$

and

$$\Delta_{b^{-}}^{\alpha,\lambda}f(\rho) = \frac{1}{\Gamma_{k}(\lambda)} \int_{\theta}^{\sigma(t)} \left(\frac{\rho^{\alpha\beta^{-1}} - \tau^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \right)^{\frac{\lambda}{k} - 1} \times \tau^{\frac{\alpha}{\beta} - 1} f(\tau) \Delta \tau, \quad \sigma(t) > \theta.$$
(26)

For all $\alpha, \beta \in (0, \infty)$, $\lambda, \eta \neq k, k > 0$, $\lambda, \eta > 0$, $\rho > \tau$ and $t, \theta, \sigma(t) \in \mathbb{T}$.

Remark 31 For $\beta = k = 1$ in (25) and (26) yields

$$\Delta_{a^{+}}^{\alpha,\lambda}f(\rho) = \frac{1}{\Gamma(\lambda)} \int_{t}^{\theta} \left(\frac{\rho^{\alpha} - \tau^{\alpha}}{\alpha}\right)^{\lambda - 1} \tau^{\alpha - 1} f(\tau) \Delta \tau, \tag{27}$$

$$\theta > t,$$

$$\Delta_{b^{-}}^{\alpha,\lambda}f(\rho) = \frac{1}{\Gamma(\lambda)} \int_{\theta}^{\sigma(t)} \left(\frac{\rho^{\alpha} - \tau^{\alpha}}{\alpha}\right)^{\lambda - 1} \tau^{\alpha - 1} f(\tau) \Delta \tau, \tag{28}$$

$$\sigma(t) > \theta.$$

Remark 32 Suppose $\alpha = \beta = 1$ and k = 1 in (25) and (26), then the following Riemann - Liouville fractional integral operators on time scales are obtained.

$$\Delta_{a^{+}}^{\lambda} f(\rho) = \frac{1}{\Gamma(\lambda)} \int_{t}^{\theta} (\rho - \tau)^{\lambda - 1} f(\tau) \Delta \tau, \quad \theta > t.$$
 (29)

$$\Delta_{b^{-}}^{\lambda} f(\rho) = \frac{1}{\Gamma(\lambda)} \int_{\theta}^{\sigma(t)} (\rho - \tau)^{\lambda - 1} f(\tau) \Delta \tau, \quad \sigma(t) > \theta.$$
(30)

Lemma 31 Let $f,g,h\colon \mathbb{T}\to\mathbb{R}$ be delta integrable functions such that $0\leq \frac{f(\rho)}{h(\Psi)}\leq m\leq \frac{f(\xi)}{h(\Psi)}$ and $0\leq g(\rho)\leq m\leq g(\xi)$, then

$$f(\xi)g(\xi)h(\psi) - f(\xi)g(\rho)h(\psi) - f(\rho)g(\xi)h(\Psi) +$$

$$f(\rho)g(\rho)h(\Psi) \ge 0,$$
(31)

for all $\xi > \rho$, $\psi > \Psi$ and $\xi, \rho, \psi, \Psi \in \mathbb{R}$.

Proof. Given that

$$m-\frac{f(\boldsymbol{\rho})}{h(\boldsymbol{\psi})}\geq 0,$$

and

$$\frac{f(\xi)}{h(\Psi)} - m \ge 0.$$

Then

$$\frac{f(\xi)}{h(\Psi)} - \frac{f(\rho)}{h(\psi)} \ge 0. \tag{32}$$

Similarly

$$m-g(\rho) \geq 0$$
,

and

$$g(\xi) - m \ge 0$$
.

Then

$$g(\xi) - g(\rho) \ge 0. \tag{33}$$

From (32) and (33) we obtain

$$\frac{f(\xi)}{h(\Psi)}g(\xi) - \frac{f(\xi)}{h(\Psi)}g(\rho) - \frac{f(\rho)}{h(\psi)}g(\xi) + \frac{f(\rho)}{h(\psi)}g(\rho) \ge 0$$

as required.

Remark 33 Putting $h(\Psi) = h(\psi)$ for all $\Psi, \psi \in [t, \sigma(t)]_{\mathbb{T}}$, we obtain

$$f(\xi)g(\xi) - f(\xi)g(\rho) - f(\rho)g(\xi) + f(\rho)g(\rho) \ge 0. \tag{34}$$

Lemma 32 Let : $\mathbb{T} \to \mathbb{R}$ be delta-integrable function on $[0,\xi]_{\mathbb{T}}$. Then

$$\int_{0}^{\xi} \left(\frac{\xi^{\alpha\beta^{-1}} - u^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \right)^{\frac{\lambda}{k} - 1} u^{\alpha^{-1}\beta - 1} \Delta u = \frac{k(\alpha^{-1}\beta)^{\frac{\lambda}{k}} \xi^{(2\alpha\beta^{-1})\frac{\lambda}{k} - 1}}{\lambda},$$
(35)

for all $\alpha, \beta \in (0, \infty)$, $k, \lambda > 0$, $\lambda \neq k$ and $\xi > u$. *Proof.* Clearly

$$\int_0^\xi \left(rac{\xi^{lphaeta^{-1}}-u^{lphaeta^{-1}}}{lphaeta^{-1}}
ight)^{rac{\lambda}{k}-1}\xi^{lpha^{-1}eta-1}\Delta u = \ (lpha^{-1}eta)^{rac{\lambda}{k}-1}\int_0^\xi \left(\xi^{lphaeta^{-1}}-u^{lphaeta^{-1}}
ight)^{rac{\lambda}{k}-1}u^{rac{lpha}{eta}-1}\Delta u,$$

$$\int_0^\xi \left(\frac{\xi^{\alpha\beta^{-1}} - u^{\alpha\beta^{-1}}}{\alpha\beta^{-1}}\right)^{\frac{\lambda}{k} - 1} \xi^{\alpha^{-1}\beta - 1} \Delta u =$$

$$(\alpha^{-1}\beta)^{\frac{\lambda}{k} - 1} \xi^{(\alpha\beta^{-1})\frac{\lambda}{k} - 1} \int_0^\xi \left(1 - \left(\frac{u}{\xi}\right)^{\alpha\beta^{-1}}\right)^{\frac{\lambda}{k} - 1} u^{\frac{\alpha}{\beta} - 1} \Delta u.$$

Let $\mu = \left(\frac{u}{\xi}\right)^{\alpha\beta^{-1}}$ and by Definition 224 we have

$$\int_0^{\xi} \left(\frac{\xi^{\alpha\beta^{-1}} - u^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \right)^{\frac{\lambda}{k} - 1} \xi^{\alpha^{-1}\beta - 1} \Delta u =$$

$$(\alpha^{-1}\beta)^{\frac{\lambda}{k} - 1} \xi^{(\alpha\beta^{-1})\frac{\lambda}{k} - 1} \frac{\xi^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \int_0^1 (1 - \mu)^{\frac{\lambda}{k} - 1} \Delta \mu.$$

Also, let $v = 1 - \mu$, thus

$$\int_0^{\xi} \left(\frac{\xi^{\alpha\beta^{-1}} - u^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \right)^{\frac{\lambda}{k} - 1} \xi^{\alpha^{-1}\beta - 1} \Delta u =$$

$$(\alpha^{-1}\beta)^{\frac{\lambda}{k} - 1} \xi^{(\alpha\beta^{-1})\frac{\lambda}{k} - 1} \frac{\xi^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \int_1^0 -(v)^{\frac{\lambda}{k} - 1} \Delta v,$$

$$\int_0^{\xi} \left(\frac{\xi^{\alpha\beta^{-1}} - u^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \right)^{\frac{\lambda}{k} - 1} \xi^{\alpha^{-1}\beta - 1} \Delta u = \frac{k(\alpha^{-1}\beta)^{\frac{\lambda}{k}} \xi^{(\alpha\beta^{-1})\frac{\lambda}{k}}}{\lambda}.$$

Theorem 33 Let $f,g,h\colon \mathbb{T}\to\mathbb{R}$ be delta integrable functions on $[t,\sigma(t)]_{\mathbb{T}}$ such that $0\leq \frac{f(\rho)}{h(\Psi)}\leq m\leq \frac{f(\xi)}{h(\Psi)}$ and $0\leq g(\rho)\leq m\leq g(\xi)$. Then

$$\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}f\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}g\right)(t) \leq \qquad (36)$$

$$\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}fg\right)(t).$$

Proof. Multiplying through (34) by $\frac{1}{\xi^{1-\alpha\beta^{-1}}\Gamma_{\!k}(\lambda)} \left(\frac{t^{\alpha\beta^{-1}}-\xi^{\alpha\beta^{-1}}}{\alpha\beta^{-1}}\right)^{\frac{\lambda}{k}-1} \text{ and then integrating the result with respect to } \xi \text{ over } [0,t]_{\mathbb{T}} \text{ and then applying Definition 31, Definition 224 and Lemma 32 we have}$

$$\begin{split} \left(\Delta_{k}^{\alpha\beta^{-1},\lambda}\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}fg\right)(t) - \\ \left(\Delta_{k}^{\alpha\beta^{-1},\lambda}f\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}g\right)(t) \\ - \left(\Delta_{k}^{\alpha\beta^{-1},\lambda}f\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}g\right)(t) + \\ \left(\Delta_{k}^{\alpha\beta^{-1},\lambda}\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}fg\right)(t) \geq 0. \end{split}$$

Simplifying gives

$$\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}f\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}g\right)(t) \leq \left(\Delta_{k}^{\alpha\beta^{-1},\lambda}\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}fg\right)(t).$$
(37)

Corollary 34 Let $f,g,h\colon \mathbb{T}\to\mathbb{R}$ be delta integrable functions on $[t,\sigma(t)]_{\mathbb{T}}$. Then

$$\left(\Delta_{k}^{\lambda}fg\right)(t) \geq \frac{\Gamma_{k}(\lambda+1)}{kt^{\frac{2\lambda}{k}-2}}\left(\Delta_{k}^{\lambda}f\right)(t)\left(\Delta_{k}^{\lambda}g\right)(t), \quad (38)$$

for all $\lambda > 1$, k > 1.

Proof. Substituting $\beta=\alpha=1$ into (37) gives the result.

Theorem 35 Let Let $f,g,h\colon \mathbb{T}\to\mathbb{R}$ be delta integrable functions on $[t,\sigma(t)]_{\mathbb{T}}$ such that $0\leq \frac{f(\rho)}{h(\psi)}\leq m\leq \frac{f(\xi)}{h(\Psi)}$ and $0\leq g(\rho)\leq m\leq g(\xi)$. Then

$$\begin{split} \left(\Delta_k^{\alpha\beta^{-1},\lambda}f\right)(t)\left(\Delta_k^{\alpha\beta^{-1},\eta}g\right)(t)\left(\Delta_k^{\alpha\beta^{-1},\eta}f\right)(t)\times \\ & \left(\Delta_k^{\alpha\beta^{-1},\lambda}g\right)(t) \\ & \leq \frac{1}{4}(\left(\Delta_k^{\alpha\beta^{-1},\eta}\right)(t)\left(\Delta_k^{\alpha\beta^{-1},\lambda}fg\right)(t) + \\ & \left(\Delta_k^{\alpha\beta^{-1},\lambda}\right)(t)\left(\Delta_k^{\alpha\beta^{-1},\eta}fg\right)(t))^2. \end{split}$$

Further multiplying through (39) by $\frac{1}{\rho^{1-\alpha\beta^{-1}}I_k(\eta)}\left(\frac{t^{\alpha\beta^{-1}}-\rho^{\alpha\beta^{-1}}}{\alpha\beta^{-1}}\right)^{\frac{\eta}{k}-1} \text{ and then integrating with respect to } \rho \text{ over } [0,t]_{\mathbb{T}} \text{ yields}$

$$\begin{split} \left(\Delta_{k}^{\alpha\beta^{-1},\eta}\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}fg\right)(t)h(\psi) - \\ \left(\Delta_{k}^{\alpha\beta^{-1},\lambda}f\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\eta}g\right)(t)h(\psi) \\ - \left(\Delta_{k}^{\alpha\beta^{-1},\eta}f\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}g\right)(t)h(\Psi) + \\ \left(\Delta_{k}^{\alpha\beta^{-1},\lambda}\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\eta}fg\right)(t)h(\Psi) \geq 0. \end{split} \tag{40}$$

Thus

$$\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}f\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\eta}g\right)(t)h(\Psi) + \left(\Delta_{k}^{\alpha\beta^{-1},\eta}f\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}g\right)(t)h(\Psi) \leq \left(\Delta_{k}^{\alpha\beta^{-1},\eta}\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}fg\right)(t)h(\Psi) + \left(\Delta_{k}^{\alpha\beta^{-1},\lambda}\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\eta}fg\right)(t)h(\Psi).$$
(41)

Applying (23) to (41) yields

$$\left(\Delta_{k}^{\alpha\beta^{-1},\eta}\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}fg\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}fg\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\eta}fg\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\eta}fg\right)(t)h(\psi)\left(\Delta_{k}^{\alpha\beta^{-1},\eta}f\right)(t)\times\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}g\right)(t)$$

$$\geq 2\left(\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}f\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\eta}g\right)(t)h(\psi)\left(\Delta_{k}^{\alpha\beta^{-1},\eta}f\right)(t)\times\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}g\right)(t)\right)$$

Let $h(\Psi) = h(\Psi) = 1$, we have

$$\left(\Delta_{k}^{\alpha\beta^{-1},\eta}\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}fg\right)(t) + \\ \left(\Delta_{k}^{\alpha\beta^{-1},\lambda}\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\eta}fg\right)(t) \geq \\ 2\left(\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}f\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\eta}g\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\eta}f\right)(t) \times \left(\Delta_{k}^{\alpha\beta^{-1},\lambda}g\right)(t)\right)^{\frac{1}{2}},$$

$$(42)$$

and this further yields

$$\begin{split} \left(\Delta_{k}^{\alpha\beta^{-1},\lambda}f\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\eta}g\right)\times \\ (t)\left(\Delta_{k}^{\alpha\beta^{-1},\eta}f\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}g\right)(t) \\ \leq \frac{1}{4}(\left(\Delta_{k}^{\alpha\beta^{-1},\eta}\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\lambda}fg\right)(t) + \\ \left(\Delta_{k}^{\alpha\beta^{-1},\lambda}\right)(t)\left(\Delta_{k}^{\alpha\beta^{-1},\eta}fg\right)(t))^{2}. \end{split}$$

Theorem 36 Let Let $f,g,h\colon \mathbb{T}\to\mathbb{R}$ be delta integrable functions on $[t,\sigma(t)]_{\mathbb{T}}$ such that $0\leq \frac{f(\rho)}{h(\psi)}\leq m\leq \frac{f(\xi)}{h(\Psi)}$ and $0\leq g(\rho)\leq m\leq g(\xi)$. Then

$$\frac{\left(\Delta_{k,a^{+}}^{\alpha\beta^{-1},\lambda}fg\right)(t)}{\left(\Delta_{k,a^{+}}^{\alpha\beta^{-1},\lambda}fh\right)(t)} \leq \frac{\left(\Delta_{k,a^{+}}^{\alpha\beta^{-1},\lambda}g\right)(t)}{\left(\Delta_{k,a^{+}}^{\alpha\beta^{-1},\lambda}\right)h(t)} \tag{43}$$

for all $t > \xi, \rho$.

Proof. From Lemma 31 we have

$$f(\xi)h(\xi)g(\rho) - f(\xi)h(\rho)g(\xi) - f(\rho)h(\xi)g(\rho) \quad \text{(44)}$$
$$+f(\rho)h(\rho)g(\xi) \ge 0.$$

Multiplying through (44) by $\frac{1}{\xi^{1-\alpha\beta^{-1}} \Gamma_k(\lambda)} \left(\frac{t^{\alpha\beta^{-1}} - \xi^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \right)^{\frac{\lambda}{k}-1} \text{ and then integrating the result with respect to } \xi \text{ over } [0,t]_{\mathbb{T}} \text{ and then }$

applying (25) and Lemma 32 we have

$$\frac{1}{\Gamma_k(\lambda)} \int_0^t \left(\frac{t^{\alpha\beta^{-1}} - \xi^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \right)^{\frac{k}{k} - 1} \xi^{\alpha\beta^{-1} - 1} \times \text{respected observations and recommendations of the referees. We are therefore very grateful for your kind inputs.}$$

$$-\frac{1}{\Gamma_k(\lambda)} \int_0^t \left(\frac{t^{\alpha\beta^{-1}} - \xi^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \right)^{\frac{k}{k} - 1} \xi^{\alpha\beta^{-1} - 1} \times \text{References}$$

$$f(\xi)h(\rho)g(\xi)$$

$$-\frac{1}{\Gamma_k(\lambda)} \int_0^t \left(\frac{t^{\alpha\beta^{-1}} - \xi^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \right)^{\frac{k}{k} - 1} \xi^{\alpha\beta^{-1} - 1} f \times (\rho)h(\xi)g(\rho)$$

$$+\frac{1}{\Gamma_k(\lambda)} \int_0^t \left(\frac{t^{\alpha\beta^{-1}} - \xi^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \right)^{\frac{k}{k} - 1} \xi^{\alpha\beta^{-1} - 1} f \times (\rho)h(\xi)g(\rho)$$

$$+\frac{1}{\Gamma_k(\lambda)} \int_0^t \left(\frac{t^{\alpha\beta^{-1}} - \xi^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \right)^{\frac{k}{k} - 1} \xi^{\alpha\beta^{-1} - 1} f \times (\rho)h(\xi)g(\rho)$$

$$+\frac{1}{\Gamma_k(\lambda)} \int_0^t \left(\frac{t^{\alpha\beta^{-1}} - \xi^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \right)^{\frac{k}{k} - 1} \xi^{\alpha\beta^{-1} - 1} f \times (\rho)h(\xi)g(\rho)$$

$$+\frac{1}{\Gamma_k(\lambda)} \int_0^t \left(\frac{t^{\alpha\beta^{-1}} - \xi^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \right)^{\frac{k}{k} - 1} \xi^{\alpha\beta^{-1} - 1} f \times (\rho)h(\xi)g(\rho)$$

$$+\frac{1}{\Gamma_k(\lambda)} \int_0^t \left(\frac{t^{\alpha\beta^{-1}} - \xi^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \right)^{\frac{k}{k} - 1} \xi^{\alpha\beta^{-1} - 1} f \times (\rho)h(\xi)g(\rho)$$

$$+\frac{1}{\Gamma_k(\lambda)} \int_0^t \left(\frac{t^{\alpha\beta^{-1}} - \xi^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \right)^{\frac{k}{k} - 1} \xi^{\alpha\beta^{-1} - 1} f \times (\rho)h(\xi)g(\rho)$$

$$+\frac{1}{\Gamma_k(\lambda)} \int_0^t \left(\frac{t^{\alpha\beta^{-1}} - \xi^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \right)^{\frac{k}{k} - 1} \xi^{\alpha\beta^{-1} - 1} f \times (\rho)h(\xi)g(\rho)$$

$$+\frac{1}{\Gamma_k(\lambda)} \int_0^t \left(\frac{t^{\alpha\beta^{-1}} - \xi^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \right)^{\frac{k}{k} - 1} \xi^{\alpha\beta^{-1} - 1} f \times (\rho)h(\xi)g(\rho)$$

$$+\frac{1}{\Gamma_k(\lambda)} \int_0^t \left(\frac{t^{\alpha\beta^{-1}} - \xi^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \right)^{\frac{k}{k} - 1} \xi^{\alpha\beta^{-1} - 1} f \times (\rho)h(\xi)g(\rho)$$

$$+\frac{1}{\Gamma_k(\lambda)} \int_0^t \left(\frac{t^{\alpha\beta^{-1}} - \xi^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \right)^{\frac{k}{k} - 1} \xi^{\alpha\beta^{-1} - 1} f \times (\rho)h(\xi)g(\rho)$$

$$+\frac{1}{\Gamma_k(\lambda)} \int_0^t \left(\frac{t^{\alpha\beta^{-1}} - \xi^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \right)^{\frac{k}{k} - 1} \xi^{\alpha\beta^{-1} - 1} f \times (\rho)h(\xi)g(\rho)$$

$$+\frac{1}{\Gamma_k(\lambda)} \int_0^t \left(\frac{t^{\alpha\beta^{-1}} - \xi^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \right)^{\frac{k}{k} - 1} \xi^{\alpha\beta^{-1} - 1} f \times (\rho)h(\xi)g(\rho)$$

$$+\frac{1}{\Gamma_k(\lambda)} \int_0^t \left(\frac{t^{\alpha\beta^{-1}} - \xi^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \right)^{\frac{k}{k} - 1} \xi^{\alpha\beta^{-1} - 1} f \times (\rho)h(\xi)g(\rho)$$

$$+\frac{1}{\Gamma_k(\lambda)} \int_0^t \left(\frac{t^{\alpha\beta^{-1}} - \xi^{\alpha\beta^{-1}}}{\alpha\beta^{-1}} \right)^{\frac{k}{k} - 1} \xi^{\alpha\beta^{-1} - 1} f \times (\rho)h(\xi)g(\rho)$$

$$+\frac{1}{\Gamma_k(\lambda)} \int_0^t \left(\frac$$

This further yields

$$\Delta_{k,a^{+}}^{\alpha\beta^{-1},\lambda}fh(t)g(\rho) - \Delta_{k,a^{+}}^{\alpha\beta^{-1},\lambda}fg(t)h(\rho) -$$

$$f(\rho)\Delta_{k,a^{+}}^{\alpha\beta^{-1},\lambda}h(t)g(\rho) +$$

$$f(\rho)h(\rho)\Delta_{k,a^{+}}^{\alpha\beta^{-1},\lambda}g(t) \ge 0.$$

$$(45)$$

Again multiplying through (45) by $\frac{1}{\rho^{1-\alpha\beta^{-1}}\Gamma_k(\lambda)} \left(\frac{t^{\alpha\beta^{-1}}-\rho^{\alpha\beta^{-1}}}{\alpha\beta^{-1}}\right)^{\frac{\lambda}{k}-1} \text{ and integrating with}$

$$\begin{split} \Delta_{k,a^{+}}^{\alpha\beta^{-1},\lambda}fh(t)\Delta_{k,a^{+}}^{\alpha\beta^{-1},\lambda}g(t) - \Delta_{k,a^{+}}^{\alpha\beta^{-1},\lambda}fg(t)\Delta_{k,a^{+}}^{\alpha\beta^{-1},\lambda}h(t) - \\ (46) \\ \Delta_{k,a^{+}}^{\alpha\beta^{-1},\lambda}fg(t)\Delta_{k,a^{+}}^{\alpha\beta^{-1},\lambda}h(t) + \\ \Delta_{k,a^{+}}^{\alpha\beta^{-1},\lambda}fh(t)\Delta_{k,a^{+}}^{\alpha\beta^{-1},\lambda}g(t) \geq 0. \end{split}$$

Thus

$$\Delta_{k,a^{+}}^{\alpha\beta^{-1},\lambda}fg(t)\Delta_{k,a^{+}}^{\alpha\beta^{-1},\lambda}h(t) \leq \Delta_{k,a^{+}}^{\alpha\beta^{-1},\lambda}fh(t)\Delta_{k,a^{+}}^{\alpha\beta^{-1},\lambda}g(t).$$
(47)

4 Conclusion

In this paper, we defined the left and right Riemann-Liouville conformable fractional integral operator on time scale. With that definition, we presented some extensions of fractional integral inequalities on time scales by Riemann-Liouville fractional integral and AM-GM inequality.

5 Acknowledgment

This paper was improved tremendously by the respected observations and recommendations of the referees. We are therefore very grateful for your

- $f(\xi)h(\rho)g(\xi)$ [1] Thabet Abdeljawad, (2015). On conformable fractional calculus, Journal of Computational and Applied
 - Some generalized Riemann-Liouville k-fractional
 - integral inequalities. J. Ineq. Appl, (122).
 [3] Agarwal, R. P., Bohner, M., and Peterson, A. (2001).
 Inequalities on time scales: a survey. Mathematical & Inequalities and Applications, Element, 4:535-558.
- $(
 ho)h(
 ho)g(\xi)\geq 0.$ [4] Agarwal, R. P., Bohner, M., Regan, D., and Peterson, A. (2000). Dynamic equations on time scales: a survey,. Journal of Computational and Applied Mathematics, vol. 141(no. 1-2):pp. 1-26.
 - [5] Ajega-Akem, S. N., Iddrisu, M. M., and Nantomah, K. (2022). On some alpha-nabla-delta integral inequalities on time scales. Asian J. Math. Appl, (2307-7743).
 - [6] Al-Salam, W. A. (1966). Some q-analogues of cauchy formulas. Proc. Amer. Math. Soc., (3):616-621.
 - [7] Ammi, M. R. S., Ferreira, R. A. C., and Torres, D. F. M. (2008). Diamond-alpha Jensens inequality on time scales. Hindawi Publishing Corporation Journal of Inequalities and Applications, Volume 2008(Article ID 576876):13 pages. 7
 - [8] Anderson., D. (2005). Time-scale integral inequalities. J. Inequal. Pure Appl. Math, 6(3)(Article ID 66).
 - [9] Belarbi, S. and Dahmani, Z. (2009). On some new fractional integral inequalities. J.Inequal. Pure Appl. Math, 10(3).
 - [10] Bohner, M. and Peterson, A. (2001a). Dynamic equations on time scales. An Introduction with Applications, Birkhäser Boston.
 - [11] Bohner, M. and Peterson, A. (2001b). An introduction with applications, dynamic equations on time scales. Birkhäser Boston, Boston (2001) MR 1843232.
 - [12] Dinu, C. (2008). Convex functions on time scales. Annals of the University of Craiova, Math.Comp. Sci. Ser., (35):338-344.
 - [13] F. Jarad, E. Ugurlu, T. A. and Baleanu, D. (2017). On a new class of fractional operators. Advances in Difference Equations, 1 (2017)(247).
 - [14] H. Yildirim, Z. K. (2014). Ostrowski inequality for generalized fractional integral and related inequalities. Malaya Journal of Matematik (MJM), 2(3):322-329.
 - [15] Habibullah, S. M. G. (2012). k- fractional integrals and applications. Int. J. Contemp. math. Sci., 7(1-4):89-94.
 - [16] Hilger, S. (1988). Ein makettenkalkel mit anwendung auf zentrumsmannigfaltigkeiten. PhD thesis, Universitt Wrzburg.
 - [17] Iddrisu, M. M. (2019). Steffensens inequality on time scales for convex functions. Honam Mathemat- ical J. 41 (2019)(No. 1):pp. 89-99.

- [18] Katugampola, U. N. (2011). Approach to a generalized fractional integral. Bulletin of Mathematical Analysis and Applications, 218(3):860-865.
- [19] Kilbas, A. A. (2001). Hadamard-type fractional calculus. J. Korean Math. Soc, 38(6):1191-1204.
- [20] Kilbas, A. A., Srivastava, H. M., and Trujillo, J. J. (2006). Theory and applications of fractional differential equations. North-Holland Mathematical Studies, Vol. 204, Elsevier, Amsterdam:204-245.
- [21] Rogers, J. W., Jr., and Sheng, Q. (326(2007)). Notes on the diamond- alpha dynamic derivative on the time scales, J. Math. Anal. Appl., (2):264-269.
- [22] Samko, S. G., Kilbas, A. A., and Marichev, O. I. (1993). Fractional integrals and derivatives: Theory and applications. Gordon and Breach, Yverdon.
- [23] Sarikaya, M. and Ogunmez, H. (2012,). On new inequalities via Riemann-Liouville fractional integration. Abstract and Applied Analysis, 2012(Article ID 428983):10 pages.
- [24] Set, E., Dahmani, Z., and Mumcu, I. (2018). New extensions of Chebyshev type inequalities using generalized katugampola integrals via Polya-Szego inequality,. International Journal of Optimization and Control: Theories & Applications, 8(2):17-144.
- [25] Tom, C. (2011). Infnitesimal Time Scale Calculus. Theses, dissertations and capstones. paper 36., Marshall University.
- [26] Eloe, P., Hilger, S., and Sheng, Q. (2006). A qualitative analysis on non-constant graininess of the adaptive grid via time scales,. Rocky Mountain J. Math, 36:115-133.

Stephen N. Ajega-Akem earned BSc and Mphil degrees in 2016 and 2019 respectively Pure Mathematics in from the University for Development Studies, Tamale, Ghana. He holds a PhD in Mathematics from

the C. K. Tedam University of Technology and Applied Sciences Navrongo, Ghana. His research interests are in Mathematical Analysis mainly on Mathematical Inequalities, Time Scales and q-Calculus. He has published research articles in reputed international journals of mathematics. He is a peer reviewer to some Mathematics and Science journals.

Mohammed Muniru Iddrisu is a Professor of Mathematics and the Principal of the Nyankpala Campus of University for Development Studies, Ghana. He received his BSc, MSc, and PhD degrees in Mathematics from the University of Cape

coast, Ghana, Norwegian University of Science and Technology, Trondheim, Norway and, University for Development Studies, Ghana respectively. He has supervised several undergraduate and postgraduate theses and also published several research articles in many refereed journals. He serves many Universities in Ghana as external examiner and assessor of theses and staff promotions. His research interests are in Mathematical Analysis, Coding Theory, Cryptography and Mathematical Statistics with emphasis on Inequalities and Special functions. He is a member of the Ghana Mathematics Society, Ghana Science Association, National Institute for Mathematical Sciences, Ghana and African Mathematical Union.

Kwara Nantomah is a Professor of Mathematics. MPhil He holds BSc. PhD and degrees in Mathematics. He is а member of several Mathematical Associations alobe. across the has served as an External Examiner to several other Universities. He is also a

Moderator of some PhD programmes. His area of specialization is Mathematical Analysis with particular interest in Mathematical Inequalities and their Applications. He is currently the Dean of School of Mathematical Sciences at the C. K. Tedam University of Technology and Applied Sciences.