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1 Introduction

An arbitrary non-empty closed subset of the real
numbers is called a time scale and it is mostly
designated by T. The area was exposed to
mathematicians by Hilger in 1988 [16]. Hilger only
came out with Delta (A) derivatives, Nabla (V)
derivatives and their anti-derivatives initially. After
the introduction by Hilger, Time Scale Calculus has
became familiar with researchers and made a lot of
advancement in the research fraternity. The
discovery of time scales is a big gain to researchers.
In the area of analysis for instance, Time Scale
Calculus gives a resourceful tool to merge
continuous and discrete problems in one theory.
When we chose T = R, then the theory of time scale
turns to real analysis and when T = Z, it turns to
discrete analysis.

The purpose of this paper is to extend
Riemann-Liouville Fractional Integral inequalities on
time scales and also present some inequalities
involving the integrals on time scales. The other
parts of this papers are arranged in the following
order. Part 2 is the preliminary section which is
made up of basic concepts in time scales and some

useful definitions. Part 3, presented the results and
discussions section of this paper and part 4 contains
the conclusion section.

2 Preliminaries

Here we state some key definitions in the area of time
scales, details are the cited reference.

Definition 21 [4, 10]Let T be a time scale, t € T and
o: T — T. Then the forward jump operator is defined
as

o(t)=inf{s: s€T,s>1}.

Definition 22 [4,10,17] Let T be a time scale, t € T
and p: T — T. Then the backward jump operator is
defined as

p(t) =sup{s: s€ T,s <t}.

LetT=R. Then o(¢) =¢. Also, let T=Z. Then o(¢) =
t + 1. Correspondingly, let T = R, then p(¢) = . Let
T=2Z,thenp(t)=t—1.

Definition 23 [3]Let: € T, thent is called right dense
ifo(r) =t. Itis called right scattered if o(t) > t.
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Definition 24 [3]Let: € T, thent is called leff dense
ifp(t) =t. Itis called left scattered if p(t) < t.

Definition 25 Let: € T. Supposet <supT and 6 (t) =
t, thent is right-dense.

Definition 26 Lett € T. Supposet > infT and p(t) =
t, thent is left-dense.

Points that are both right-dense and left-dense at
the same time are referred as dense.

Definition 27 [12] A function f: T — R is called right-
dense (rd)-continuous, provided it is continuous at all
right -dense(rd) points in T and its left-sided limits are
finite at the left-dense points in T. All right-dense (rd)-
continuous functions are represented by C,;(T,R).

Definition 28 [7,25] Suppose f: T — R and lett €
T, then f*(t) (if only it exist) with the property that,
for any € > 0 there exist a neighbourhood | J of t, thus
U= (t—o,t+0)\T for some c > 0 so that

[f(c(t) = f(9)] = fA(0)[o(t) —s] < ela(r) =], ¥ (1)
SEU.

Definition 29 [717] Let f,g: T — R be differentiable
att € T* then the following are valid.

(f+8)* (1) = A1) +8(1).

is constant.

(@) () =af*(1), «

(l)A (t) — 7&

f f)f(er)

Definition 210 [70,11] A function F: T — R is called
a delta anti-derivative of f: T — R provided

FA(t) = f(¢) for allt € T*, the delta indefinite

and definite integrals are defined respectively by the
following equations.

/f(t)At =F(t)+C, 2)

Definition 211 [10,11] A function G: T — R is
called a nabla anti-derivative of g: T — R provided
GY(t) = g(t) for all t € Ty, the nabla indefinite and
definite integrals are defined respectively by the
following equations.

[ et6)vs =6 - Gta). 5)

When T has a left-scattered maximum M, then
it is T = T — M. Also, when T has a right-scattered
minimum m, then it is T, =T — m.

Definition 212 [26] Leta;,a> € T, and f2,g* be left-
dense continuous functions. Then

[ 105t 04t = (f9) @) - (fo)a)- ©)
[ wstema

is the time scale integration by parts.

Definition 213 [8] Lett be any arbitrary point in T.
Then for any given function f defined on T is
A-integrable fromt to o(t) and is expressed as

[ rwac= o0 -ns0) %

Definition 214 [8,26]The graininess function
u: T —[0,0) is defined by

ut)=o(r) —t. (®)
Lemma 21 [11]Lett,c(t) €T. if f,g € C,y(T,R), then

o(t)
| ir@eears @

{/l.a(ﬁ £ (2)[? AT} % [./t.%) g(0)| AT} é ;

1,1 _
Definition 215 [21] Leta,b € T,a < b,h: T — R and

o € [0,1]. Then diamond-a integral (or ¢4 -integral) of
h froma to b (or on [a,b]r) is defined by

/bh(t)oat:a/bh(t)At+(1—oc) /‘bh(t)Vt, (10)

provided h is delta and nabla integrable on [a,b]r.
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Lemma22 [5] Let f(7),g(t) be two C,; functions,

o(t),t €T and0< % < ¢. Then we have

1 1

u@r <o7 [ [ irwear) [ [ ewloar]”
(1)

forogagl,wherep,q>1and%wﬁ:l.

The left and right Riemann-Liouville integrals
(R-L I) discovered around 1826 to 1882 by G.F.B.
Riemann (1826-1866) and J. Liouville (1809-1882)
[2,9] are defined respectively by

I SW = g [ 60w (12

and

B0 = o [ -0 g0 9

where f is a continuous function on the interval [a, b]
and I' is the classical Euler gamma function.

Riemann-Liouville integrals are said to have been
derived from the well known Cauchy’s formula.

Definition 216 [6] Let f € L,(a,b), then the Cauchy
formula is given by

[ [ [ rwaan.ax, ) =
1

CE / = o) f(e)ar

(14)

forneNand o € R™.
There are many extensions or generalizations of (12)
and (13) which include the following:

Definition 217 [13] Let B € R(B) > 0, then the left
and right sided fractional conformable integral
operators are defined respectively as follows;

bI°f(x) =
(15)

1 ¥ (x—a)®— (1 —a)® p-1 "
r | () o
0>t

and

L ((b=x%—(b=0)*\""'
F(B)/x( a ) (b—1)*" f(t)dt,

Also see [1,23].
Definition 218 [24] Let f be integrable function, then

F(lﬁ) /xb (xa;ta)ﬁlt“'f(t)dt,b >1,
(17)

Brofix) =

forall o, > 0 and I" is the Euler Gamma function.

Definition 219 [2, 15] Riemann-Liouville k-fractional
integrals are defined as

a . 1 X .
Jeat f(x) = W/a =0 f()dr, x>a, (18)
R(a) >0
and
T f = (19)
krkl(a) /xb(f—x)%*'f(t)dt, b>x,
R(a) >0,

where I}, is the k -gamma function.

Definition 220 Let k > 0, then I}, function is defined
as

171 71
L) = lim nk" (nk) ,

X—00 (x)mk

x€C\KZ". (20)

Definition 221 For x € C with R(x) > 0, then the k
-gamma function, I} (x) is given by the integral

(21)

for ¢,k > 0.

Definition 222 [14,18] Let f € L;[0;). Then the
generalized Riemann - Liouville fractional integral
1%k f(x) of order a,k > 0 is defined as
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ok DR %
I f(x)fifo (441 =) ey

I'(a) (22)
I0f(x) = f(x).

Where I' is the gamma function.

Remark 21 Let k =0, then equation (22) becomes
the known classical Riemann - Liouville fractional
integral.

More on the Riemann-Liouville integrals can be
found in [19,20,22].

Definition 223 Let p;,q; be real positive numbers.
Then the Arithmetic-Geometric Mean Inequality is
defined as

. + .
% > \/Digis (23)

where equality occurs when p; = g;.

Definition 224 Letx:x e T, where T = R. Then we
have

) =7 (x) = f(). (24)

3 Results and Discussion

We begin the results and discussion with the
following definition.

Definition 31 Let f(t) be continuous and delta
integrable on [t,o(t)]r. Then we define the left and
right  Riemann-Liouville — conformable fractional
integral operator as

oA _ 1 0 panI_Tanl
Aa+ f(p) - 1—;((2{)‘/[ ( aﬁ,] ) X (25)

A
A

1 10 paﬁflffaﬁfl

R < op ] ) )
(26)

71f(*c)Ar, o(t)> 0.

=IR

T

Forall o, € (0,00), A, #k, k>0,A,1>0,p > 7and
t,0,0(t) € T.

Remark 31 For =k=1in (25) and (26) yields

(28)
o(t)> 6.
Remark 32 Suppose o= =1andk=1in (25) and

(26), then the following Riemann - Liouville fractional
integral operators on time scales are obtained.

1

A1) = s [ (00 @Az, 01 (29
a o ’

o(t)> 6.
(30)

o (1)
AL f(p) = ﬁ [ -0 ras,

Lemma31 Let f,g,h: T — R be delta integrable
; f(p) fE)
functions such that 0 < W) <m< 7P and

0<g(p) <m<g(&), then

forallE >p,y>¥and &,p,y, W eR.
Proof. Given that

_flp)
" hw) =
and
f(€)
nw) "=
Then
&) _flp)
W) h(y) 52
Similarly
m—g(p) =0,
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and
8(&)-m=0

Then

8(8)—g(p) =2 0. (33)
From (32) and (33) we obtain

L e(®)~ Lahso) L8 e(e)+ Lo e(p) 20

as required.
Remark 33 Putting h(¥) = h(y) for all

¥,y < [t,o(t)|r, we obtain

f(8)8(&) = f(S)elp) — f(p)e(&) + f(p)g(p) = 0.
(34)

Lemma 32 Let: T — R be delta-integrable function
on [0,&]r. Then

Ay

E (g™ _yop N\ T
()
k(o 'p)kgap i
> ,
), k,A>0,A#kand & > u.

u® Pl Ay =

forall a, 8 € (0,
Proof. Clearly

gop™! _yoB
FEa)
(a'ﬁ)i'/f (&' -

»|>-
»—

A

¢ fgap g\ ET
/o<§ ! ) e

S gap™!

z—1g(ap
K E (Xﬁfl

A_
(1w Ap

Also, let v=1—u, thus

aB- '_Maﬁ 3

(a'B)E1g@ e

¢ fgapt g\ T
[(Fat) s

k(o p)tE(ap

>

Theorem 33 Let f,g,h: T — R be delta integrable
functions on [t,6(t)]r such that 0 < f(( 3 <m< f((g))
and0<g(p)<m<g(&). Then

() (a )0z oo
1
(4 4) 0 (a2 456) 0
Proof. Multiplying through (34) by
1 ,aﬁ'gaﬁ]%l d th . .
51aﬁ‘rk(/1)< apT and then integrating

the result with respect to & over [0,¢]y and then
applying Definition 31, Definition 224 and Lemma 32

we have
(47 %) () (A7 P 1e) (1)~
(42 5) o) (A“‘*“g) (0
(a7 ) 0 (4 e 0
(5°4) 0 a2 1) 00
Simplifying gives

(4224 1) 0 (A7 ) () <
(4227 4) () (A7 18) ().

Corollary 34 Let f,g,h: T — R be delta integrable
functions on [t,o(t)]r. Then

Li(A+1)

24
ke T2

(atre) () = (atr) () (ae) (). (39)

forall A > 1, k> 1.
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Proof. Substituting § = o = 1 into (37) gives the
result.

Theorem 35
integrable

f(p)
O<()

Let Let f,g,h: T — R be delta
functions on [t,o(t)]r such that

<m< £ and0 < g(p) <m < g(&). Then

(452 1) () (A2 78) (1) (4277 (1) %

(4% e) )

< (A7) () (a7 ) (0 +

(422 ) (a8 pg) 0
through  (31) by

1 (B! 50613' % !
gr-ab= (1) ap™!

with respect to & over [0,7]yr and also applying
Definition 31, Definition 224 and Lemma 32 we have

Proof. Multiplying

and then integrating

(4272 ) Whtw) (427" 25) WsloIhty)-
9

£p) (A2 4g) (n(w)+
(42 ) 01 (p)g(pIA(W) 2 0.

Further through (39) by
11

| B _peB”t\ K
pl-aB~'ri(n) ap™!

with respect to p over [0,¢] yields

(4271 () (2P 15) (0nw) -
(422 7) () (A7) (0m(w)

multiplying

and then integrating

(8 7) (455" 25) e (40)
(42 2) () (27 1) () >
Thus
(4227 1) () (AP 1) () +
(42777 () (a7 rg) m(w) < “

(427 m) 0 (47" 1¢) (On(w) +
(42 2) () (a8 pg) n(w).

Applying (23) to (41) yields

(427m) () (47 1)

(Algﬁ”,/l) (0) (A]f‘ﬁfl’”fg:
=24 1) (0 (A 8) 0n(w) (477 77) 0% (47 He) ()

Let h(y) = h(¥) =1, we have

(42 o) "‘f*"’lfg) (1)+

(4

(42 4) ) (a2 1) () 2
(4
(4

Bl—

2((4F 1) 0 (AP M) (1) (AP ) (0% (47 He) ()
2)

and this further yields

(457 1) (1) (477 7g) =

0 (471 7) (0 (a2 8) )

< 2((AF ) (0 (A% 1) 0+
(422 4) (0 (42 rg) (1))

Theorem 36 Let Let f,g.h: T — R be delta
integrable  functions on [t,o(t)]r such that

o<f<m<fl ) and0 < g(p) <m< g(&). Then

(4287 re) () (A28 ) ()

<

Gaoracamil

forallt> &, p.

Proof. From Lemma 31 we have

F(EN(E)e(p) = f(S)h(p)g(§) —F(pP)R(E)g(p) (44)
+/(p)h(p)g(S) = 0.

through (44) by
A1
k

and then integrating

Multiplying

| [aﬁ—li(:aﬁ—l
gl-ap'n(2) ap™!

the result with respect to & over [0,7]r

and then
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applying (25) and Lemma 32 we have
1 t taﬁfl _ éaﬁ
Ii(A) /o ap!

1 t taﬁ”,éaﬁ
FkUL)/o( ap!

1 i (B _ éa[ﬂ*‘
LAY /0 ap!

1 ” taﬁ”iéa[}*‘
*mm./o( ap !

This further yields
AZE M h(n)g(p) — AT fe(th(p)—  (45)
1
FP)ALE Hh(t)g(p)+
—1
FP)R(P)ATE Fg(r) > 0.
Again multiplying through (45) by

A
1\ &1

ap~! aB~
1 ﬁ’]]F(l) (l ’ agf’]ﬁ and integrating with
PP I

respect to p over [0,¢]T we have

‘ “LA
AZE P fn(n) AT o) — AT po(1) ARE Fh(e)
(46)
-1
A (AT P h)+
AZE R () AP () > 0,
Thus
-1 —1 —1
AS T oA Fne) < AT pn() A ().
(47)
4 Conclusion
In this paper, we defined the left and right
Riemann-Liouville conformable fractional integral

operator on time scale. With that definition, we
presented some extensions of fractional integral
inequalites on time scales by applying
Riemann-Liouville fractional integral and AM-GM
inequality.

N\ 2-1
1\ %
) éaﬁ’lflx

F(ENE)g(p)

N\ 2-1
-1\ ¥
) éaﬁ’lflx

f(&)h(p)s(8)
A
) £ (p)h(E)g(p)

A
) P fx

(p)h(p)g(&) > 0.
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