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1 Introduction

An arbitrary non-empty closed subset of the real
numbers is called a time scale and it is mostly
designated by T. The area was exposed to
mathematicians by Hilger in 1988 [16]. Hilger only
came out with Delta (∆) derivatives, Nabla (∇)
derivatives and their anti-derivatives initially. After
the introduction by Hilger, Time Scale Calculus has
became familiar with researchers and made a lot of
advancement in the research fraternity. The
discovery of time scales is a big gain to researchers.
In the area of analysis for instance, Time Scale
Calculus gives a resourceful tool to merge
continuous and discrete problems in one theory.
When we chose T= R, then the theory of time scale
turns to real analysis and when T = Z, it turns to
discrete analysis.

The purpose of this paper is to extend
Riemann-Liouville Fractional Integral inequalities on
time scales and also present some inequalities
involving the integrals on time scales. The other
parts of this papers are arranged in the following
order. Part 2 is the preliminary section which is
made up of basic concepts in time scales and some

useful definitions. Part 3, presented the results and
discussions section of this paper and part 4 contains
the conclusion section.

2 Preliminaries

Here we state some key definitions in the area of time
scales, details are the cited reference.

Definition 21 [4,10]Let T be a time scale, t ∈ T and
σ : T→ T. Then the forward jump operator is defined
as

σ(t) = inf{s : s ∈ T,s > t}.

Definition 22 [4,10,17] Let T be a time scale, t ∈ T

and ρ : T → T. Then the backward jump operator is
defined as

ρ(t) = sup{s : s ∈ T,s < t}.

Let T=R. Then σ(t) = t. Also, let T=Z. Then σ(t) =
t + 1. Correspondingly, let T = R, then ρ(t) = t. Let
T= Z, then ρ(t) = t − 1.

Definition 23 [3]Let t ∈T, then t is called right dense
if σ(t) = t. It is called right scattered if σ(t)> t.
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Definition 24 [3]Let t ∈ T, then t is called left dense
if ρ(t) = t. It is called left scattered if ρ(t)< t.

Definition 25 Let t ∈T. Suppose t < supT and σ(t)=
t, then t is right-dense.

Definition 26 Let t ∈ T. Suppose t > infT and ρ(t) =
t, then t is left-dense.

Points that are both right-dense and left-dense at
the same time are referred as dense.

Definition 27 [12] A function f : T→R is called right-
dense (rd)-continuous, provided it is continuous at all
right -dense(rd) points in T and its left-sided limits are
finite at the left-dense points in T. All right-dense (rd)-
continuous functions are represented by Crd(T,R).

Definition 28 [7,25] Suppose f : T → R and let t ∈
Tk, then f△(t) (if only it exist) with the property that,
for any ε > 0 there exist a neighbourhood

⋃

of t, thus
⋃

= (t −σ , t +σ)\T for some σ > 0 so that

[ f (σ(t))− f (s)]− f ∆ (t)[σ(t)− s]≤ ε |σ(t)− s| , ∀ (1)

s ∈
⋃

.

Definition 29 [11] Let f ,g : T → R be differentiable
at t ∈ Tk then the following are valid.

( f + g)∆ (t) = f ∆ (t)+ g∆(t).

(α f )∆ (t) = α f ∆ (t), α is constant.

( f g)∆ (t) = f ∆ (t)g(t)+ f (σ(t))g∆ (t) = f (t)g∆ (t)+

f ∆ (t)g(σ(t)).

(

1

f

)∆

(t) =− f ∆ (t)

f (t) f (σ(t))
.

Definition 210 [10,11] A function F : T→R is called
a delta anti-derivative of f : T→R provided
F∆ (t) = f (t) for all t ∈ Tk, the delta indefinite
and definite integrals are defined respectively by the
following equations.

∫

f (t)∆ t = F(t)+C, (2)

∫ b

a
f (s)∆s = F(b)−F(a). (3)

Definition 211 [10,11] A function G : T → R is
called a nabla anti-derivative of g : T → R provided
G∇(t) = g(t) for all t ∈ Tk, the nabla indefinite and
definite integrals are defined respectively by the
following equations.

∫

g(s)∇s = G(b)−G(a). (4)

∫ b

a
g(s)∇s = G(b)−G(a). (5)

When T has a left-scattered maximum M, then
it is Tk = T−M. Also, when T has a right-scattered
minimum m, then it is Tk = T−m.

Definition 212 [26] Let a1,a2 ∈ T, and f ∆ ,g∆ be left-
dense continuous functions. Then

∫ a2

a1

f (t)g∆ (t)∆ t = ( f g)(a2)− ( f g)(a1)− (6)

∫ a2

a1

f ∆ (t)g(ρ(t))∆ t

is the time scale integration by parts.

Definition 213 [8] Let t be any arbitrary point in T.
Then for any given function f defined on T is
∆ -integrable from t to σ(t) and is expressed as

∫ σ(t)

t
f (x)∆ x = (σ(t)− t) f (t). (7)

Definition 214 [8,26]The graininess function
µ : T−→ [0,∞) is defined by

µ(t) = σ(t)− t. (8)

Lemma 21 [11] Let t,σ(t)∈T. if f ,g∈Crd(T,R), then

∫ σ(t)

t
| f (τ)g(τ)|∆τ ≤ (9)

[

∫ σ(t)

t
| f (τ)|p ∆τ

]

1
p
[

∫ σ(t)

t
|g(τ)|q ∆τ

]

1
q

,

where q > 1, 1
q
+ 1

p
= 1.

Definition 215 [21] Let a,b ∈ T,a < b,h : T→ R and
α ∈ [0,1]. Then diamond-α integral (or ♦α -integral) of
h from a to b (or on [a,b]T) is defined by

∫ b

a
h(t)♦α t = α

∫ b

a
h(t)∆ t +(1−α)

∫ b

a
h(t)∇t, (10)

provided h is delta and nabla integrable on [a,b]T.
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Lemma 22 [5] Let f (τ),g(τ) be two Crd functions,

σ(t), t ∈ T and 0 <
f (τ)
g(τ)

≤ ϕ . Then we have

µ(τ) f (τ) ≤ ϕ
−1
q

[

∫ σ(t)

t
| f (τ)| ⋄ατ

]

1
p
[

∫ σ(t)

t
|g(τ)| ⋄ατ

]

1
q

(11)

for 0 ≤ α ≤ 1, where p,q > 1 and 1
p
+ 1

q
= 1.

The left and right Riemann-Liouville integrals
(R-L I) discovered around 1826 to 1882 by G.F.B.
Riemann (1826-1866) and J. Liouville (1809-1882)
[2,9] are defined respectively by

Iα
a+ f (x) =

1

Γ (α)

∫ x

a
(x− t)α−1 f (t)dt (12)

and

Iα
b− f (x) =

1

Γ (α)

∫ b

x
(t − x)α−1 f (t)dt, (13)

where f is a continuous function on the interval [a,b]
and Γ is the classical Euler gamma function.

Riemann-Liouville integrals are said to have been
derived from the well known Cauchy’s formula.

Definition 216 [6] Let f ∈ L1(a,b), then the Cauchy
formula is given by

∫ x

a

∫ xn−1

a
...

∫ x1

a
f (t)dtdx1...dx(n−1) = (14)

1

(n− 1)!

∫ x

a
(x− t)n−1 f (t)dt

for n ∈ N and α ∈ R+.
There are many extensions or generalizations of (12)
and (13) which include the following:

Definition 217 [13] Let β ∈ R(β ) > 0, then the left
and right sided fractional conformable integral
operators are defined respectively as follows;

β
a J

α f (x) =

(15)

1

Γ (β )

∫ x

a

(

(x− a)α − (t − a)α

α

)β−1

(t − a)α−1 f (t)dt,

θ > t

and

β
a J

α f (x) =

(16)

1

Γ (β )

∫ b

x

(

(b− x)α − (b− t)α

α

)β−1

(b− t)α−1 f (t)dt,

b > t.

Also see [1,23].

Definition 218 [24] Let f be integrable function, then

β
a J

α f (x) =
1

Γ (β )

∫ b

x

(

xα − tα

α

)β−1

tα−1 f (t)dt,b > t,

(17)

for all α,β > 0 and Γ is the Euler Gamma function.

Definition 219 [2,15] Riemann-Liouville k-fractional
integrals are defined as

J
α
k,a+ f (x) =

1

kΓk(α)

∫ x

a
(x− t)

α
k
−1 f (t)dt, x > a, (18)

R(α)> 0

and

J
α
k,b− f (x) = (19)

1

kΓk(α)

∫ b

x
(t − x)

α
k
−1 f (t)dt, b > x,

R(α)> 0,

where Γk is the k -gamma function.

Definition 220 Let k > 0, then Γk function is defined
as

Γk(x) = lim
x−→∞

n!kn(nk)
x
k −1

(x)n,k

, x ∈C\kZ−
. (20)

Definition 221 For x ∈ C with R(x) > 0, then the k

-gamma function, Γk(x) is given by the integral

Γk(x) =
∫ ∞

0
tx−1e−

tk

k dt, (21)

for t,k > 0.

Definition 222 [14,18] Let f ∈ L1[0;∞). Then the
generalized Riemann - Liouville fractional integral
Iα ,k f (x) of order α,k ≥ 0 is defined as
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I
α ,k f (x) =

(k+ 1)k+1

Γ (α)

∫ x

0

(

xk+1 − tk+1
)α

tk f (t)dt

I
0 f (x) = f (x).

(22)

Where Γ is the gamma function.

Remark 21 Let k = 0, then equation (22) becomes
the known classical Riemann - Liouville fractional
integral.

More on the Riemann-Liouville integrals can be
found in [19,20,22].

Definition 223 Let pi,qi be real positive numbers.
Then the Arithmetic-Geometric Mean Inequality is
defined as

pi + qi

2
≥√

piqi, (23)

where equality occurs when pi = q1.

Definition 224 Let x : x ∈ T, where T = R. Then we
have

f ∆ (x) = f▽(x) = f ′(x). (24)

3 Results and Discussion

We begin the results and discussion with the
following definition.

Definition 31 Let f (τ) be continuous and delta
integrable on [t,σ(t)]T. Then we define the left and
right Riemann-Liouville conformable fractional
integral operator as

∆ α ,λ
a+

f (ρ) =
1

Γk(λ )

∫ θ

t

(

ραβ−1 − ταβ−1

αβ−1

) λ
k −1

× (25)

τ
α
β
−1

f (τ)∆τ, θ > t

and

∆ α ,λ
b− f (ρ) =

1

Γk(λ )

∫ σ(t)

θ

(

ραβ−1 − ταβ−1

αβ−1

) λ
k −1

×

(26)

τ
α
β
−1

f (τ)∆τ, σ(t)> θ .

For all α,β ∈ (0,∞), λ ,η 6= k, k > 0, λ ,η > 0, ρ > τ and
t,θ ,σ(t) ∈ T.

Remark 31 For β = k = 1 in (25) and (26) yields

∆ α ,λ
a+

f (ρ) =
1

Γ (λ )

∫ θ

t

(

ρα − τα

α

)λ−1

τα−1 f (τ)∆τ,

(27)

θ > t,

∆ α ,λ
b− f (ρ) =

1

Γ (λ )

∫ σ(t)

θ

(

ρα − τα

α

)λ−1

τα−1 f (τ)∆τ,

(28)

σ(t)> θ .

Remark 32 Suppose α = β = 1 and k = 1 in (25) and
(26), then the following Riemann - Liouville fractional
integral operators on time scales are obtained.

∆ λ
a+ f (ρ) =

1

Γ (λ )

∫ θ

t
(ρ − τ)λ−1

f (τ)∆τ, θ > t. (29)

∆ λ
b− f (ρ) =

1

Γ (λ )

∫ σ(t)

θ
(ρ − τ)λ−1

f (τ)∆τ, σ(t)> θ .

(30)

Lemma 31 Let f ,g,h : T → R be delta integrable

functions such that 0 ≤ f (ρ)
h(ψ) ≤ m ≤ f (ξ )

h(Ψ) and

0 ≤ g(ρ)≤ m ≤ g(ξ ), then

f (ξ )g(ξ )h(ψ)− f (ξ )g(ρ)h(ψ)− f (ρ)g(ξ )h(Ψ)+
(31)

f (ρ)g(ρ)h(Ψ)≥ 0,

for all ξ > ρ , ψ >Ψ and ξ ,ρ ,ψ ,Ψ ∈ R.

Proof. Given that

m− f (ρ)

h(ψ)
≥ 0,

and

f (ξ )

h(Ψ)
−m ≥ 0.

Then

f (ξ )

h(Ψ)
− f (ρ)

h(ψ)
≥ 0. (32)

Similarly

m− g(ρ)≥ 0,
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and

g(ξ )−m ≥ 0.

Then

g(ξ )− g(ρ)≥ 0. (33)

From (32) and (33) we obtain

f (ξ )

h(Ψ)
g(ξ )− f (ξ )

h(Ψ)
g(ρ)− f (ρ)

h(ψ)
g(ξ )+

f (ρ)

h(ψ)
g(ρ)≥ 0

as required.

Remark 33 Putting h(Ψ) = h(ψ) for all
Ψ ,ψ ∈ [t,σ(t)]T, we obtain

f (ξ )g(ξ )− f (ξ )g(ρ)− f (ρ)g(ξ )+ f (ρ)g(ρ)≥ 0.

(34)

Lemma 32 Let : T→ R be delta-integrable function
on [0,ξ ]T. Then

∫ ξ

0

(

ξ αβ−1 − uαβ−1

αβ−1

) λ
k −1

uα−1β−1∆u = (35)

k(α−1β )
λ
k ξ (2αβ−1) λ

k −1

λ
,

for all α,β ∈ (0,∞), k,λ > 0, λ 6= k and ξ > u.

Proof. Clearly

∫ ξ

0

(

ξ αβ−1 − uαβ−1

αβ−1

)
λ
k
−1

ξ α−1β−1∆u =

(α−1β )
λ
k
−1
∫ ξ

0

(

ξ αβ−1 − uαβ−1
) λ

k
−1

u
α
β
−1

∆u,

∫ ξ

0

(

ξ αβ−1 − uαβ−1

αβ−1

) λ
k −1

ξ α−1β−1∆u =

(α−1β )
λ
k −1ξ (αβ−1) λ

k −1

∫ ξ

0

(

1−
(

u

ξ

)αβ−1
)

λ
k −1

u
α
β
−1

∆u.

Let µ =
(

u
ξ

)αβ−1

and by Definition 224 we have

∫ ξ

0

(

ξ αβ−1 − uαβ−1

αβ−1

)
λ
k −1

ξ α−1β−1∆u =

(α−1β )
λ
k −1ξ (αβ−1) λ

k −1 ξ αβ−1

αβ−1

∫ 1

0
(1− µ)

λ
k
−1 ∆ µ .

Also, let v = 1− µ , thus

∫ ξ

0

(

ξ αβ−1 − uαβ−1

αβ−1

) λ
k −1

ξ α−1β−1∆u =

(α−1β )
λ
k
−1ξ (αβ−1) λ

k
−1 ξ αβ−1

αβ−1

∫ 0

1
−(v)

λ
k
−1∆v,

∫ ξ

0

(

ξ αβ−1 − uαβ−1

αβ−1

)
λ
k
−1

ξ α−1β−1∆u =

k(α−1β )
λ
k ξ (αβ−1) λ

k

λ
.

Theorem 33 Let f ,g,h : T → R be delta integrable

functions on [t,σ(t)]T such that 0 ≤ f (ρ)
h(ψ)

≤ m ≤ f (ξ )
h(Ψ )

and 0 ≤ g(ρ)≤ m ≤ g(ξ ). Then

(

∆
αβ−1,λ
k f

)

(t)
(

∆
αβ−1,λ
k g

)

(t)≤ (36)
(

∆
αβ−1,λ
k

)

(t)
(

∆
αβ−1,λ
k f g

)

(t).

Proof. Multiplying through (34) by

1

ξ 1−αβ−1
Γk(λ )

(

tαβ−1−ξ αβ−1

αβ−1

) λ
k −1

and then integrating

the result with respect to ξ over [0, t]T and then
applying Definition 31, Definition 224 and Lemma 32
we have

(

∆
αβ−1,λ
k

)

(t)
(

∆
αβ−1,λ
k f g

)

(t)−
(

∆
αβ−1,λ
k f

)

(t)
(

∆
αβ−1,λ
k g

)

(t)

−
(

∆
αβ−1,λ
k f

)

(t)
(

∆
αβ−1,λ
k g

)

(t)+
(

∆
αβ−1

,λ
k

)

(t)
(

∆
αβ−1

,λ
k f g

)

(t)≥ 0.

Simplifying gives

(

∆
αβ−1

,λ
k f

)

(t)
(

∆
αβ−1

,λ
k g

)

(t)≤ (37)
(

∆
αβ−1

,λ
k

)

(t)
(

∆
αβ−1

,λ
k f g

)

(t).

.

Corollary 34 Let f ,g,h : T → R be delta integrable
functions on [t,σ(t)]T. Then

(

∆ λ
k f g

)

(t)≥ Γk(λ + 1)

kt
2λ
k
−2

(

∆ λ
k f
)

(t)
(

∆ λ
k g
)

(t), (38)

for all λ > 1, k > 1.
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Proof. Substituting β = α = 1 into (37) gives the
result.

Theorem 35 Let Let f ,g,h : T → R be delta
integrable functions on [t,σ(t)]T such that

0 ≤ f (ρ)
h(ψ) ≤ m ≤ f (ξ )

h(Ψ ) and 0 ≤ g(ρ)≤ m ≤ g(ξ ). Then

(

∆
αβ−1,λ
k f

)

(t)
(

∆
αβ−1,η
k g

)

(t)
(

∆
αβ−1,η
k f

)

(t)×
(

∆
αβ−1

,λ
k g

)

(t)

≤ 1

4
(
(

∆
αβ−1,η
k

)

(t)
(

∆
αβ−1,λ
k f g

)

(t)+
(

∆
αβ−1

,λ
k

)

(t)
(

∆
αβ−1

,η
k f g

)

(t))2
.

Proof. Multiplying through (31) by

1

ξ 1−αβ−1
Γk(λ )

(

tαβ−1−ξ αβ−1

αβ−1

)
λ
k −1

and then integrating

with respect to ξ over [0, t]T and also applying
Definition 31, Definition 224 and Lemma 32 we have

(

∆
αβ−1

,λ
k f g

)

(t)h(ψ)−
(

∆
αβ−1

,λ
k f

)

(t)g(ρ)h(ψ)−
(39)

f (ρ)
(

∆
αβ−1,λ
k g

)

(t)h(Ψ)+
(

∆
αβ−1,λ
k

)

(t) f (ρ)g(ρ)h(Ψ)≥ 0.

Further multiplying through (39) by

1

ρ1−αβ−1
Γk(η)

(

tαβ−1−ραβ−1

αβ−1

)

η
k −1

and then integrating

with respect to ρ over [0, t]T yields

(

∆
αβ−1,η
k

)

(t)
(

∆
αβ−1,λ
k f g

)

(t)h(ψ)−
(

∆
αβ−1,λ
k f

)

(t)
(

∆
αβ−1,η
k g

)

(t)h(ψ)

−
(

∆
αβ−1,η
k f

)

(t)
(

∆
αβ−1,λ
k g

)

(t)h(Ψ)+
(

∆
αβ−1,λ
k

)

(t)
(

∆
αβ−1,η
k f g

)

(t)h(Ψ)≥ 0.

(40)

Thus

(

∆
αβ−1,λ
k f

)

(t)
(

∆
αβ−1,η
k g

)

(t)h(ψ)+
(

∆
αβ−1

,η
k f

)

(t)
(

∆
αβ−1

,λ
k g

)

(t)h(Ψ )≤
(

∆
αβ−1

,η
k

)

(t)
(

∆
αβ−1

,λ
k f g

)

(t)h(ψ)+
(

∆
αβ−1,λ
k

)

(t)
(

∆
αβ−1,η
k f g

)

(t)h(Ψ).

(41)

Applying (23) to (41) yields

(

∆
αβ−1,η
k

)

(t)
(

∆
αβ−1,λ
k f g

)

(t
(

∆
αβ−1,λ
k

)

(t)
(

∆
αβ−1,η
k f g

)

≥ 2
((

∆
αβ−1,λ
k f

)

(t)
(

∆
αβ−1,η
k g

)

(t)h(ψ)
(

∆
αβ−1,η
k f

)

(t)×
(

∆
αβ−1,λ
k g

)

(t)h

Let h(ψ) = h(Ψ) = 1, we have

(

∆
αβ−1,η
k

)

(t)
(

∆
αβ−1,λ
k f g

)

(t)+
(

∆
αβ−1,λ
k

)

(t)
(

∆
αβ−1,η
k f g

)

(t)≥

2
((

∆
αβ−1,λ
k f

)

(t)
(

∆
αβ−1,η
k g

)

(t)
(

∆
αβ−1,η
k f

)

(t)×
(

∆
αβ−1,λ
k g

)

(t)
)

1
2
,

(42)

and this further yields

(

∆
αβ−1

,λ
k f

)

(t)
(

∆
αβ−1

,η
k g

)

×

(t)
(

∆
αβ−1,η
k f

)

(t)
(

∆
αβ−1,λ
k g

)

(t)

≤ 1

4
(
(

∆
αβ−1

,η
k

)

(t)
(

∆
αβ−1

,λ
k f g

)

(t)+
(

∆
αβ−1,λ
k

)

(t)
(

∆
αβ−1,η
k f g

)

(t))2
.

Theorem 36 Let Let f ,g,h : T → R be delta
integrable functions on [t,σ(t)]T such that

0 ≤ f (ρ)
h(ψ)

≤ m ≤ f (ξ )
h(Ψ )

and 0 ≤ g(ρ)≤ m ≤ g(ξ ). Then

(

∆
αβ−1,λ
k,a+

f g
)

(t)
(

∆
αβ−1,λ
k,a+

f h
)

(t)
≤

(

∆
αβ−1,λ
k,a+

g
)

(t)
(

∆
αβ−1,λ
k,a+

)

h(t)
(43)

for all t > ξ ,ρ .

Proof. From Lemma 31 we have

f (ξ )h(ξ )g(ρ)− f (ξ )h(ρ)g(ξ )− f (ρ)h(ξ )g(ρ) (44)

+ f (ρ)h(ρ)g(ξ )≥ 0.

Multiplying through (44) by

1

ξ 1−αβ−1
Γk(λ )

(

tαβ−1−ξ αβ−1

αβ−1

) λ
k −1

and then integrating

the result with respect to ξ over [0, t]T and then
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applying (25) and Lemma 32 we have

1

Γk(λ )

∫ t

0

(

tαβ−1 − ξ αβ−1

αβ−1

)
λ
k −1

ξ αβ−1−1×

f (ξ )h(ξ )g(ρ)

− 1

Γk(λ )

∫ t

0

(

tαβ−1 − ξ αβ−1

αβ−1

) λ
k −1

ξ αβ−1−1×

f (ξ )h(ρ)g(ξ )

− 1

Γk(λ )

∫ t

0

(

tαβ−1 − ξ αβ−1

αβ−1

)
λ
k
−1

ξ αβ−1−1 f × (ρ)h(ξ )g(ρ)

+
1

Γk(λ )

∫ t

0

(

tαβ−1 − ξ αβ−1

αβ−1

) λ
k −1

ξ αβ−1−1 f×

(ρ)h(ρ)g(ξ )≥ 0.

This further yields

∆
αβ−1,λ
k,a+

f h(t)g(ρ)−∆
αβ−1,λ
k,a+

f g(t)h(ρ)− (45)

f (ρ)∆
αβ−1,λ
k,a+

h(t)g(ρ)+

f (ρ)h(ρ)∆
αβ−1,λ
k,a+

g(t)≥ 0.

Again multiplying through (45) by

1

ρ1−αβ−1
Γk(λ )

(

tαβ−1−ραβ−1

αβ−1

) λ
k −1

and integrating with

respect to ρ over [0, t]T we have

∆
αβ−1,λ
k,a+

f h(t)∆
αβ−1,λ
k,a+

g(t)−∆
αβ−1,λ
k,a+

f g(t)∆
αβ−1,λ
k,a+

h(t)−
(46)

∆
αβ−1,λ
k,a+

f g(t)∆
αβ−1,λ
k,a+

h(t)+

∆
αβ−1

,λ
k,a+

f h(t)∆
αβ−1

,λ
k,a+

g(t)≥ 0.

Thus

∆
αβ−1,λ
k,a+

f g(t)∆
αβ−1,λ
k,a+

h(t)≤ ∆
αβ−1,λ
k,a+

f h(t)∆
αβ−1,λ
k,a+

g(t).

(47)

4 Conclusion

In this paper, we defined the left and right
Riemann-Liouville conformable fractional integral
operator on time scale. With that definition, we
presented some extensions of fractional integral
inequalities on time scales by applying
Riemann-Liouville fractional integral and AM-GM
inequality.
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