
Appl. Math. Inf. Sci.9, No. 5, 2417-2428 (2015) 2417

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/090525

Self Similarity of Sousa Ramos’s Trees and Mira’s Boxes
Within the Boxes
Diogo Baptista1,2, Daniele Fournier-Prunaret3, Clara Grácio4,∗ and Sara Fernandes4

1 Mathematics Department, School of Technology and Management, Polytechnic Institute of Leiria Campus 2, Morro do Lena -Alto
do Vieiro 2411-901 Leiria, Portugal

2 CIMA-UE, Rua Romão Ramalho, 59, 7000-671Évora, Portugal
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Abstract: This work consists on the theory of embedded boxes structure[7], from the point of view of the theory of symbolic dynamics
[6], tree structure Ramos [8], [9], [10] and star product [1] . This merger allowed the outcome-applications defined on the real line and
a better understanding of the structure of the bifurcation,which allows us to characterize and understand the dynamicsbehind an
application within the chaotic dynamical systems.
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1 Introduction and motivation

José Sousa Ramos and Christian Mira were good friends
in life but also in their interests in dynamical systems.
Although they have never published a common paper they
have worked in very similar problems and solved them
from different points of view. This paper is dedicated to
the unification of some of their results concerning discrete
dynamical systems in the interval in order to clarify the
common results. Concretely, we prove the equivalence
between the Tree Structure and the Boxes Within Boxes
Theory in the case of an unimodal map. We introduce
both theories: tree structure and star product from Sousa
Ramos’s Ph.D. Thesis in section2 and Boxes Within
Boxes theory of Mira in section3. Then, in section4, we
establish the connection between these two theories
showing their equivalence. At the end we present some
examples to illustrate the procedure.

2 Star-Product in Sousa Ramos’s trees

This section is devoted to the introduction of the
∗-product (star product) and the self-similarity structure
of Sousa Ramos’s trees.

2.1 Symbolic Dynamics

Let fa be a one parameter family of unidimensional
quadratic endomorphisms, which can always be reduced,
by a linear change of coordinates, to one of the forms
xk+1 = x2

k −a or xk+1 = 4xkb(1−xk) for k integer anda,b
real numbers. The periodic orbits of periodk are given by
the solutions off k

a(x) = x. According to Sousa Ramos [8]
it was Myrberg who, in 1958, initiate the systematic study
of periodic orbits of periodk and the bifurcations that
generate them. For a given value ofk, there is a number
Nk of k-periodic orbits which grows rapidly withk. Those
orbits differ from each other through symbolic sequences.
It was again Mirberg, using a symbolic 2-letter alphabet,
who did it for the first time, putting the initial condition
x0 = 0 in the critical point of the map. Those results were
continued by Metropolis, Stein, Gumowski-Mira,
Milnor-Thurston, Guckenheimer among others.
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Let I = [0,1] be the unitary interval in the real line.
Let us fix a unimodal family of mapsfb : I → I , which
we denote byC . We say thatfb ∈ C if and only if the
following properties hold:

1.fb ∈C3(I) with fb(0) = fb(1) = 0;
2.fb has a local maximum in the critical pointx = c.

The map is strictly increasing in[0,c] and strictly
decreasing in[c,1];

3.The Schwarzian derivative offb is negative inI \ {c};
4.fb is differentiable with respect tob, f0(x) = 0 and

f1(c) = 1.

Sousa Ramos introduced this family of maps with the
aim of characterizing the bifurcations which occur while
varying the parameterb.

In what follows, letfb ∈C . Let I1 = [0,c] andI2 = [c,1]
be the intervals of monotonicity offb

For each value of the parameterb we obtain an orbit
{x j : j ∈ N} of c, obtained by the iterative process
x0 = c; x j = f j

b(c) = fb(x j−1), j = 1,2, . . . . To each
such orbit we associate a sequence of symbols
S= S0S1 . . .Sj É, whereS0 =C and for j = 1,2, . . . ,

Sj =







L if f j
b(c)< c

C if f j
b(c) = c

R if f j
b(c)> c

.

The set of all such sequences gives rise to the set
ΣC ⊂ Σ3 = {L,C,R}N. A sequenceS ∈ ΣC is called
admissible. For a given sequenceS= CS1 . . .Sk · · · ∈ ΣC

we call S[k] = S1 . . .Sk a k-block of S. Denote byσ the
shift-operator acting on Σ3. For each sequence
CS1 · · · ∈ Σ3, we call σ(S), (after [6]) the kneading
sequence. If the itinerary of the critical point is periodic
of periodk, the correspondent kneading sequence is also
periodic and and can be represented by
S(k) = S1 . . .Sk−1C, i.e., the repeating block ofσ(S).
Instead, we can writeS(k) = S[k−1]C, where S[k−1] is
composed only by symbolsR or L. The sequence with
length 1,S(1) = bC corresponds to the situation where the
critical point,c is a fixed point,c = f (c), b (from blank)
is used to denoteS[0]. In the set of all kneading sequences,
ΣM ⊂ Σ3, define an order relation through theR-parity of
the sequence, that is, the parity of the number of
R-symbols inS. Let S andP be two symbolic sequences,
let i be an integer such thatSi 6= Pi and Sj = Pj for all
j < i. If the R-parity of the blockS1 . . .Si−1 = P1 . . .Pi−1 is
even, the order relation in the symbols is given by
L <R C <R R. If the R-parity of the block
S1 . . .Si−1 = P1 . . .Pi−1 is odd, the order relation in the
symbols is given byR<R C <R L. In both cases we say
thatS< P if Si <R Pi . If suchi does not exist, thenP= S.
This order relation induces an order relation inΣC as
follows. If SandP belong toΣC, we say thatS< P if and
only if σ(S) < σ(P). Note that all admissible sequences
in ΣM are maximal with respect to the order defined
above, becauseσm(S)< S for all m> 1.

CS1S2...Sk−1

✟✟✟✟✟✟✟✟

L

CS1S2...Sk−1L

❍❍❍❍❍❍❍❍

R

CS1S2...Sk−1R

Fig. 1: Ramification of the Kneading sequences’s tree of the
unimodal maps if the R-parity is even.

CS1S2...Sk−1

✟✟✟✟✟✟✟✟

R

CS1S2...Sk−1R

❍❍❍❍❍❍❍❍

L

CS1S2...Sk−1L

Fig. 2: Ramification of the tree of the unimodal maps if the R-
parity is odd.

2.2 Tree structure

In this section we present the tree structure of symbolic
sequences introduced by Sousa Ramos (see [8],[9], [10],
[11]). According to [8], to each(ΣC,<R) we associate a
tree structure as follows. In each vertex is a sequence of
symbols CS[k−1] = CS1...Sk−1, for some k ∈ N. Each
branching of the tree corresponds to a new iteration, in
such a way that, to each new vertex we associate a symbol
R or L, according to the place, right or left, where the
iteration of the critical point falls. Thus, the order of
ramification of each vertex can be described by Fig.1 and
Fig. 2.

Using these rules we can describe the tree of symbolic
itineraries of the critical point,CS[k−1], the treeAC. The
tree of kneading sequencesAM is obtained shifting each
vertex,AM = σ(AC) and can be seen in Fig.3.

These trees obey to the order relation defined in the
sequences, that is, in each level, the sequences are ordered
from the left to the right. But not just in each level, the
projection in an imaginary line on the ground of the tree,
is also ordered from left to the right.

2.3 On the star-product and self similarity of the
tree structure

To introduce the∗-product as a composition law we will
follow [1], where a internal similarity law of the family of
admissible sequences has been proven. This internal
similarity will be observed in the tree structure.

Let P = P1P2...Pp−1 and Q = Q1Q2...Qn−1 with
Pi ∈ {R,L},Qi ∈ {R,L}, be two finite sequences of
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RC❳❳❳❳❳❳❳❳❳❳❳ RLC

✟✟✟✟✟
RLRC

❍❍❍❍❍ RLLC

❅
❅❅

RLRRC

�
��

RLLRC

❅
❅❅

RLLLC

✁
✁✁

RLRRRC

✁
✁✁

RLLRLC

❆
❆❆
RLLRRC

✁
✁✁

RLLLRC

❆
❆❆
RLLLLC. . .

Fig. 3: Kneading sequences’s treeAM .

symbols (allowed or not). Let

P̄i =

{

L if Pi = R
R if Pi = L .

Definition 1.If p > 1, define
Q∗P= QP1QP2Q...QPp−1Q, if the number of R symbols
in Q is even;

Q∗P= QP̄1QP̄2Q...QP̄p−1Q, if the number of R symbols
in Q is odd
If p = 1, that is, P= b, define Q∗P= Q.

Example 1.R∗RLn = RLR2n+1

Example 2.RLR∗RLn = RLR3(LR)2n+1.

Example 3.RL∗RLR= RLLRLRRLLRL= RL2RLR2L2RL.

We list below some properties of the∗-mapping which
can be seen in [1].

1.The commutativity does not hold in general. For
exampleR∗RL 6= RL∗R;

2.The associativity holds,(P∗Q)∗S= P∗(Q∗S), for all
sequencesP,Q,S;

3.If P andQ are allowed sequences, then so isP∗Q. The
period ofP∗Q is the product of the periods ofp and
Q;

4.If P,Q1 andQ2 are allowed sequences andQ1 < Q2,
thenP∗Q1 < P∗Q2.

5.Let the allowed sequencesP,Q1,Q2,Q′
1 andQ′

2 satisfy
P∗Q1 =Q′

1 <Q′
2 =P∗Q2. Then, corresponding to any

allowedQ′ with Q′
1 < Q′ < Q′

2 one can always find an
allowed sequenceQ such thatQ′ = P∗Q.

6.For any allowed sequenceQ, one has

b< Q< Q∗Q< Q∗Q∗Q. . .

and

RLn
> Q∗RLn

> Q∗Q∗RLn
< Q∗Q∗Q∗RLn

> .. . ;

RL2RLC❳❳❳❳❳❳❳❳❳❳❳RL2RLR2LC
✟✟✟✟✟

RL2RLR2L2RLC

❍❍❍❍❍
RL2RL(R2L)2C

❅
❅❅
RL2RLR2L(LRL)2C

�
��

RL2RL(R2L)2LRLC

❅
❅❅

RL2RL(R2L)3C

Fig. 4: SubtreeARLC.

7.Let P1 = b, P2 = RLn and P and Q any allowed
sequences, P1 < P, Q < P2. Set
P′

i = Q∗Pi , i = 1,2; P′ = Q∗ P. Then, to everyP
corresponds aP′. Conversely, for everyP′ with
Q∗P1 = P′

1 < P′ < P′
2 = Q∗P2 corresponds aP with

P1 < P< P2, P′ = Q∗P.

The Property 7, above, is the analogous, in the ”tree
language” of Sousa Ramos, of the following theorem. It
establishes that each vertexS(k) ∈ AM is associated to a
subtreeAS(k) which is isomorphic toAM. This subtree
contains all admissible sequences ofAM that are located
between the two extremal branches of the subtree. The
subtreeAS(k) is given by

AS(k) = S[k−1] ∗AM.

Each subtreeAS(k) as defined above have two extremal
branches: the minimal extremal branch(S[k−1] ∗ L∞) and
the maximal branch(S[k−1] ∗RL∞).

Theorem 1.(Sousa Ramos et al, 86, [4]) Each subtree
AS(k) consists of all admissible sequences in the treeAM,
located between the extremal branches of the subtree.

The proof of this theorem is supported by two lemmas,
proved in [8].

Lemma 1.(Lemma 4 of [8]) Between the minimal branch
(S[k−1] ∗L∞) and the central branch(S[k−1] ∗C)∞ there are
no admissible sequences.

Lemma 2.(Lemma 5 of [8]) Between the central branch
(S[k−1] ∗C)∞ and the maximal extremal branch(S[k−1] ∗

RL∞) all the sequences have the form(S[k−1] ∗PC), where
PC∈ AM.

We can see in Figure4 the subtreeARLC
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3 Box-Within-A-Box Structure

The “box-within-a-box” bifurcation structure is described
in [7] for a one dimensional unimodal smooth map, but it
may be considered at the basis of the bifurcation
mechanisms of any smooth one-dimensional multimodal
map. This type of structure will be denoted BB thereafter.

The objective of this section is to explain the
bifurcation structures ”box-within-a-box” that are
observed in certain types of recurrences, as a result of the
variation of a parameter. The results given in this section
are primarily drawn from references [7].

We will focus on recurrences of the form

Xn+1 = F(Xn,λ ) (1)

whereXn is a vector ofR and aλ real parameter. The
functionF is of classCp, p> 1 onR.

The ”boxes” of the considered structure are intervals
of the real parameter corresponding to the existence of an
attractor (periodic orbit or invariant set) related to a given
order. Boxes of different kinds can be defined. A box of
the 1-st kind of a k-cycle opens (or starts) at the fold
bifurcation giving rise to a couple of k-cycles (i.e., two
cycles of period k), one attracting and one repelling,
while a box of the 2nd kind of a k-cycle starts at a flip
bifurcation of a k−cycle, giving rise to an attracting
2k−cycle.

The closure of a box of the 2nd kind corresponds to
the first homoclinic bifurcation of the k-cycle whose flip
bifurcation started the box. Just before the bifurcation,
2k−cyclic attracting invariant intervals exist (inside
which the dynamics seem chaotic), whose immediate
basins (considering the mapT2k) are such that two
consecutive ones are bounded by the same periodic point;
that is, these immediate basins may be coupled into pairs
of two consecutive ones, which are cyclic for the mapTk ,
and separated by a repelling point of the k-cycle whose
flip bifurcation started the box. At the bifurcation value
closing the box of 2nd kind and after, k-cyclic invariant
intervals are attracting, that is, the closure of a box of the
2nd kind causes the transition from 2k- to k-cyclic
attracting invariant intervals (inside which the dynamics
seem chaotic), and the new immediate basins are the
reunion, by pairs, of the old immediate basins.

The closure of a box of the 1st kind of a k-cycle occurs
at the homoclinic bifurcation of the k-cycle born repelling
at the fold bifurcation which started the box. Just before
the bifurcation, k-cyclic attracting invariant intervalsexist,
whose immediate basins, considering the mapTk, are such
that any two of them are not consecutive. Each point on the
boundary of an immediate basin is a limit point of disjoint
components of the total basins. The k immediate basins
are separated by connected components of the total basins,
which are intertwined in a chaotic way.

Soon after the bifurcation, the k intervals are no
longer invariant, and a wider invariant absorbing interval
generally exists, with complex dynamics, which include

not only the old k intervals, but also some components of
their old total basins. Such an absorbing interval includes
generally an attracting cycle of high period, and the
computed trajectory seems chaotic into this invariant
interval. That is, this bifurcation causes (apparently) a
sudden increase of the chaotic (in a nonstrict sense)
attracting set, from k disjoint intervals into a unique
interval which includes all the previous ones. Soon after
the bifurcation the iterated points of a generic trajectory
visits more often the old k invariant intervals and less
frequently the remaining parts, so that we have regions
with high density of iterated points (related to the old k
intervals) and regions with low density (related to the old
regions of immediate basins and fractal components of
the old total basins).

3.1 Box-within-a-box structure type Quadratic
(BBQ)

The BB structures are observed in the case of recurrences
of the form:

xn+1 = f (xn,λ ) (2)

wheref is a function, defined on an intervalI of R that we
assume here, at least, classC3 ( f belongs toC3(I)). λ is
a real parameter. In this subsection we consider a function
of the actual variable having one extremum (unimodal).

Before explaining in detail the BBQ structure, we
recall the different types of bifurcations that will be
involved,

a) For a parameter value notedλ(k)0, two cycles of
order k appear with their multiplier equal to 1, one
becomes attractive forλ > λ(k)0 and the other becomes
repulsive. This bifurcation is called a fold bifurcation and
is denoted B1.

b) For a value of parameter notedλk,2i , a cycle of order
k exchange stability, its multiplier is equal to−1, giving
rise to a cycle of order 2k, which takes the stability of order
k cycle. This bifurcation corresponds to a doubling of the
period, it is called a flip bifurcation and is denoted B2.

3.2 Example of logistic map

Logistic map is considered, in order to give a clearer
description of the box-within-a-box structure.

Consider the function, defined on an intervalI of R, of
the form:

xn+1 = f (xn,λ ) = x2
n−λ . (3)

The set of all possible values for (3) bifurcation occurs

when λ ∈

[

−
1
4
,2

]

. This interval is denoted byΩ1 and

corresponds to the first box of the structure BBQ , which
contains all other boxes.

c© 2015 NSP
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Fig. 5: The bifurcation B1 in the case of the logistic map.
Two fixed pointsq1 ansq2 appear, one attractive, the other one
repulsive.

Fig. 6: λ = λ ∗
1 , q1 = C1 and the segmentCC1 is a chaotic

segment. On the Figure, one can see the graph off 2 in red and
of f 3 in green.

3.2.1 Description of first boxΩ1.

The lower limit of this intervalλ(1)0 =−
1
4

, corresponds to

the appearance of the two fixed points, one repulsiveq1,
another attractiveq2, by a bifurcation B1 (see Fig.5).

The upper limit of the intervalλ ∗
1 = 2, corresponds to

the merger of the fixed pointq1 with the critical point of
rank oneC1 (Fig. 6). The segmentCC1 is a chaotic
invariant segment, a chaotic attractor exists. All cycles of
all orders exist and are repulsive; all these points are
located on the segmentCC1 and are dense onCC1.

Fig. 7: Bifurcation diagram of the logistic map.

For each value ofλ ∈ Ω1 =

[

−
1
4
,2

]

an attractive set

(order k cycle or chaotic invariant segment, which may
optionally be cyclic) exists on the intervalCC1, certain
values ofλcorrespond to bifurcations B1 or B2.

For λ > λ ∗
1 no more bifurcation occurs. Infinitely

many repulsive cycles of all orders exist. Each initial
condition, chosen on the real axis, leads to an iterated
sequence that converges to the point at infinity
(divergence).

3.2.2 Bifurcations diagram of the map (3) in the plane
(λ ,x).

Before explaining the structure of the following boxes,
contained in the first boxΩ1, we obtain, through
numerical simulations, the following diagram (fig.7),
drawn in the plane(λ ,x). This bifurcation diagram allows
to visualize the attractor obtained for each value of

λ ∈
[

λ(1)0,λ
∗
1

]

=

[

−
1
4
,2

]

.

We can observe the existence of periodic orbits of
different orders, the phenomena of period doubling and
behaviors that seem disorganized and correspond to the
chaos on one or more intervals of variablex for a fixed
value of λ . This behavior inside the first boxΩ1, is
encoded by the structure box-within-box and will be
explained describing the other boxes. We will detail this
description in the next subsection.

3.3 Description of boxesΩk

We observe a succession of bifurcations B2, from fixed
point q2, for values λ noted λ2i , i = 1,2, ...,. This
sequence of bifurcations is called period doubling
cascade and corresponds to the appearance of cycles of
order 2i, i = 1,2, ....

This sequence of(λ2i ), i = 1,2, ... has a value of
accumulation 1.401155.... This value is denoted byλ(1)s,
is located in the boxΩ1, and is the limit value for which

c© 2015 NSP
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the chaos exists. From this value, there is, indeed, an
infinity of order 2i cycles which are insideCC1. For
λ = λ(1)s a chaotic attractor of Cantor type exists in the
intervalCC1. With this value of accumulation we split the
boxΩ1.

3.3.1 Intervalsω1 and∆1.

The interval
]

λ(1)0,λ(1)s

[

is denotedω1 and the interval
]

λ(1)s,λ
∗
1

[

is denoted by∆1 (see Fig.8) . ω1 contains no
odd order cycle, only cycles of order of power of 2; the
odd order cycles will appear in the interval∆1, beyond the
valueλ ∗

2i , defined below.

Fig. 8: Scheme of the structure of the boxΩ1.

3.3.2 Cyclic chaotic segment

For λ = λ ∗
2i , a value which corresponds to the

corresponds to the merger of the critical pointCi
2 with a

point of the cycle of order 2i−1, which is destabilized by a
bifurcation B2 (for λ = λ2i ), a cyclic chaotic invariant
segment of order 2i−1 is observed (forλ = λ ∗

21 see Figs.9
and10).

The bifurcations of this type occur in the reverse order
of doublings bifurcations period (λ ∗

2i+1 < λ ∗
2i ) andλ(1)s is

also a point of accumulation ofλ ∗
2i , i →+∞.

3.3.3 Description of the boxΩ3.

The study of f 3 allows us to highlight the same
phenomena tof 3 than that of f . It is possible to set an
interval (box)Ω3 =

[

λ(3)0,λ
∗
3

]

contained in the interval
Ω1 and which has the same structure and the same
properties asΩ1. However, for the transformationf 3

instead off , Ω3 corresponds to the birth of two cycles of
order 3, an attractive, the other repulsive, by a bifurcation
B1 (Fig.11).

λ ∗
3 corresponds to the merger of critical pointsC1, C2

andC3 with the three points of the order cycle 3, born
repulsive forλ = λ(3)0, (see Fig.12, Fig. 13). λ = λ ∗

3 ,
Ω3 splits in the same way thanΩ1 into two intervals

ω3 and∆3;

Fig. 9: λ = λ ∗
2i , the rank-2 critical point,C2, merges with the

fixed pointq2, from which the period doubling cascade is issued.
The segmentCC1 is chaotic.

Fig. 10: λ < λ ∗
2i , the two segmentsCC2 andC3C1 constitute an

order 2 cyclic absorbing segment, which contains either an order
2i cyclic chaotic segment, either an order 2i periodic orbit

ω3 contains all bifurcation values for doubling period
obtained forf 3, that is to say, corresponding to appearance
of cycles of order 3.2i , i = 1,2, ...,

∆3 contains the values of bifurcation that will make
appear cycles of order 3.m, m= 3,4,5, ....

The valueλ(3)s, the accumulation value for doublings
period f 3, separates the two intervalsω3 and∆3. Values

c© 2015 NSP
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Fig. 11: λ = λ(3)0
, two order 3 cycles appear by a bifurcation

B1.

Fig. 12: λ = λ ∗
3 , the critical pointsC1, C3 andC2 respectively

merge with the points of the order 3 cycle born repulsive forλ =
λ(3)0

λ(3)sandλ ∗
3 , have the same properties forf 3, asλ(1)sand

λ ∗
1 for f ; in particular forλ ∗

3 , a cyclic chaotic invariant set
of order 3 is within the intervalCC1 (see Fig.13).

3.3.4 Description of boxesΩ j
k .

A similar study of transformationsf k can highlight the

existence of boxesΩ j
k =

[

λ j
(k)0

,λ ∗ j
k

]

all having the same

Fig. 13: Scheme of the structure of the boxΩ3.

Fig. 14: Scheme of the box-within-box bifurcation structure.

structure of Ω1 and Ω3; period doubling cascades,
accumulation valueλ j

(k)s
, intervals ω j

k and ∆ j
k . This

justifies the fractal nature of the structure of bifurcations
BBQ and the term ”box-within-a-box”.

The emergence of a boxΩ j
k is linked to the existence

of k extrema off k that will cross the diagonalxn+1 = xn
in the plane(xn,xn+1) (bifurcation B1). When the value
of k increases, the number of extrema off k increases, it
is then possible to obtain several bifurcations B1 forf k,
which cause the existence of several boxes associated with
f k, the index j corresponds a numbering of the boxes to
distinguish. For example, there are three boxesΩ j

5, j =
1,2,3.

The Fig.14outlines this structure - box-within-box.

4 Box-Within-a-box bifurcation structure
and Sousa Ramos’s trees

The aim of this section is to characterize the
”box-within-a-box” bifurcation structure using the
techniques of symbolic dynamics for unimodal maps,
always based on the kneading theory of Milnor and
Thurston [6], the formalism of symbolic dynamics
developed by J. Sousa Ramos [8], [9] and the∗-product,
work of Derrida, Gervois, and Pomeau [1].

As was done in the previous section, we will consider

xn+1 = f (xn,λ ) = fλ (xn)

under the same conditions given in section (3.1).
Thus, using the tree structure developed by Sousa

Ramos (2.2), the order relation established in the
symbolic sequences set (2.1) and the∗ − product (2.3),
we defineAP as the set of parametersλ , for which the
map fλ has a kneading sequenceS[k−1]C∈ ΣM.

Definition 2.Let≺ be the order relation induced inAP by

λS(k) ≺ λQ(q) iff S(k)
<R Q(q)

.
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λRC❳❳❳❳❳❳❳❳❳❳❳ λRLC
✟✟✟✟✟

λRLRC

❍❍❍❍❍ λRLLC

❅
❅❅

λRLRRC

�
��

λRLLRC

❅
❅❅

λRLLLC

✁
✁✁

λRLRRRC

✁
✁✁
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❆
❆❆
λRLLRRC

✁
✁✁

λRLLLRC

❆
❆❆
λRLLLLC. . .

Fig. 15: TreeAP.

for any k and q positive integer.

With this order relation, we can representAP using
Sousa Ramos’s tree structure (fig.15), establishing a
connection between the symbolic sequence order and a
order of the parameters on the setAP.

As was stablished in lemma2 of section2.3, between

the sequence
(

S[k−1] ∗C
)∞

and S[k−1] ∗ RL∞ are all the

sequences of the formS[k−1] ∗PC wherePC ∈ AM. For
instance, suppose thatS[k−1] = R andP = R in this case
we have S[k−1] ∗ PC = RLRC, which is a periodic
kneading sequence of period 4. Or, if P = RL then we
haveS[k−1] ∗PC= RLRRRC, which is a periodic kneading
sequence of period 6.

Motivated by this examples, in a direct way we have
the following result:

Proposition 1.Let S[k−1]C be periodic kneading sequence
of period k, and let PC∈ AM such that P is a symbolic
sequence with n−1 symbols. Then:

S[k−1] ∗PC= S[k−1]P1S[k−1]P2...S
[k−1]Pn−1S

[k−1]C

and, if the R-parity of S[k−1] is even,

S[k−1] ∗PC= S[k−1]P̄1S[k−1]P̄2S[k−1]P̄n−1S
[k−1]C,

if the R-parity of S[k−1] is odd. In both cases it corresponds
to periodic kneading sequences of period k×n.

Definition 3.We define AP

(

S[k−1]C
)

as the set of

parametersλ , for which the map fλ has a kneading
sequence in the tree S[k−1] ∗AM.

Proposition 2.Letλ ∈AP

(

S[k−1]C
)

. Then the orbit of the

critical point of the map fλ is periodic of period p such
that p mod(k) = 0.

Proof.The result comes directly from the previous
proposition and definition of the setS[k−1] ∗AM.

Definition 4.LetλS(k) be the parameter value such that the
itinerary of the critical point under the map fλ

S(k)
is given

by the symbolic sequence S(k).

Proposition 3.For the parameter valueλS[k−1]∗RL∞ the
itinerary of the critical point will fall into a eventually
periodic orbit. The periodic sub-orbit of the eventually
periodic orbit fall on repulsive fixed points of the map
f [k].

Proof.Without loss of generality, let assume that the
sequenceS[k−1] has an odd R-parity. Thus we have the
sequence

S[k−1] ∗RL∞ = S[k−1]L(S[k−1]R)∞

which is a eventually periodic orbit.

Thus, using symbolic dynamics and the∗−product, we
have the following relation with the embedded boxesΩk
(see section3.3):

Ω2 = [λRC,λR∗RL∞ ]
Ω3 = [λRLC,λRL∗RL∞ ]
. . .
Ωk =

[

λS[k−1]C,λS[k−1]∗RL∞
]

The number of embedded boxes of typeΩk, for a
given symbolic kneading sequenceS[k−1]C is directly
related to the number of periodic admissible kneading
sequences of dimensionk. For this reason we are working
in the set ΣM. For example, if we consider kneading
sequences of period 5, from the condition of admissibility
(see section2.1), we only must consider the kneading
sequencesRLLLC, RLRRCand RLLRC. For instace, the
sequence RRLLC is not admissible because
RLLCR >R RRLLC. Thus, we have three sets of
embedded boxes of typeΩ5. Consider now the

AP

(

S[k−1]C
)

tree. Noting that the parameter values

λ ∈ AP

(

S[k−1]C
)

appear ordered according to the order

relation of the respective kneading symbolic sequence, we

have inAP

(

S[k−1]C
)

tree a structure that allows us to

completely characterize the setsωk and ∆k such that
ωk∪∆k = Ωk.

Example 4.Let gλ be the unimodal map given by

gλ (x) = λ − x2.

This map has the same qualitative characteristics as the
map in the section3.2 . For reasons of compatibility with
the symbolic dynamics and tree structure established in
section3, we will consider the mapgλ .
Let λ ∈ [λRC,λRLR∞ ] , we obtain the bifurcation diagram
in figure16.

In figure 16 note that for the last value of
λ ∈ [λRC,λRLR∞ ], we obtain only a point in the bifurcation
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Fig. 16: Bifurcation diagram forλ ∈ [λRC,λRLR∞ ]

diagram. That is because for the parameter value
λ = λRLR∞ there is a merger between the orbits of the
critical points of f [2] map into a single repulsive fixed
point of the map f [2]. This situation is represented in
figure17.

Let λ ∈ AP

(

S[k−1]C
)

. If we want to determine the

values of the parameterλ , for which we obtain a periodic
kneading sequence of period k, we could do this by solving
an equation obtained from the kneading sequence. Let

R(y) =
√

λ − y

L(y) = −
√

λ − y

be two inverse functions, obtained from the functionf . In
order to better understand our intentions about this two
maps let consider the following cases: If the critical point
is a fixed point then we only have to solveR(0) = 0;. In
this case the solution is trivial, ie,λ = 0. If the orbit of the
critical point is of period two,RC, we must solve the
equation

λ =
√

λ −0= R(0),

which admissible solution isλ = 1; If the orbit of the
critical point is of period 3,RLC, we must solve the
equation

λ =

√

λ +
√

λ −0= R◦L(0)

which admissible solution will beλ = 1.75488.
Thus, to obtain the numerical value ofλRLR∞ , and

because we have an eventually periodic orbit, we must
solve the equation

a−
(

a−a2)2
=

√

a−
(

a− (a−a2)2
)

,

which admissible solution isλ ≃ 1.54369. In figure17we
can see the orbit of the critical point of the mapg1.54369,
and its symbolic sequenceRLR∞.

To obtain the numerical value ofλRL∗RL∞ = λRLL(RLR)∞ ,
and because we have an eventually periodic orbit, we must
solve the equation

a−(a−a2)2 =

√

a+

√

a−
√

a−a(1−a(1−a(1−a)2)2)
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Fig. 17: The mapg1.54369 and g[2]1.54369, the liney = x and the
orbit of critical point ofg1.54369

which the admissible solution isλ ≃ 1.79033. Because the
orbit is eventually periodic, we have to go looking for the
value from which we obtain the periodic block of the orbit.
In this case, this value is given bya− (a−a2)2. In figure
18 we can see the orbit of the critical point of the map
g1.79033, and its symbolic sequenceRLL(RLR)∞.

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-2

-1

1

2

Fig. 18: The mapg1.79033 and g[3]1.79033, the liney = x and the
orbit of critical point ofg1.79033

Example 5.Let us consider the tent map

hλ (x) = 1−λ |x| .

The aim is to verify the merging of the orbits when we
apply the star product. Here the boxesΩk for k > 2 is set
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with a single point, which is the value of the parameterλ
for which the maphλ have a kneading sequence.

With the aim of looking for the set containing all
orbits of period 2p, we must consider the maximal
sequenceRC∗ RL∞. From [2] we have the following
condition that kneading sequence must verify:

1= qδ (λ ) =
+∞

∑
i=0

(−1)i δ0δ1...δi

λ i+1 .

whereδ = S[k−1]C such thatδi = −1 if δi = L, δi = +1 if
δi = Randδi =±1 if δi =C. If we consider the sequence

δ = RLR∞

such thatR=+1 andL =−1, and considering the sum of
a convergent geometric series with ratio

(

−1
a

)

we have

1=
1
λ
+

1
λ (λ +1)

.

The admissible solution isλ = 1.4142. Thus we have our
first box where we have the orbits of period 2p

Ω2 = [1,1.4142].
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Fig. 19: The maph1.4142 andh[2]1.4142, the liney= x and the orbit
of critical point ofh1.4142

Now the merging situation. If we want to get the box
where we have the orbits of period 3p, we must consider,
for the minimum extreme, the sequence

δl = (RLC)∞

and for the maximum extreme, the sequence

δu = RLC∗RL∞
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-1.5
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0.5

1.0

1.5

Fig. 20: The maph1.61803 and h[3]1.61803, the liney = x and the
orbit of critical point ofh1.61803

But here,the setΩ3 has only one point,

a= 1.61803.

For this parameter value we have all orbits of period 3p.
The next figure shows the plot of the tent mapTa(x) and
the mapT3

a (x) for a≃ 1.61803.

5 Conclusions

Using the kneading theory of Milnor and Thurston [6],
the formalism of symbolic dynamics developed by J.
Sousa Ramos [8], [9], [10], [4] and the work of Derrida,
Gervois, and Pomeau about the∗-product [1], we
characterize the embedded boxes structure, work done by
C. Mira [7], in an accurate manner, because we can fully
characterize the lambda values in the set of parameters
where all bifurcations occur in unimodal maps, making
only use of symbolic computation, without using
approximate values. In a future work, is our goal to build
these tools into maps defined in higher dimensions.
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