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Abstract: This work consists on the theory of embedded boxes strugfyrieom the point of view of the theory of symbolic dynamics
[6], tree structure Ramos], [9], [10] and star productl]] . This merger allowed the outcome-applications definecherréal line and
a better understanding of the structure of the bifurcatihich allows us to characterize and understand the dynab@hid an
application within the chaotic dynamical systems.
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This paper is dedicated to the memory of Professor2 Star-Product in Sousa Ramos’s trees
José Sousa Ramos.
This section is devoted to the introduction of the
x-product (star product) and the self-similarity structure
of Sousa Ramos’s trees.

1 Introduction and motivation
2.1 Symbolic Dynamics

José Sousa Ramos and Christian Mira were good friendket f; be a one parameter family of unidimensional
in life but also in their interests in dynamical systems. quadratic endomorphisms, which can always be reduced,
Although they have never published a common paper theyy a linear change of coordinates, to one of the forms
have worked in very similar problems and solved themxy.1 = xﬁ—aorxkﬂ = 4xb(1— x) for kinteger anda, b
from different points of view. This paper is dedicated to real numbers. The periodic orbits of peribdre given by
the unification of some of their results concerning discretethe solutions off¥(x) = x. According to Sousa Ramo8][
dynamical systems in the interval in order to clarify the it was Myrberg who, in 1958, initiate the systematic study
common results. Concretely, we prove the equivalenceof periodic orbits of periock and the bifurcations that
between the Tree Structure and the Boxes Within Boxegjenerate them. For a given valuelgfthere is a number
Theory in the case of an unimodal map. We introduceNg of k-periodic orbits which grows rapidly witk. Those
both theories: tree structure and star product from Sousarbits differ from each other through symbolic sequences.
Ramos’s Ph.D. Thesis in sectich and Boxes Within It was again Mirberg, using a symbolic 2-letter alphabet,
Boxes theory of Mira in sectioB. Then, in sectiod, we  who did it for the first time, putting the initial condition
establish the connection between these two theoriegy = 0 in the critical point of the map. Those results were
showing their equivalence. At the end we present someontinued by Metropolis, Stein, Gumowski-Mira,
examples to illustrate the procedure. Milnor-Thurston, Guckenheimer among others.
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88§ 1
Let | = [0,1] be the unitary interval in the real line.

Let us fix a unimodal family of map$, : | — I, which t R

we denote bys. We say thatfy, € ¢ if and only if the

following properties hold:

1.f, € C3(1) with fp(0) = fp(1) =0;
2.fy has a local maximum in the critical point= c.
The map is strictly increasing if0,c] and strictly
decreasing ific, 1J; Fig. 1: Ramification of the Kneading sequences’s tree of the
3.The Schwarzian derivative df is negative in \ {c}; unimodal maps if the R-parity is even.
4., is differentiable with respect tb, fo(x) = 0 and

f]_(C) =1 €SS-S 1

Sousa Ramos introduced this family of maps with the
aim of characterizing the bifurcations which occur while
varying the parametés.

Inwhat follows, letf, € €. Letl; =[0,c] andl, = [c, 1] 819§ 1R C81%- S 1t
be the intervals of monotonicity df,

For each value of the parametewe obtain an orbit
{Xj : ] € N} of c, obtained by the iterative process

Xo=0C X = ftJ,(C) = fb_(Xj—1)7 j=12,.... To each Fig. 2: Ramification of the tree of the unimodal maps if the R-
such orbit we associate a sequence of symbolsarity is odd.
S=S:...SE, wheregg=Candforj=1,2,...,

C%- Sl CS% S 1R

L if fl(c)<c
Sj=qCif fi(c)=c. 2.2 Tree structure

Rif fi(c)>c , _ _
In this section we present the tree structure of symbolic
The set of all such sequences gives rise to the sesequences introduced by Sousa Ramos @k, [10,

5c € 23 = {L,C,RIN. A sequenceS ¢ 3¢ is called [11]). According to B], to each(3c,<r) we associate a
admissible. For a given sequenSe=-CS ... & € 3¢ tree structure as follows. In each vertex is a sequence of
we call SK = S,...S ak-block of S Denote byo the  symbolsCS¥Y = CS,...S 4, for somek € N. Each
shift-operator acting on 3. For each sequence branching of the tree corresponds to a new iteration, in
CS--- € 23, we call o(S), (after []) the kneading suchaway that, to each new vertex we associate a symbol
sequence. If the itinerary of the critical point is periodic R or L, according to the place, right or left, where the
of periodk, the correspondent kneading sequence is alsdteration of the critical point falls. Thus, the order of
periodic and and <can be represented byramification of each vertex can be described by Eignd
SK = 5,...5.4C, i.e., the repeating block otr(S).  Fig.2.
Instead, we can writes®) = Sk-1C. where Sk-1 is Using these rules we can describe the tree of symbolic
composed only by symbolg or L. The sequence with itineraries of the critical poimC;Sikfl], the treestc. The
length 1,5V = bC corresponds to the situation where the tree of kneading sequences, is obtallned shifting each
critical point, ¢ is a fixed pointc = f(c), b (from blank) ~ Vertex,.s = o(ec) and canbe seenin Fig.
is used to denot8?. In the set of all kneading sequences, These trees pbgy to the order relation defined in the
5w C 53, define an order relation through tReparity of sequences, that is, in each level, the sequences are ordered
the sequence, that is, the parity of the number 0ffrom the left to the right. But not just in each level, the

R-symbols inS. Let SandP be two symbolic sequences, projection in an imaginary line on the ground of the tree,
let i be an integer such th& # B and S; = P; for all is also ordered from left to the right.

j <. If the R-parity of the blockS;...§ 1 =P;...B_1is

even, the order relation in the symbols is given by o

L <R C <r R If the Rparity of the block 2.3 Onthe star-product and self similarity of the
S....S_1 = P....B_1 is odd, the order relation in the tree structure

symbols is given byR <gr C <r L. In both cases we say

thatS< Pif S <rP. If suchi does not exist, theR = S. To introduce thex-product as a composition law we will
This order relation induces an order relation3g as  follow [1], where a internal similarity law of the family of
follows. If SandP belong toZc, we say thaB< Pifand  admissible sequences has been proven. This internal
only if 0(S) < o(P). Note that all admissible sequences similarity will be observed in the tree structure.

in Xy are maximal with respect to the order defined Let P = PiP..Py_1 and Q = Q1Q»...Qn_1 with
above, because™(S) < Sforallm> 1. P € {RL},Q € {RL}, be two finite sequences of
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Fig. 3: Kneading sequences’s treg.

symbols (allowed or not). Let

- _fLifR=R
P'_{RifP.:L'

Definition 1.If p > 1, define

Qx*P = QPQRQ...QP,_1Q, if the number of R symbols
in Q is even;

Q*P = QPIQP,Q...QP,_1Q, if the number of R symbols
in Q is odd

If p=1, thatis, P=b, define @P=Q.

Example 1.R RL" = RLR™1

Example 2.RLRRL" = RLRE(LR)?"1,

Example 3.Rk RLR= RLLRLRRLLRI= RL?RLRL2RL

We list below some properties of thkemapping which
can be seen inj.

1.The commutativity does not hold in general. For

exampleR* RL# RLxR;

2.The associativity hold$P = Q) « S= Px (QxS), for all
sequenceB Q, S

3.If PandQ are allowed sequences, then sBisQ. The
period of Px Q is the product of the periods gf and
Q;

4.1f PQ; andQ, are allowed sequences afd < Q,
thenPx Q1 < PxQo.

5.Let the allowed sequencBXQ:, Q,, Q; andQ), satisfy
P+Qq=Q} <Q,=Px*Qy. Then, corresponding to any
allowedQ with Q; < Q' < Q, one can always find an
allowed sequenc® such that) = P = Q.

6.For any allowed sequen€g one has

b<Q<QxQ<Qx0QxQ...
and

RL">QxRL">QxQ+RL"< Q+xQ+Q*RL"> .. .;

Fig. 4: SubtreeaR, c.

7.Let P, = b, P, = RL" and P and Q any allowed
sequences, P < P, Q < P Set
PP=QxR, i=12; PP=Q=x*P. Then, to everyP
corresponds aP’. Conversely, for everyP with
QP =P} <P <P, =Q=xP, corresponds & with
PL<P<P, P=QxP.

The Property 7, above, is the analogous, in the "tree
language” of Sousa Ramos, of the following theorem. It
establishes that each vert& € < is associated to a
subtree.sgx which is isomorphic tazy. This subtree
contains all admissible sequences«j that are located
between the two extremal branches of the subtree. The
subtreed/yy is given by

ﬂs(k) = §kil] * 2\ .

Each subtree’y as defined above have two extremal
branches: the minimal extremal bran® « L*) and
the maximal branchS<— « RL*).

Theorem 1(Sousa Ramos et al, 864]) Each subtree
g consists of all admissible sequences in the &g
located between the extremal branches of the subtree.

The proof of this theorem is supported by two lemmas,
proved in B.

Lemma 1(Lemma 4 of §]) Between the minimal branch
(Sk-U % L=) and the central branckS*1 «C)* there are
no admissible sequences.

Lemma 2(Lemma 5 of §]) Between the central branch
(Sk-UxC)» and the maximal extremal brandlg*— «
RL®) all the sequences have the fo(8< ! « PC), where
PCe szm.

We can see in Figuréthe subtreesgr c
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3 Box-Within-A-Box Structure not only the old k intervals, but also some components of
their old total basins. Such an absorbing interval includes
The “box-within-a-box” bifurcation structure is describe generally an attracting cycle of high period, and the
in [7] for a one dimensional unimodal smooth map, but it computed trajectory seems chaotic into this invariant
may be considered at the basis of the bifurcationinterval. That is, this bifurcation causes (apparently) a
mechanisms of any smooth one-dimensional multimodakudden increase of the chaotic (in a nonstrict sense)
map. This type of structure will be denoted BB thereafter. attracting set, from k disjoint intervals into a unique
The objective of this section is to explain the interval which includes all the previous ones. Soon after
bifurcation structures ”box-within-a-box” that are the bifurcation the iterated points of a generic trajectory
observed in certain types of recurrences, as a result of theisits more often the old k invariant intervals and less
variation of a parameter. The results given in this sectiorfrequently the remaining parts, so that we have regions

are primarily drawn from referenceg|[ with high density of iterated points (related to the old k
We will focus on recurrences of the form intervals) and regions with low density (related to the old
regions of immediate basins and fractal components of
Xnr1 = F(Xn,A) Q) the old total basins).

where X, is a vector ofR and aA real parameter. The
functionF is of classCP, p > 1 onR. s .
The "boxes” of the considered structure are intervals‘?"l Box-within-a-box structure type Quadratic
of the real parameter corresponding to the existence of akBBQ)
attractor (periodic orbit or invariant set) related to aegiv
order. Boxes of different kinds can be defined. A box of The BB structures are observed in the case of recurrences
the 1-st kind of a k-cycle opens (or starts) at the fold of the form:
bifurcation giving rise to a couple of k-cycles (i.e., two Xop1 = f(Xn,A) )
cycles of period k), one attracting and one repelling,
while a box of the 2nd kind of a k-cycle starts at a flip wheref is a function, defined on an intervabf R that we
bifurcation of ak—cycle, giving rise to an attracting assume here, at least, cl&@5(f belongs taC3(1)). A is
2k—cycle. a real parameter. In this subsection we consider a function
The closure of a box of the 2nd kind corresponds toof the actual variable having one extremum (unimodal).
the first homoclinic bifurcation of the k-cycle whose flip Before explaining in detail the BBQ structure, we
bifurcation started the box. Just before the bifurcation,recall the different types of bifurcations that will be
2k—cyclic attracting invariant intervals exist (inside involved,
which the dynamics seem chaotic), whose immediate &) For a parameter value notéd,,, two cycles of
basins (considering the map?) are such that two order k appear with their multiplier equal to 1, one
consecutive ones are bounded by the same periodic pointiecomes attractive fok > A , and the other becomes
that is, these immediate basins may be coupled into pairsepulsive. This bifurcation is called a fold bifurcationdan
of two consecutive ones, which are cyclic for the nap is denoted B1.
and separated by a repelling point of the k-cycle whose  b) For a value of parameter notag,i, a cycle of order
flip bifurcation started the box. At the bifurcation value k exchange stability, its multiplier is equal tel, giving
closing the box of 2nd kind and after, k-cyclic invariant rise to a cycle of order 2k, which takes the stability of order
intervals are attracting, that is, the closure of a box of thek cycle. This bifurcation corresponds to a doubling of the
2nd kind causes the transition from 2k- to k-cyclic period, it is called a flip bifurcation and is denoted B2.
attracting invariant intervals (inside which the dynamics
seem chaotic), and the new immediate basins are the
reunion, by pairs, of the old immediate basins. .
The closure of a box of the 1st kind of a k-cycle occurs 3.2 Example of logistic map
at the homoclinic bifurcation of the k-cycle born repelling
at the fold bifurcation which started the box. Just beforeLogistic map is considered, in order to give a clearer
the bifurcation, k-cyclic attracting invariant intervaigist, ~ description of the box-within-a-box structure.

whose immediate basins, considering the M&gare such Consider the function, defined on an intervalf R, of
that any two of them are not consecutive. Each point on thehe form:
boundary of an immediate basin is a limit point of disjoint Xni1 = F(%n,A) = xﬁ . (3)

components of the total basins. The k immediate basins
are separated by connected components of the total basins, The set of all possible values fd)(bifurcation occurs
which are intertwined in a chaotic way.

Soon after the bifurcation, the k intervals are no
longer invariant, and a wider invariant absorbing interval corresponds to the first box of the structure BBQ , which
generally exists, with complex dynamics, which include contains all other boxes.

1 L .
whenA € _Z’Z . This interval is denoted by2; and
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Fig. 5: The bifurcation B1 in the case of the logistic map.

Fig. 7: Bifurcation diagram of the logistic map.

1 )
For each value ok € Q; = [_Z’Z an attractive set

Two fixed pointsgy ansg appear, one attractive, the other one (orderk cycle or chaotic invariant segment, which may

repulsive.

Myrberg map

lambda=2

Fig. 6: A = Af, g1 = C; and the segmentC, is a chaotic
segment. On the Figure, one can see the grapt? af red and
of f3in green.

3.2.1 Description of first boR;.

- . 1
The lower limit of this interval ;), = 7 corresponds to

the appearance of the two fixed points, one repulgive
another attractivep, by a bifurcation B1 (see Fid).

The upper limit of the intervad; = 2, corresponds to
the merger of the fixed poirt; with the critical point of
rank oneC; (Fig. 6). The segmenCC; is a chaotic

invariant segment, a chaotic attractor exists. All cycles o

optionally be cyclic) exists on the intervalC,;, certain
values ofA correspond to bifurcations B1 or B2.

For A > A{ no more bifurcation occurs. Infinitely
many repulsive cycles of all orders exist. Each initial
condition, chosen on the real axis, leads to an iterated
sequence that converges to the point at infinity
(divergence).

3.2.2 Bifurcations diagram of the map) (n the plane
(A,X).

Before explaining the structure of the following boxes,
contained in the first boxQ;, we obtain, through
numerical simulations, the following diagram (fig),
drawn in the plan€A , x). This bifurcation diagram allows
to visualize the atiractor obtained for each value of
N Pagi] = [-3.2]

We can observe the existence of periodic orbits of
different orders, the phenomena of period doubling and
behaviors that seem disorganized and correspond to the
chaos on one or more intervals of varialldor a fixed
value of A. This behavior inside the first bofq, is
encoded by the structure box-within-box and will be
explained describing the other boxes. We will detail this
description in the next subsection.

3.3 Description of boxe€Qy

We observe a succession of bifurcations B2, from fixed
point ¢, for values A noted A, i = 1,2,...,. This
sequence of bifurcations is called period doubling
cascade and corresponds to the appearance of cycles of
order2,i=1,2,....

This sequence ofA,), i = 1,2,... has a value of

all orders exist and are repulsive; all these points areaccumulation 401155... This value is denoted byy),,

located on the segme@C; and are dense dbC;.

is located in the boxX2;, and is the limit value for which
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the chaos exists. From this value, there is, indeed, ar

infinity of order 2 cycles which are inside€€C;. For

A = A1), @ chaotic attractor of Cantor type exists in the
interval CC,. With this value of accumulation we split the
box Q;.

3.3.1 Intervalsy, andA;.

The interval|A (1)), A1), | is denotedw; and the interval
]Aw)s: A1 [ is denoted by (see Fig8) . w; contains no
odd order cycle, only cycles of order of power of 2; the
odd order cycles will appear in the interva, beyond the

value)\z*i, defined below.

Fig. 8: Scheme of the structure of the b&x.

3.3.2 Cyclic chaotic segment

For A = Aj, a value which corresponds to the
corresponds to the merger of the critical paBtwith a
point of the cycle of order'21, which is destabilized by a
bifurcation B2 (forA = A,), a cyclic chaotic invariant
segment of order'2! is observed (foA = A} see Figs9

and10).

The bifurcations of this type occur in the reverse order

of doublings bifurcations period\(,, < Aj) andAy), is
also a point of accumulation af;,i — +oo.

3.3.3 Description of the bogs.
The study of f3 allows us to highlight the same

phenomena td3 than that off. It is possible to set an
interval (box) Qs = [A(3),,A5] contained in the interval

Myrbarg map
W : : ; : : ;b

0_.‘..

05 1
lambda=1.5437

Fig. 9: A = )\; , the rank-2 critical pointCy, merges with the
fixed pointgy, from which the period doubling cascade is issued.
The segmentC, is chaotic.

Myrberg map

lambda=1.5

Fig. 10: A < Aj , the two segmentSC, andC3C; constitute an
order 2 cyclic absorbing segment, which contains eitherrdaro
2i cyclic chaotic segment, either an ordep2riodic orbit

Q; and which has the same structure and the same

properties asQ;. However, for the transformatiori3
instead off, Q3 corresponds to the birth of two cycles of
order 3, an attractive, the other repulsive, by a bifurcatio
B1 (Fig.11).

A3 corresponds to the merger of critical poifts C;
and C3 with the three points of the order cycle 3, born
repulsive forA = A3, (see Figl2 Fig. 13). A = A3,

Q3 splits in the same way thaf; into two intervals
wz andAs;

w3 contains all bifurcation values for doubling period
obtained forf3, that is to say, corresponding to appearance
of cycles of order 2',i=1,2,...,

A3z contains the values of bifurcation that will make
appear cycles of order® m=3,4,5,....

The valueA ), the accumulation value for doublings

period f3, separates the two intervalg andAs. Values
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Myrberg map Ay, A de A AL 4 ey, A
I

- SYNp—. e sssaitmaisisesiay T e ; — :

@

Q

Fig. 14: Scheme of the box-within-box bifurcation structure.

lambda=1.754

structure of Q; and Qs; period doubling cascades,
Fig. 11: A = A(3), , two order 3 cycles appear by a bifurcation accumulation vaIue)\(Jk)S, intervals wﬂ and Ad. This
B1. justifies the fractal nature of the structure of bifurcasion
BBQ and the term "box-within-a-box”.
The emergence of a bcﬂ; is linked to the existence
ST ... .. NN of k extrema off¥ that will cross the diagonad, ;1 = Xn
: ; : : : I ' 3 in the plane(xn,xn+1) (bifurcation B1). When the value
of k increases, the number of extremaféfincreases, it
is then possible to obtain several bifurcations B1 &y
which cause the existence of several boxes associated with
fk, the indexj corresponds a numbering of the boxes to
distinguish. For example, there are three boﬂgs j=
1,23.
The Fig.14 outlines this structure - box-within-box.

4 Box-Within-a-box bifurcation structure
and Sousa Ramos'’s trees

. i : - : The aim of this section is to characterize the

2 s a4 o8 0 05 1 15 2 "box-within-a-box” bifurcation structure using the
b= TR techniques of symbolic dynamics for unimodal maps,

always based on the kneading theory of Milnor and

Thurston p], the formalism of symbolic dynamics

developed by J. Sousa Ram@, [9] and thex-product,

A work of Derrida, Gervois, and Pomeal].[

3o As was done in the previous section, we will consider

Fig. 12: A = A3, the critical pointsC;, C3 andC, respectively
merge with the points of the order 3 cycle born repulsiveAfes

Xn1 = F(Xn,A) = 5 (Xn)

A@3;andA3, have the same properties fot, asAip,and  under the same conditions given in secti8ril).
A{ for f; in particular forA3, a cyclic chaotic invariant set Thus, using the tree structure developed by Sousa
of order 3 is within the intervaCC,; (see Figl3). Ramos 2.2), the order relation established in the
symbolic sequences se2.{) and thex — product (2.3,
we definesp as the set of parameteds for which the

3.3.4 Description of boxe®). mapf, has a kneading sequen8k 1IC ¢ 5.
A similar study of transformationg* can highlight the Definition 2.Let < be the order relation induced i by
existence of boxe®) = {)\(Jk)o,)\if]] all having the same Ao < Agpa iff S <r Q.
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ARLLRC ARLLLC

ARLLRLC  ARLLRRC ARLLLRC ARLLLLC

7LRRC

ARLRRRC

Fig. 15: Tree.«p.

for any k and g positive integer.

With this order relation, we can represesp using
Sousa Ramos’s tree structure (fij5), establishing a
connection between the symbolic sequence order and
order of the parameters on the s#.

As was stablished in lemmaof section2.3, between

the sequence{S{k—l] *C)oo and Sk-U « RL* are all the

sequences of the forr8* Y « PC wherePC € . For
instance, suppose thak~1 = R andP = R in this case
we have S¥U « PC = RLRG which is a periodic
kneading sequence of period @r, if P = RL then we
haveSk~1 « PC = RLRRRGwhich is a periodic kneading
sequence of period 6

Motivated by this examples, in a direct way we have
the following result:

Proposition 1Let $<-1C be periodic kneading sequence
of period k, and let PGz &)y such that P is a symbolic
sequence with A 1 symbols. Then:

skt pc=gk-lpgk-ip,. gk-tp,_;sklc
and, if the R-parity of § 1 is even,
§1 . pc — sk-Up,sk-Upgk-Up,  gk-Uc,

if the R-parity of & is odd. In both cases it corresponds
to periodic kneading sequences of period R.

Definition 3.We define % (s[k—l}c) as the set of

parametersA, for which the map ) has a kneading
sequence in the treékSY « 7.

Proposition 2LetA € <% (S[k‘l]c) . Then the orbit of the
critical point of the map £ is periodic of period p such
that p modk) = 0.

ProofThe result comes directly from the previous
proposition and definition of the s&k—1 x c7y.

Definition 4.Let)\gk) be the parameter value such that the
itinerary of the critical point under the maggk) is given

by the symbolic sequenc&s

Proposition 3For the parameter valueAgk 1,5~ the
itinerary of the critical point will fall into a eventually
periodic orbit. The periodic sub-orbit of the eventually
periodic orbit fall on repulsive fixed points of the map
fIK,

ProofWithout loss of generality, let assume that the
sequences*—U has an odd R-parity. Thus we have the
sequence

S[k—l] *+RL® = §k—l]L(§k—l] R)oc
which is a eventually periodic orbit.

Thus, using symbolic dynamics and theproduct, we
have the following relation with the embedded bofas
(see sectiond.3):

%2 = [Arc, AR«RL®]
Q3 = [ARLC, ARL+RL*]

Q= [)\ﬁk—l]ca/\ﬁkfl]*RL“’]

The number of embedded boxes of typg, for a
given symbolic kneading sequen@&@1C is directly
related to the number of periodic admissible kneading
sequences of dimensidn For this reason we are working
in the set2y. For example, if we consider kneading
sequences of period 5, from the condition of admissibility
(see sectior2.1), we only must consider the kneading
sequenceRLLLC, RLRRCand RLLRC For instace, the
sequence RRLLC is not admissible because
RLLCR >gr RRLLC Thus, we have three sets of
embedded boxes of typeQs. Consider now the

i (S[k*”C) tree. Noting that the parameter values

A€ .ap (S““”C) appear ordered according to the order
relation of the respective kneading symbolic sequence, we
have in .o (S[k*”C) tree a structure that allows us to

completely characterize the setg and Ay such that
w U A = Q.

Example 4.et g, be the unimodal map given by
) =A-x.

This map has the same qualitative characteristics as the
map in the sectioB.2. For reasons of compatibility with
the symbolic dynamics and tree structure established in
section3, we will consider the map, .
Let A € [Arc,ARLR?], We obtain the bifurcation diagram
in figure 16.

In figure 16 note that for the last value of
A € [Arc, ARLR¢], We obtain only a point in the bifurcation
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T e il o
| =
e 1.0
0.51...-:‘
\ S s 0.5}
08 10T, 12
bl 15/ “10 -bs o5 10 \ if
Fig. 16: Bifurcation diagram fol € [Arc, ARLR?] _o05l
-1.0f
diagram. That is because for the parameter value
A = ArLre there is a merger between the orbits of the -1.5F

critical points of @ map into a single repulsive fixed

. 2 . . . . .
Fomt of the mapfl@. This situation is represented in Fig. 17: The mapg; sasco andg[f]54369 the liney = x and the
igure17. orbit of critical point 0fg; 54369

Let A € op (S[k‘l]c) . If we want to determine the

values of the parametar, for which we obtain a periodic

kneading sequence of period k, we could do this by Solvingy, e, the admissible solution =~ 1.79033. Because the

an equation obtained from the kneading sequence. Let orbit is eventually periodic, we have to go looking for the
value from which we obtain the periodic block of the orbit.

R(y) = VA —
) Y In this case, this value is given lay— (a— a?). In figure
L(y) = —vVA -y 18 we can see the orbit of the critical point of the map

be two inverse functions, obtained from the functioin 9179033 and its symbolic sequen& L(RLR)®.

order to better understand our intentions about this two
maps let consider the following cases: If the critical point
is a fixed point then we only have to soli®¢0) = O;. In

this case the solution is trivial, ia, = 0. If the orbit of the ~ - :
critical point is of period two,RC, we must solve the /X Y I
equation [/ / \\ il

| \ / \ 1

A=A —-0=R(0), Vo i

which admissible solution i3 = 1; If the orbit of the \ / \ ‘
critical point is of period 3,RLC, we must solve the \ “

equation ] 7 \ |

S5 o es [/ o T IRE

)\: )\+ /—)\—O:ROL(O) 5 ““‘ 0 0.5 05 u“ ? 2.0
which admissible solution will b = 1.75488. \ |
Thus, to obtain the numerical value ak r>, and ‘\ |
because we have an eventually periodic orbit, we must N i \ /
/ \/

solve the equation

a—(a—az)zz\/a— (a—(a—az)z), Sl
Fig. 18: The mapg; 79033 and 9[13_’]79033 the liney = x and the

which admissible solution i& ~ 1.54369. In figurel7 we
orbit of critical point ofg; 79033

can see the orbit of the critical point of the mgfs4369

and its symbolic sequenédR".

To obtain the numerical value akLr1> = ARLL(RLR
and because we have an eventually periodic orbit, we musExample 9.et us consider the tent map

solve the equation
hy (X) =1—A|x.

The aim is to verify the merging of the orbits when we
22 _
a-(a-a)’= \/""Jr \/a— \/a— a(l-a(l-a(l-a)*?)  apply the star product. Here the box@g for k > 2 is set
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with a single point, which is the value of the parameter
for which the maph, have a kneading sequence.

With the aim of looking for the set containing all
orbits of period P, we must consider the maximal
sequenceRCx* RL”. From [2] we have the following
condition that kneading sequence must verify:

Hoo ( ani
W C L

whered = S¥UCsuchthaty = —1if & =L, § = +1if
d =Randdg = +1if & =C. If we consider the sequence

0 =RLR’

such thaR= +1 andL = —1, and considering the sum of
a convergent geometric series with rafigt) we have

1 1
o

=3 AA+1)

The admissible solution i& = 1.4142 Thus we have our
first box where we have the orbits of period 2

Q,=1,1.4143.

e b e NS e N
-1.0 -0.5 L 0.5 1 15

—10b

Fig. 19: The maphy 4142 andhﬂlu the liney = x and the orbit
of critical point ofhy 4142

15+

MTE [T TN A I W
-0\ /) -0 b 05 \/ o | 15
V7T \ \

/ \ \

-15

-1.0

-15

Fig. 20: The maphy g1803 and h[l?.’]ealsoa the liney = x and the
orbit of critical point ofhy 61803

But here,the se@3 has only one point,
a=1.61803

For this parameter value we have all orbits of periqud 3
The next figure shows the plot of the tent mEyx) and
the mapT3(x) for a~ 1.61803

5 Conclusions

Using the kneading theory of Milnor and Thurstofi, [

the formalism of symbolic dynamics developed by J.
Sousa Ramodgg], [9], [10], [4] and the work of Derrida,
Gervois, and Pomeau about theproduct [l], we
characterize the embedded boxes structure, work done by
C. Mira [7], in an accurate manner, because we can fully
characterize the lambda values in the set of parameters
where all bifurcations occur in unimodal maps, making
only use of symbolic computation, without using
approximate values. In a future work, is our goal to build
these tools into maps defined in higher dimensions.
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Now the merging situation. If we want to get the box CIMA-UE.

where we have the orbits of periogh3ve must consider,
for the minimum extreme, the sequence

& = (RLO)”
and for the maximum extreme, the sequence

Ay = RLCxRL”
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