Appl. Math. Inf. Sci.7, No. 1, 81-85 (2013) N S = 81

Applied Mathematics & Information Sciences
An International Journal

@© 2013 NSP
Natural Sciences Publishing Cor.

Exponentially Fitted Symplectic Runge-Kutta-Nystr om
methods

Th. Monovasilis, Z. Kalogiratol?, T.E. Simo$

! Department of International Trade, Technological Educational Institution of Western Macedonia at Kastoria, Kastoria, Greece

2 Department of Informatics & Computer Technology, Technological Ed. Institution of Western Macedonia at Kastoria, Greece

3 Department of Mathematics, College of Sciences, King Saud University, Riyadh, KSA, Department of Computer Science and Tech-
nology, Faculty of Science and Technology, University of Peloponnessos, Greece

Received: 17 Jun 2012; Revised 17 Sep. 2012 ; Accepted 18 Sep. 2012
Published online: 1 Jan. 2013

Abstract: In this work we consider symplectic Runge Kutta Nysir (SRKN) methods with three stages. We construct a fourth order
SRKN with constant coefficients and a trigonometrically fitted SRKN method. We apply the new methods on the two-dimentional
harmonic oscillator, the Stiefel-Bettis problem and on the computation of the eigenvalues of theiSgpér equation.
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1. Introduction then the Hamiltonian system has the form
0
= ——V(g,z), ¢ =0p. 3
Hamiltonian systems are systems of first order ordinaryp Jq (@), @ =p ®)
differential equations that can be expressed as or
0
OH OH q"=—-5-V(g,z). 4)
= _ = dieid 1 0
p B4 (p,a,2), ¢ o (p,q,2), 1) q

The last is a system of second order differential equations
and have been treated in the literature by Runge-Kutta-
Nystriom (RKN) and symplectic RKN (SRKN) methods.

The theory of these methods can be found in the book of

where(p,q) € U an open subset &2?, z € I an open
subinterval ofR, the integel is the number of degrees of
freedom. The hamiltonian functioH (p, ¢, x) is a twice
continously differentiable function off x I that repre- >anz-Sernaand Calvo [4]. .

sents the total mechanical energy. Fheariables are gen- On the other hand the solution of hamiltonian systems

eralized coordinates and thevariables are the conjugated ©ften has an oscillatory or periodic behavior and special

generalized momenta. The solution operator of a Hamilto-Methods that take into acount these properties of the solu-

nian system is a symplectic transformation. tion have been considered. Among these methods are fre-

: : dependent methods as exponentially, trigonomet-
A symplectic numerical method preserves the symplec“€N¢Y. ) e ’
tic stru)éturr)e in the phase space whpen applied to I-%an?ilto—”ca"y fitted, phase f|tted and amphﬂpa}tlon fitted m_eth-

ods and methods with constant coeficients as minimum

nian problems. Therefore symplectic numerical methods hase lag, minimum amplification error, P-stable methods.

have been used for the numerical integration of hamilto-P . : . . .
nian problems over the past two decades. In this work wesxg[grtfsnm:gsgttsegSt}gtnhsogzr:nézgéitereesxsaecdﬂég'Eﬁ;?t('%lm_
shall consider problems with separable Hamiltonian of the yste . P

binations of functions of the forrxp (Az), exp (—Ax) or

special form sin (Az), cos (—Az). A detailed survey of these methods
1, can be found in Ixaru and Vanden Berghe. Simos [5] first
H(p,q,2) = 50" p+ V(g 2), (2)  constructed an exponentially fitted Runge-Kutta method
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that integrates exactly the test equatidn= —w?y. More A RKN method that satisfies (6) and (7) is called sym-
recently some authors [2] [3] have proposed several explectic RKN method (SRKN). In the case of explicit RKN
ponentially fitted RKN methods. The idea of combining methods the coefficients,;; are fully determined by the
symplecticity with exponential fitting was first introduced coefficientsh; andc;
by Simos and Aguiar [6] for RKN methods, they presented bi(ci —c;) ®)
a two stages modified second order symplectic RKN, also™® ~— 7V* 77
Vyver [7] constructed a two stages modified second order  Condition (6) is a well known simplifying assumption
symplectic RKN method that integrates exactly the expo-from the standard theory of RKN methods that reduces
nential function at the internal stage also. the number of order conditions. Calvo and Sanz-Serna has
Van de Vyver [8] first constructed a symplectic Runge- shown that condition (7) is also a simplifying assumption.
Kutta-Nystom method with minimum phase-lag. His methothe order conditions up to fourth order method are
has third algebraic order and sixth phase-lag order. first order
In this work we present two three stages symplecticb e—1
RKN methods, one with constant coefficients and fourth ™ ’
algebraic order and symplectic modified RKN method which second order
integrates exactly the test equatighh = —w?y follow- 1
ing the approach of Simos. In section two the basic theor)i"c'6 9
of SRKN methods and exponential fitting is presented, the third order
new methods are developed in section 3. Numerical results
and conclusions are presented in section 4. bi’e==, bae= é,

fourth order
2. Symplectic RKN methods

1 1
b.ce= 7 b.a.ce = o
We consider systems of second order ODEs of the form

y'(@) = f(w,y(@), @€ [, X], 3. Construction of the new methods

with initial conditions .
, , We consider the three stage method
y(xo) = %0, ¥ (z0) = yp-

C
An explicit RKN method is of the form C; by(cy — c1)
s C3 b1 (Cg — Cl) b2<03 — Cg)
Ynt1 = Yo + hyp, + 12D Bifi, bi(1—c1) ba(l—cy) bs(1 —cs)
i=1 by by b3
o - . In order to construct the fourth order method we solve
Y1 = Yo + R ; bifi, ) the six conditions and derive the following coefficients
where 3-2V3 1 3+2V3
, bi=—7>— b=, by =—g3—,
i—1 12 2 12
fi=T @ +cih, yn + cihyl, + B2 aif; 3+V3 3-V3
j=1 1 = 6 ) Cy = 6 ) C3 = Ci.
and is associated with the Butcher tableau Here we construct new trigonometrically fitted RKN
c method following the approach introduced by Simos [5]
cl a for Runge-Kutta methods. These methods integrate exactly
221 the test equation
C3|a31 32 " )
Y =—wy
.Cs .asl ;LSQ e For the exponentially fitted case we want the numerical
B B2 - Bs_1 Bs method to integrate exactly the exponential functigp (+wz)
by by - bs 1 by with w real
Suris showed that a RKN method is symplectic when apxp (£v) = 1 £ v + (B.e)v? £ (5.C.e)v” + (6. A.e)v*
plied to Hamiltonian problems of the form (2) if the coef- +(8.A.C.e)v° + (B.A.A.e)v",
ficients of the method satisfy
B =b;(1—¢), 1<i<s, (6)  exp(dv) =1+ (be)v+ (b.C.e)v* £i(b.A.e)v?
bz(ﬁj — Oéij) = b](ﬂz - Ctji), 1 S Z,_] S S. (7) +(bAC€)'U4 + (b.A.A.e)v5,
© 2013 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.7, No. 1, 81-85 (2013) / www.naturalspublishing.com/Journals.asp

83

wherev = w h. For the trigonometrically fitted case we

want the numerical method to integrate the exponential

functionexp (iwz) with w real

exp (iv) = 1 +iv — (B.e)v? —i(B.C.e)v® + (B.A.e)v?
+i(8.A.C.e)v® — (B.A.A.e)v",

exp (iv) = 1 +i(b.e)v — (b.C.e)v?® —i(b.A.e)v®
+(b.A.C.e)v* +i(b.A.A.e)v”,

or equivalently

cosv —1 = —(B.e)v? + (B.Ae)v* — (B.A.AeN,
Si‘;” — 1= (B.Ce)? + (BAC.?,

cosv — 1 = —(b.C.e)v? + (b.A.C.e)v?, (9)
Si:” = (b.e) — (b.Ae)v® + (b.A.Ae)v?,

We lete; = 0 from the trigonometrical fitting condi-
tions (9) we obtain the coefficients

c2v + (=14 ca(=1 + b1v?))(vcosv — sinv)

@ = (14 (=1 4+ brcav?) cosv — causinw)
b (14 (=1 + bycav?) cosv — cavsinv)?
3= —
p
b —2+4 (2 —b1v?)cosv + (1 + by)vsinv
2 =
p
p =0+ b (—=1+ c2)eav®)vcosv

(=14 (1 4 by)eav? — c3v?)vsinw

We have two free parameters and b; and we use

—0.001438399281608581791 v* + 0.0000827946627077300777 v°
—1.4655145815655087 10~ % v® + 2.9118114430067654 10~ % v1°,

c3 = 0.73166990421824007504 — 0.01164255863026712775 v>
—0.000354772795572808874 v* — 0.0000250077938624870232 v°
—5.568816130391094 10~ v® — 5.801982609741059 105 v'°.

4. Numerical Results

We shall compare our new methods Methl (constant co-
efficients) and Meth2 (variable coefficients) with the third
algebraic order with 6th phase lag order SRKN method of
Vyver [8] and the fourth order five stages SRKN method
of Calvo and Sanz-Serna.

4.1. The two-dimentional harmonic oscillator

We consider the two-dimentional harmonic oscillator

p’l = —w14q1, Q'1 =P1 plz = —w2(q2, QQ = P2
with initial conditions
p1(0) =0, ¢(0)=1, p2(0)=1, ¢2(0)=0.

The Hamiltonian of this problem is

H(p1,p2,q1,92) = T(p1,p2) + Vg1, q2),

1
T(p1,p2) = 5(19% + p3),

them in order to obtain the higher possible algebraic orde@nd

whenv = 0. This is the case for

11 / 2
== —-V1+k-1/6,(2—k+ —,
“2T37% / V1+k
L 32/3 31/3(=34-2/3)1/3
T 2(=3+2V3)1/8 2
by — —3co + 24¢3 — /3y/—8ca + 39c3 — T2c3 + 48¢]

12(2¢2 + 3c3)

(orce = —0.18799161879915978201 and

b1 = 0.552924973878536667).

The classical method (far = 0) has algebraic order 3 and
the first condition of the fourth order is also satisfied.

For small values of we use the following Taylor ex-
pansions

by = —0.18799161879915978201 + 0.014823031830119705447 v>
—0.0006567635698988819674 v* + 0.00005008999261903756659 v°
—2.2837596032644413 10~ % v® + 1.6950437269127458 107 v'°,

bs = 0.635066644920623115 — 0.01482303183011970545 v>

1
Vg1, q2) = —5(7«01 qi + w2 q3).

The exact solution is

q1(x) = coswy z, qo(x) =sinwsx,

we choosav; = wy = 1. For this choise we use = h.

In Table 1 we present he norm of the error in the solution
(first line) and the error in the Hamiltonian (second line)
for the two-dimestional harmonic oscillator with integra-

tion interval[0, 1000] and several stepsizes.

Al Methl] Meth2 CS54
1] 4.41107 1] 4.3910°° 7.521072
7.11107°/6.66 10~ 1° 3.5010°7
2.321072%[9.5210~10 4611073
2.261077|1.6510~15 9.871010
1.421073]2.3910~ 13 2.8910~%
8.4110~10|4.7710~15 3.5710712

Vyver3
3.141072
3.01107°
5.36 102
9.631078
1.60107°

3.591010

172

1/4

Table 1:The norm of the error in the solution and the
error in the Hamiltonian for the two-dimentional
harmonic oscillator.
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R Methl Meth2 Vyver3 CSS

4.2. An orbit problem studied by Stiefel and Ey, 5 0 0 0 0
Bettis Eypo 7 7 0 0 2
B3 10 160 3 2 32
We consider the following almost periodic orbit problem EE50 ié 6132 g 1%;27 111‘;%
studied by Stiefel and Bettis Eigg 19 "~ 13 971 2977
py = —q1 +0.001cos(z), ¢ = p1, Eagg 22 - 18 3171 -
= in(x I E300 26 - 35 - -
Py = —q2 +0.001sin(x), q5 = po Fiao 30 _ 92 _ _

with initial conditions
_ _ _ _ Table 3:Absolute Error & 10~%) of the eigenvalues of the
p1(0)=0. ¢1(0) =1, p2(0)=0.9995, g2(0) =0. harmonic oscillator = 0.05).
The analytical solution is given by

q(x) = cos(x) + 0.0005z sin(x),

4.3.2. The doubly anharmonic oscillator

p(z) = sin(x) — 0.0005z cos(x). y

In Table 2 we present he norm of the error in the solutionThe potential of the doubly anharmonic oscillator is

for this problem with integration interv@d), 1000] and sev-
| stepsizes. 1

eral stepsizes Vi) = ?EQ Lozt Agad

h| Methl| Meth2| Vyverd| CSS4

1/2]2.3810723.68 107 °[4.66 10~ *[4.78 103 we take\; = \y = 1/2 Theintegration interval is- R, R].
1/4]1.421073(2.22107%]1.33107°(2.98 10~* In Table 4 we give the computed eigenvalues upstg
1/8/8.78107°|1.38 107 7|1.741075(1.86 10~° with steph = 1/40 andR = 3.

1/16(5.48107°¢(8.58 1079(2.1910~7|1.16 10—

Methl Meth2 Vyver3 CSS

Table 2:The norm of the error in the solution for the 54.999484 117 17 3 20
Stiefel-Bettis problem. 67.29805 220 25 5 40

81.262879 384 35 9 71

96.061534 630 49 13 120

4.3. Computation of the eigenvalues of the g;-gg;g% 1322 g‘; ;?3 ;gg
Schidinger equation 145.031661 2162 102 38 424
162.765612 3067 123 60 613

We shall use our new methods for the computation of the 131158105
eigenvalues of the one-dimensional time-independent 200.185694
Schibdinger equation. The Sdbtinger equation may be
written in the form

- 137 85 829
- 147 121 1123

Table 4:Absolute Error &10~9) of the eigenvalues of the

1 ic 0SCi _
_iw” +V(z) = By doubly anharmonic oscillator( = 1/40).
whereF is the energy eigenvalu¥;(z) the potential, and ~__ We see that the performance of the trigonometrically
y(z) the wave function. fitted method is superior in comparison to the other meth-

ods tested. Furthemore the computational cost is the same
for the three methods with three stages only the 4th order

4.3.1. The harmonic oscillator method of Calvo and Sanz-Serma is more expensive.

We consider the harmonic oscillator potential
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with boundary conditiong/(—R) = ¢(R) = 0.
We considetk = 1.
The exact eigenvalues are given by
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