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Abstract: This paper develops a feature-based Automatic Modulation Classification (AMC) algorithm for spatially multiplexed
Multiple-Input Multiple-Output (MIMO) systems. The proposed algorithm employs two Higher Order Cumulants (HOCs) of the
estimated transmit signal streams as discriminating features, and a multiclass Support Vector Machine (SVM) as a classification system.
A multi-classifier classification system is introduced to improve the robustness of the decision made by the classifier ateach estimated
transmit signal stream. Furthermore, an optimal decision fusion scheme using a Maximum-Likelihood (ML) criterion is also introduced
to improve the accuracy and reliability of the final classification decision made in the fusion center. The proposed algorithm shows good
performance under different operating conditions, over anacceptable range of SNR, without any prior information about the channel
state.

Keywords: Automatic modulation classification, blind channel estimation, decision fusion, higher-order cumulants, multiple-input
multiple-output.

1 Introduction

Automatic modulation classification (AMC) is a signal
processing technique that automatically identifies the
modulation type of the incoming signal with limited or no
prior knowledge about the parameters of the signal [1]. It
was originally proposed for military applications, but
later its employment was extended to cover many civilian
applications [2].

Even though intense researches have been conducted
in the field of AMC during the last decades, most of them
were mainly conducted for Single-Input Single-Output
(SISO) systems. Recently, Multiple-Input Multiple-
Output (MIMO) techniques have been receiving much
attention and widely employed by various wireless
systems. This is because they can enhance reliability
and/or data rate of communications over the wireless
channels [3,4]. However, the transmission over multiple
antennas makes the previous AMC algorithms (i.e., the
algorithms proposed for SISO systems) invalid for MIMO
systems, and raises the necessity for new algorithms that
can handle such environments well [5]. In practice, the
AMC algorithms for MIMO systems pose a much more
challenging tasks compared to that for SISO due to the
mutual interference introduced by the MIMO channel [6].

Many algorithms have been developed so far to
address AMC problem for MIMO systems. These
algorithms are typically categorized into two main
classes; likelihood-based (e.g., [5]) and feature-based
(e.g., [6] and [7]) algorithms.

Through an exhaustive review of the literature, the
feature-based algorithms were found to be the most
widely used methods to addresses the AMC problem for
spatially multiplexed MIMO systems. This is due to their
lower computational complexity and reasonable
classification accuracy when compared with the
likelihood-based algorithms [6]. However, for the most of
these existing feature-based algorithms, the decisions for
the estimated transmit signal streams (i.e., the separated
data streams at the output of the MIMO equalizer) are
usually made and fused without considering the
Post-Processing Signal-to-Noise Ratio (PPSNR) at these
streams - assuming that all estimated streams have the
same PPSNR. In particular, the extracted features, and
therefore the decision for each estimated stream are
closely dependent on its PPSNR. Therefore, to achieve a
more reliable and robust classification result, it is
necessary for the classification system and also the fusion
scheme to incorporate the SNR conditions at the
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estimated streams when making and fusing the decisions
for these streams.

In this paper, a feature-based AMC algorithm for
spatially multiplexed MIMO systems is presented. The
proposed algorithm considers the SNR conditions at the
estimated transmit signal streams when making and
fusing the decisions for these streams. For this purpose, a
multi-classifier classification system similar to that in [7]
is proposed to be utilized at each estimated stream; each
sub-classifier is trained to be able to operate under a
specific range of SNR. However, instead of estimating the
average SNR per receiver antenna as in [7], the PPSNR
for each estimated stream is calculated at the output of the
MIMO channel equalizer and used to adapt the
classification system to the SNR condition of the stream.
Thus, more robust and reliable decisions can be made by
the classification system. To our best knowledge, this
approach has never been used in the context of the
feature-based AMC algorithms for MIMO systems.
Furthermore, instead of treating all estimated decisions at
the Fusion Center (FC) equally, a decision fusion scheme
using a Maximum-Likelihood (ML) criterion is proposed
to be utilized in the FC in order to reach the final
classification decision; the modulation type is thought to
be the most probable reason behind the observed
decisions under specific PPSNR conditions. Thus, more
accurate final classification decisions can be made in the
FC. Again, to our best knowledge, no previous work
addressed the problem of the decision fusion in the
context of AMC for MIMO systems.

The rest of this paper is arranged as follows.
Section (2) describes the signal model and related
assumptions. Section (3) presents the proposed
modulation classification algorithm in details. Section (4)
presents the simulation results, and finally Section (5)
concludes the whole paper.

In this paper, the bold-face lower-case letters,
bold-face upper-case letters and lower-case letters denote
vectors, matrices and scalars, respectively. For the
inverse, transpose, and conjugate transpose operations we
use the respective (·)−1, (·)T and (·)H .

2 Signal Model

A spatial multiplexing MIMO system equipped withMT
transmit antennas andMR receive antennas is considered
in this study whereMT ≥ MR. Assuming a frequency-flat
time-invariant channel environment, the received symbol
vector at a certain time instantk can be expressed as:

r(k) = Hs(k)+n(k) (1)

Wherer (k) ∈ C
MR×1 is the received symbol vector at

time instantk under the assumption of perfect carrier
frequency and phase recovery;s(k) ∈ CMT×1 is the
transmitted symbol vector at time instantk whose
elements are assumed to be independent and identically

distributed (i.i.d) belonging to the same modulation
scheme;n(k) ∈ CMR×1 is the additive background noise
vector at time instantk corresponds to the zero-mean
spatially-white circularly-symmetric complex Gaussian
noise with variancesσ2

n ; and H ∈ CMR×MT is the
complex MIMO channel matrix whose elements represent
the path gain between the transmit and receive antennas.

We consider a Rayleigh fading channel, thus all
complex elements ofH are assumed to follow a
zero-mean circularly-symmetric complex Gaussian
distribution with unit variance.

Without loss of generality, the signal transmitted from
each antenna is assumed to have unity average power;
hence the average SNR can be expressed as SNR =
10log(MT/σ2

n).
Moreover, the noise varianceσ2

n and the number of
transmit antennasMT are assumed to be perfectly known
or accurately estimated at the receiver side, for instance
by means of the covariance matrix of the received
samples.

3 Classification Algorithm

The proposed algorithm has four main stages as shown in
Fig. (1). Firstly, blind channel equalization (i.e., blind
channel estimation and compensation) is performed to
estimate theMT transmitted symbol streams from the
received mixtures. Moreover, based on the channel
estimates, the computation of the PPSNR for each of the
MT streams is also performed. Then, in the second stage,
features for modulation classification are extracted for
each of theMT streams where a set of robust and
discriminative features are estimated. Next, based on the
extracted features and the PPSNR for each estimated
stream, a properly trained classifier is utilized in the third
stage to estimate the modulation type at each stream.
Finally, based on the estimated decisions and PPSNRs for
all streams, an optimal decision fusion scheme is utilized
in the fourth stage to find the final classification decision
F. All the proposed algorithm stages are discussed below
in detail.

3.1 Channel Equalization and PPSNR
Calculation

Since the received signal vector components are linear
mixtures of the transmitted signal vector components plus
white noise, a blind channel equalization method is
needed to recover the transmitted streams from their noisy
linear combinations.

Independent Component Analysis (ICA) [8], which is
used in this study, is the conventional method for solving
this problem. However, the ICA in this work is followed by
Minimum Mean Square Error (MMSE) based equalization
as in [9] to cope with residual interference.
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Fig. 1: A block diagram of the proposed AMC algorithm.

Several algorithms based on different criteria have
been proposed so far to perform ICA, such as Joint
Approximate Diagonalization of Eigen-matrices
(JADE) [10] and Fast ICA [11]. A comparison study
between these algorithms reported in [12]. Dues to its fast
convergence speed, and satisfactory separation
performance in many applications [13,14], the
well-known JADE algorithm [10] is used in this study to
perform ICA.

In practice, JADE algorithm permits us to estimate the
channel matrix up to a phase and a permutation
ambiguity. It is clear that permutation has no effect on the
overall AMC performance since the ordering is not that
important for the AMC algorithms [5]. However, the
phase ambiguity inherited from JADE should be taken
into consideration in the next stage when choosing the
features; otherwise a phase correction technique is
needed [5].

In practice, in order to cope with residual interference
from other estimated streams, MMSE-based equalization
is usually employed after JADE algorithm [9]. Thus, an
initial channel estimatêH is first obtained with JADE.
Then, the equalization matrixWM is found from the
common MMSE criterion as [15]:

WM = (Ĥ
H

Ĥ+σ2
n IMT )

−1 Ĥ
H

(2)

Then, the estimated transmitted symbol vector at time
instantk can be expressed as [15]:

ŝ(k) = WM r(k) (3)

At the output of the MMSE equalization, the residual
signal plus interference from other estimated streams can
be well approximated as Gaussian [15], and the PPSNR for
each estimated transmit signal stream can be calculated;
the PPSNR corresponding to theith (1 ≤ i ≤ MT) stream

can be given as (considering that the transmitted signals
have unity average power) [15]:

ppŝnri =
|(WMĤ)i,i |

2

Σl 6=i |(WMĤ)i,l |2+σ2
n(WMWH

M)i,i
(4)

Where (· · · )i,l denotes the(i, l)th entry and(· · · )i,i

denotes theith diagonal element of the matrix of interest.
Note that the phase ambiguity inherited from JADE has
no effect on the PPSNRs for the estimated streams.

3.2 Features Extraction

For each ofMT the transmit signal streams estimated in the
first stage, the feature extraction is performed in this stage
of the proposed algorithm as shown in Fig. (1), where a set
of discriminative features for modulation classification is
considered.

Previous research studies conducted in the field of
modulation classification [16,17] showed that Higher
Order Cumulants (HOCs) of the intercepted signal can be
considered as one of the best candidate features for
modulation classification in SISO [16] and also MIMO
systems [17]. This is due to their robustness to phase
rotation, resistance to additive Gaussian noise, and
easiness to implementation [16].

In this study, only two HOCs are extracted and used
as discriminating features; they are the normalized fourth-
order cumulant (̃C42) and the magnitude of the normalized
eighth-order cumulant (|C̃80|). These features are chosen
since they are robust to phase rotation which in our study
corresponds to the phase ambiguity inherited from JADE.
Additionally, they are capable to reliably characterize the
modulated signals considered in this study [16,17].

For a zero-mean random variablex, associated with a
stationary random process for the data sequencex(k), the
C̃42 and|C̃80| can be respectively defined as [18,19,20]:

C̃42 =
E(|x|4)−|E(x2)|2−E2(|x|2)

E2(|x|2)
(5)

|C̃80|=

∣∣∣∣
E(x8)−35E2(x4)−28E(x6)E(x2)+420E(x4)E2(x2)−630E4(x2)

E2(|x|2)

∣∣∣∣ (6)

WhereE(·) is the statistical expectation operator.

Table (1) presents the theoretical values ofC̃42 and
|C̃80| computed over the ideal noise-free channels for the
modulated signals of interest.
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Table 1: Theoretical values of the features for the considered modulated signals
- BPSK QPSK 8-PSK 16-PSK 16-QAM 64-QAM

C̃42 -2 -1 -1 -1 -0.68 -0.619
|C̃80| 272 34 1 0 13.988 11.502

3.3 SVM Based Classification

Based on the extracted features, the classification stage is
performed in the third stage of the proposed algorithm to
estimate the modulation type for each estimated transmit
signal stream as depicted in Fig. (1).

Among many classification methods proposed so far,
the Support Vector Machine (SVM) method has shown
superior performance in the context of modulation
classification [21]. This is due to its significant
characteristics such as good generalization capability and
powerful learning ability [21]. Thus, a multiclass
SVM-based classifier is used in this study to estimate the
modulation type for each estimated transmit signal
stream.

Furthermore, since the extracted HOC features are
dependent not only on the modulation type but also on the
SNR, we propose to partition the entire SNR range into
consecutive intervals. Additionally, we utilize a particular
multiclass SVM for each SNR interval rather than
utilizing a single multiclass SVM for the entire SNR
range, so that more robust and reliable decisions can be
made.

Thus, a multi-classifier classification system is utilized
for each estimated stream; where each sub-classifier is a
multiclass SVM trained at a specific SNR range. Based on
the PPSNR value at the estimated stream, the sub-classifier
trained at the range that includes this value is employed to
estimate the modulation type for this stream. If the PPSNR
is found to be out of the entire SNR range, then the sub-
classifier trained at the closest SNR interval is utilized.

3.4 Decision Fusion

After classification of the modulation scheme at each
estimated stream, the estimated decisiond̂i (1 ≤ i ≤ MT)
and its associated PPSNR estimationppŝnri (1≤ i ≤ MT)
for each stream are fed to the FC-as depicted in Fig. (1).

Depending on the decision estimation vector
d̂ = [d̂1, d̂2, ..., d̂MT ] and its associated PPSNR estimation
vector ppŝnr = [ppŝnr1, ppŝnr2, ...., ppŝnrMT ], we
propose a decision fusion scheme based on the ML
criterion. The proposed fusion scheme generates the final
classification decisionF; F is regarded as the most
probable reason behind the observed decisions under their
associated PPSNR conditions. Here, we assume that the
classification probability matrices for the observed
interval of PPSNR, also referred to as confusion matrices,
are available at the FC. These matrices can be computed
during the SVM training phase.

Let M = [mod1, mod2, ...., modm] denote the
modulation set of interest; then the probability of making
a modulation schememodk (1 ≤ k ≤ m) as a final
decisionF (F ∈ M ) given the observed decision̂d under
the post-processing SNR conditionppŝnr , denoted as
P(F = modk|(d̂,ppŝnr)), can be computed using the
Bayes rule as [22]:

P(F = modk|(d̂,ppŝnr))

=
P((d̂,ppŝnr)|F = modk).P(F = modk)

P(d̂,ppŝnr)
(7)

WhereP((d̂,ppŝnr)|F = modk) is the probability of
taking the decision̂d under the post-processing SNR
conditionppŝnr given that the modulation schememodk
is the final decisionF; P(F = modk) is the prior
probability of modulation schememodk which is the same
for all the considered schemes by assuming a uniform
distribution for the prior probabilities; andP(d̂,ppŝnr) is
the probability of taking the decision̂d under the
post-processing SNR conditionppŝnr which is the same
for each modulation schememodk.

Since the modulation scheme is estimated
independently for each of theMT streams, the probability
P((d̂,ppŝnr)|F = modk) can be expressed as:

P((d̂,ppŝnr)|F = modk)

=
MT

∏
i=1

P((d̂i , ppŝnri)|F = modk) (8)

WhereP((d̂i , ppŝnri)|F = modk) is the probability of
taking the decision̂di at theith estimated transmit signal
stream under the post-processing SNR conditionppŝnri
given that the modulation schememodk is the final
decision F; this probability can be obtained from the
confusion matrices.

After finding conditional probability
P((d̂,ppŝnr)|F = modk) for each candidate modulation
schememodk, the ML criterion is employed to find the
final classification decisionF :

F = argmax︸ ︷︷ ︸
modk

{P(F = modk|(d̂,ppŝnr)}

= argmax︸ ︷︷ ︸
modk

{
P

(
(d̂,ppŝnr)|F = modk

)}
(9)

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 5, 2513-2519 (2015) /www.naturalspublishing.com/Journals.asp 2517

4 Results and discussion

Extensive Monte Carlo (MC) simulations were conducted
in MATLAB to evaluate the performance of the proposed
algorithm.

MIMO Signals with BPSK, QPSK, 8PSK, 16PSK,
16-QAM, 64-QAM modulations were considered in this
study since they belong to the most widely used
modulation schemes that can be found in the radio
spectrum.

First, for each considered modulation scheme and
SNR value in the range -10 to 15 dB, one hundred signal
realizations were generated. Each realization consisted of
2048 × MT data symbols considering the following
MIMO antenna configurationMT = 2, MR = 4. For each
processed signal, the features were calculated according
to Eqs. (5) and (6), combined to form the feature vectors.
These realizations were employed only to train the
multi-class SVM which was implemented using the
LIBSVM package [23] and also produce the confusion
matrix for each SNR. The SVM kernel function was
studied empirically and the best performance was
obtained when using the Radial Basis Function (RBF) as
a kernel function. The one-against-all scheme was used to
extend SVM to multi-class case due to its low complexity
and good accuracy.

The considered SNR range (-10 to 15 dB) was
partitioned into ten consecutive intervals with an equal
width of 2.5 dB chosen experimentally after intensive
simulations as a reasonable compromise between
performance and complexity. Accordingly, the
classification system for each estimated transmit signal
stream was composed of ten classifiers; each of them was
trained to be utilized under a specific SNR interval.

The classification performance of the proposed
algorithm was evaluated in terms of probability of correct
classification (Pcc) averaged over all the six considered
modulation schemes and over a large number of trials.
One thousand MC trials were performed for each
modulation scheme (i.e., 6000 MC trials in total) where
Pcc was obtained as the ratio of the number of trials at
which the modulation scheme had been correctly
classified to the total number of trials (i.e., 6000 trials).
For all MC trials, unless otherwise mentioned,N = 2048
i.i.d symbols per transmit antenna was considered as an
observation interval andMT = 2, MR = 4 as MIMO
antenna configuration.

Fig. (2) illustrates the effect of the observation interval
lengthN (i.e., number of the considered symbols) on the
averagePcc over a wide range of SNRs; whereMT is set
to 2, andMR to 4 antennas. As expected, the algorithm
performance improves as the observation interval length
increases. This is because, asN increases, the reliability
and accuracy of the HOC estimates also increase, leading
to a significant improvement in the classification
performance. For instance, at SNR equal to 10 dB, the
averagePcc = 92%, 95%, and 98% for the respectiveN =
512, 1024, and 2048, whereas it reaches 100% forN =

4096. Note that the averagePcc does not quite approach
100% forN = 512 and 1024, even with a 15 dB SNR.
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Fig. 2: Average probability of correct classification versus SNR
for different observation interval lengths.

Fig. (3) shows the averagePcc achieved with the
proposed algorithm for different MIMO antenna
configurations over a wide range of SNRs whereMT is
set to 2, andMR to 4, 6, and 8 respectively. As noticed,
the algorithm performance improves as the difference
(MR − MT )increases. This is because as the difference
(MR − MT ) increases, the diversity gain also increases,
leading to a degradation in the symbol error probability
[6] and accordingly an improvement in the overall
algorithm performance. Note that the averagePcc reaches
90% for all the considered MIMO antenna configurations
when SNR is not lower than 4dB.
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Fig. 3: Average probability of correct classification versus SNR
for different MIMO antenna configurations.

Fig. (4) compares the performance of the proposed
algorithm to its performance when employing the
multi-classification method in [7] (using the multiclass
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SVM as a sub-classifier and same SNR intervals) or only
a single classifier trained at all SNR values as a
classification system; whereMT is set to 2, andMR to 4
antennas. As seen, the performance when adapting the
classifier at each estimated transmit signal stream to the
PPSNR at that stream is clearly better than that when
adapting the classifiers to the average SNR at the receiver
or when utilizing only a single classifier at each stream.
For instance, at averagePcc equal to 90%, the proposed
classification system offers SNR gain of about 2 dB when
compared to the classification method proposed in [7] for
MT = 2 andMR = 4 antennas.
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Fig. 4: Average probability of correct classification versus SNR
at different classification scenarios.
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Fig. 5: Average probability of correct classification versus SNR
at different fusion scenarios.

Fig. (5) compares the performance of the proposed
algorithm with the suggested decision fusion rule to its
performance when employing the conventional majority
rule (M-out-of-MT rule whereM = MT /2) as a fusion
scheme; whereMT is set to 2, andMR to 4. As clearly
noticed, the performance when employing the proposed
decision fusion is significantly better than that when

employing the conventional majority decision fusion,
especially at the low SNR region. For instance, at average
Pcc equal to 90%, the proposed decision fusion offers
SNR gain of about 3 dB when compared to the majority
decision fusion. Moreover, it should be mentioned here
that for the case when the majority fusion condition was
not satisfied, the result was not considered as false alarm;
hence, the majority fusion rule performance can become
much worse.

5 Conclusion

In this paper, a robust and reliable feature-based AMC
algorithm for spatially multiplexed MIMO systems is
proposed. We have shown that adapting the classification
system at each estimated transmit signal stream to the
PPSNR at that stream significantly improves the
classification performance in the context of the
feature-based AMC algorithms for MIMO systems. We
also addressed the problem of the decision fusion for the
feature-based AMC algorithms and introduced an optimal
decision fusion scheme based on the ML criterion in
order to reach more accurate and reliable final
classification decisions. The proposed algorithm showed a
good classification performance under different operating
conditions, without any prior information about the
channel state.
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