Appl. Math. Inf. Sci. 7, No. 2L, 563-567 (2013)

%N =) 563

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/072L.28

Accelerating GOR Algorithm Using CUDA

Xinbiao Gan'-%, Cong liu"2, Zhiying Wang?, Li Shen?, Qi Zhu?, Jie Liu', Lihua Chi", Yihui Yan' and Bin Yu®

!'School of Computer, National University of Defense Technology University, Changsha 410073, China
2State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073, China
3CIty college, Wuhan University of Science and Techology, Wuhan 430083, China

Received: 18 Oct. 2012, Revised: 15 Jan. 2013, Accepted: 18 Jan. 2013

Published online: 1 Jun. 2013

Abstract: Protein secondary structure prediction is very important for its molecular structure. GOR algorithm is one of the most
successful computational methods and has been widely used as an efficient analysis tool to predict secondary structure from protein
sequence. However, the running time is unbearable with sharp growth in protein database. Fortunately, CUDA (Compute Unified Device
Architecture) provides a promising approach to accelerate secondary structure prediction. Therefore, we propose a fine-grained parallel
implementation to parallelize GOR-IV package for accelerating protein secondary structure prediction, in which each amino acid would
be assigned to one single CUDA thread, hence protein secondary structure prediction would be parallelized by many CUDA threads
simultaneously, and constant cache is resorted to cache parameter table. Experimental results show a speedup factor is more than 173X

over original GOR-IV version.

Keywords: Protein secondary structure prediction, GOR, fine-grained, onstant cache, CUDA

1 Introduction

Protein structure prediction plays a very important role in
determining functions in biological systems, and protein
tertiary structure prediction is one of ultimate goals for
protein science. However, methods including homology
modeling[1]. protein fold recognition [2], and ab initio
modeling [3] for Protein tertiary structure prediction is
complex and unfeasible. Consequently, Instead of
predicting 3D structure directly, it is much easier to
predict fundamental elements of protein secondary
structure including a-helices, b-sheets, coils, and turns.
All these elements can be easily observed in protein 3D
structure and can serve as an input for protein tertiary
structure prediction successfully.

Fortunately, several methods such as GOR method[4,
5], Hydrophobic-Polar model[6] and AI methods [7,8]
have been proposed for predicting 2D structure from
amino acid sequence. Particularly, GOR algorithm is one
of the earliest and most successful methods for secondary
structure prediction from protein sequence. It is based on
the information theory combined with the Bayesian
statistics. Although protein 2D structure prediction based
on GOR is efficient but execution time is intolerable with
steep growth in protein database. ThereforeXia presented

a fine-grained parallel hardware implementation based on
FPGA accelerator and attained speedup factor of
430X[9], while customization of FPGA accelerator is
complex, expensive and unfeasible. Accordingly, we
introduce many-threaded GPU to parallelize GOR, which
is feasible and efficient for parallelizing protein
Secondary Structure Prediction.

2 Motivation

2.1 GOR algorithm

GOR program is one of the first major methods proposed
for protein secondary structure prediction from sequence.
The original version (GOR-I) was released in 1978 by
Garnier, Osguthorpe and Robson[4, 5].

The basic idea of GOR method is the use of
information theory and Bayesian statistics method to
relate amino acid sequence for protein secondary
structure prediction. It takes into account not only the
propensities of individual amino acids to form particular
secondary structures, but also conditional propensities of
amino acid to form a secondary structure when its

* Corresponding author e-mail: xinbiaogan@ 163.com

© 2013 NSP
Natural Sciences Publishing Cor.

564 %m S\

XB. Gan: Accelerating GOR Algorithm Using CUDA

] Kermel |

I |
Predic |af Firsi Pass] Second_Puss
i G

/ -

e e i e i e, i s R

-

|

] ‘/|R<uu n fopais |——-[TRend infodir i—-{ Normalize |\| l
I s
I I

Fig. 1 Dataflow of kernel for GOR

immediate neighbors have already formed that structure
[4,5,9].

In the past twenty years, GOR algorithm has been
improved by larger structure databases and more detailed
statistics. The GOR-IV analyzes sequences to predict
alpha-Helix(H), Extended beta-sheet(E), or Coil(C)
secondary structure at each position based on 17-amino
acid sequence windows to consider information of local
segment, Eight nearest neighboring residues on each side
are considered for a given residue and a database of 267
sequences with known secondary structure to calculate
information function[9].

In practice, GOR runs with a single protein sequence
as input, the kernel of the algorithm executes in three
stages, as shown in figure 1. The First stage (Predic), it
predicts the 2D structure for each input amino acid. The
latter two stages (first_pass and second_pass), which
perform scanning procedure to correct the secondary
structure generated by the first stage.

2.2 Motivating warm-up

To identify performance bottleneck of GOR and then
accelerate and optimize the kernel component of GOR,
we have done a warm-up testing on original GOR-IV
package. Our study shows that first stage (Predic) takes
up 99% of total execution time, as described in figure 2.

Therefore, we would accelerate first stage (Predic)
using many-threaded CUDA because it is critical to
accelerate the GOR program.

3 Architecture

Usually, modern computer systems are composed of CPU
and GPU. Figure 3 shows the architecture of collaborative
system, in which GPU can be used as an accelerator to
consume data transferred from CPU into GPU with PCle
channel on demand.

In above system architecture, GPU architecture
consists of a scalable number of streaming
multiprocessors (SMs), a read-only constant cache, and a
read-only texture cache. Each SM contains eight
streaming processor (SP) cores and every three SMs
constitute a threading multiprocessor cluster (TPC) in
NVidia GTX 280, Additionally, Each SM has16KB

breakdown of running time

ghconl13.fsa_aa

ghenv6.fsa_aa

| predic W First_Pass Second_Pass

Fig. 2 Warm-up running on GOR

shared memory which is partitioned into 16 banks and
common to all 8 SPs inside it.

In CUDA-enabled GPU, instructions are structured in
SPMD (Single Program, Multiple Data), and CUDA
execution model provides three key abstractions [10], a
hierarchy of thread groups, shared memories, and barrier
synchronization. Threads have a three level hierarchy. A
grid is a set of thread blocks that execute a kernel
function. Each grid consists of blocks of threads. Each
block is composed of hundreds of threads. Threads within
one block can share data using shared memory and can be
synchronized at a barrier. All threads within a block are
executed concurrently in a form called warp, which is
composed of 32 parallel threads, and Instructions are
scheduled and managed based on warp in SIMT (Single
Instruction, Multiple Threads) architecture. Consequently,
thread-level parallelism is prone to exploited for Protein
secondary structure prediction according to CUDA
execution model as shown in Figure 3.

4 Methodology

4.1 Look-up table in Predic

Insighting into first stage (Predic), the key for Predic is
looking-up two tables including infopair and infodir. And
the principle for looking-up table is described in figure 4.

In Figure 4, top row represents current predicted
protein sequence, the ? pointing to the current residue to
predict, horizontal axis and vertical axis disl and dis2
represent the relative position of other residues from away
current residue to predict in the window. For each center
residue, local information for both neighboring 8 residues
would be considered. Briefly, predictions were done by
using a sliding window of a size of width 17 residues, and
details can be referred to references[4,5, 11].

© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 7, No. 2L, 563-567 (2013) / www.naturalspublishing.com/Journals.asp

0N 1

I

\\\\\\

Fig. 3 Collaborative system architecture

------ MD 1L FLEK[AJL T NS DWLGIF L -

8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 :
dis]

ElN

-6 N

INE
il

Look-up
infopair

s

Look-up ! i I e T T r*r*I*I*‘I
i . [e M
infopair PG S S O O Y O O

Fig. 4 Principle for look-up table in Predic

4.2 Parallelization

As illustrated in figure 4, only center residue would be
calculated in one sliding window, however, every residue
in protein sequence should be predicted one after one in
the following. Aggressively, we could issue multiple
sliding windows, hence, there are multiple center residue
would be calculated simultaneously.

More aggressively, we would make hundreds of
sliding windows in flight, because there are millions of
residues would be predicted in sequence and there are no
dependences on prediction and computation among
residues to be calculated.

residuc sequence [oo [M D[I [L]FTL]E]K[AJL]TIN]s[D[W]L]G]R]L] ‘
Block 1
R ‘
| Shared Memory ‘
Block n :
8 - o]
kernel

Fig. 5 Parallelizing model for predicting residues

Therefore, each predicting residue could be attached
to one CUDA threads, thus, hundreds of predicting
residues would be parallelized and calculated
simultaneously by many CUDA threads and good-sized
threads would group into a thread block, as illustrated in
figure 5. Comparing figure 3 and figure 5, it is obvious
that parallelizing model we proposed is catering to CUDA
execution architecture. Additionally, shared memory is
resorted to communication among threads in one thread
block, which would avoid frequent global memory or
video memory access and improve performance for
pixel-level image fusion on CUDA.

4.3 Optimization

CUDA-enabled GPU architecture is memory-bound
architecture, so reasonable data layout on CUDA and
memory optimization 1is critical for performance
improvement[12, 11].

Usually, source data are transferred from CPU into
global memory and CUDA threads would fetch operands
frequently from global memory.

During execution, CUDA threads may access data
from multiple memory spaces such as registers, local
memory, shared memory, constant memory and texture
memory except for global memory, as detailed in table 1.

Table 1 Memory Hierarchy for NVidia GTX 280

Memory Location Size&Read only Hit Latency
Shared on-chip 16KBper SM/No 1 cycle
Constant on-chip cache = 64KB total/Yes 1 cycles
Texture on-chip cache up to global/Yes 100 cycles
Global off-chip 1GB/No 200-300cycles

Consequently, it is unadvisable to store source images
into global memory in predicting residues. Practically,
Programmers would resort to constant memory or texture

© 2013 NSP
Natural Sciences Publishing Cor.

so6 e o

XB. Gan: Accelerating GOR Algorithm Using CUDA

memory to cache source data since registers are private by
single thread and the number is limited, and shared
memory is favor to communicate among threads in one
thread block. Hence, constant memory and texture
memory are candidates. Due to latency for texture
memory is higher than that of constant memory. Hence
we employ constant memory to store shared parameter
tables. That is because constant memory is low latency,
and its space is big enough for shared parameter tables.

5 Experimental Result

5.1 Experiment Setup

In order to validate our proposed methods, we
implemented GOR algorithm on CUDA-enabled GPU
and CPU respectively, and tested two protein data bases
with different scale: gbenvé.fsa_aa, gbconll3.fsa_aa,
downloaded from the NCB 1 ftp server[14]. And the
testing platform is configured as follows.

(1) Intel Core2 Quad 2.33 GHz, 4GB main memory,
Microsoft Visual Studio 2005

(2) GeForce GTX280, 1GB video memory or global
memory, CUDA toolkit and SDK 2.0 with NVIDIA Driver
for Microsoft Windows XP(177.98)

5.2 Performance Comparison

We test proposed techniques using two protein data bases
with different scale. Table 2 demonstrates performance
comparisons between original GOR-IV version, CUDA
version and optimized CUDA version with constant
cache.

As shown in Table 2, the running time for protein
secondary structure prediction is zooming when protein
database is increasing. Accordingly, running time for
protein secondary structure prediction would be
unbearable with sharp growth in protein database. But
execution time is falling sharply when introducing CUDA
for parallelizing protein secondary structure prediction.
And speedup is increasing when protein database is
growing, which is according to CUDA execution model.
When testing database is gbconll3.fsa_aa, the speedup
factor is more than 173X over original GOR-IV version.

Experimental results validate that we propose a
fine-grained parallel method to parallelize GOR-IV
package for accelerating protein secondary structure
prediction. Moreover, we employ constant cache in
CUDA to boost performance further.

6 Conclusions

GOR method is one of the earliest and most successful
methods in 2D structure prediction. However, predicting

Table 2 Performance Comparison on GOR-IV
M: Numberof protein sequence in database
L. Total length of Protein sequences

Running time(ms)

protein data bases original CUDA CUDA version with
GOR-IV 7 Sy speedup
5 version optimization
version
gbenv6.fsa_aa
M=8296 5.781 106.1 47.6 121.4
L=1772705
gbconll3.fsa_aa
M=10774 17.609 250.8 101.7 173.2

L=5526602

protein 2D structure using GOR approach is efficient but
time-consuming. Therefore we propose a fine-grained
parallel method to parallelize GOR-IV package for
accelerating protein secondary structure prediction, in
which each amino acid would be assigned to one single
CUDA thread, hence protein secondary structure
prediction would be parallelized by many CUDA threads
simultaneously, Moreover, we employ constant cache in
CUDA to boost performance further. Eventually, CUDA
version with optimization could attain more than 173X
speedup than original GOR-IV version.

Acknowledgement

This work is partly supported by 863 Program Foundation
of China under Grant No. 2012AA010905, National
Natural Science Foundation of China under Grant No.
60803041, No. 61272144, No. 61070037, No. 61272143,
No. 60970033 and No. 61025009.

The authors are grateful to the anonymous referee for
a careful checking of the details and for helpful comments
that improved this paper.

References

[1] Sanchez R, Sali A. Corporative protein structure modeling in
genomics. Journal of Compute Physic 1999, 151:388-401.

[2] Jones DT, Taylor WR, Thornton JM. A new approach to
protein fold recognition. Nature 1992, 358:86-89.

[3]1 B.W J, E.B D. An evolutionary approach to folding small
alpha-helical proteins that uses sequence information and
an empirical guiding fitness function. Proceedings of the
National Academy of Sciences of the United States of
America 1994, 91:4436-4440

[4] Garnier J, Osguthorpe DJ, Robson B. Analysis and
implications of simple methods for predicting the secondary
structure of globular proteins. J. Mol. Biol 1978, 120:97-120.

[5] Garnier J, Gibrat JF, Robson B. GOR method for predicting
protein secondary structure from amino acid sequence.
Methods Enzymol 1996, 266:540-553.

[6] Dill KA. Principles of protein folding: a perspective from
simple exact models. Protein Sci 1995, 4:561-602.

© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 7, No. 2L, 563-567 (2013) / www.naturalspublishing.com/Journals.asp

[7] Cuff JA, Barton GJ: Application of enhanced multiple
sequence alignment profiles to improve protein secondary
structure. Proteins: Struct. Funct.Genet 2000, 40:502-511.

[8] King RD, Sternberg MJE. A machine learning approach for
the prediction of protein secondary structure. J. Mol. Biol
1990, 216:441-457.

[9] Xia et al. FPGA accelerator for protein secondary structure
prediction based on the GOR algorithm BMC Bioinformatics
2011, 12(Suppl 1):S5.

[10] NVIDIA. NVIDIA CUDA C Programming Guide 3.1.
NVIDIA Corporation, 2010.

[11] Binod Kumar and N. N. Jani. Prediction of Protein
Secondary Structure based on GOR Algorithm Integrating
with Multiple Sequences Alignment. International Journal of
Advanced Engineering & Applications, 2010, Jan, 107-112.

[12] Ryoo S, Rodrigues C.I, Baghsorkhi S.S, etc. Optimization
principles and application performance evaluation of a
multithreaded GPU using CUDA. // proceeding of ACM
SIGPLAN Symposium on Principles and practice of parallel
programming, 2008, 73-82.

[13] Xinbiao Gan, Li Shen, Zhiying Wang, etc. Data layout
pruning on GPU. Applied mathematics & information
science, 2011,5 (2):129S-138S.

[14] ftp://ftp.ncbi.nih.gov/ncbi-asnl/protein_fasta.

Xinbiao
Gan received MS degree in
computer system architecture
from National University
of Defense Technology of
China in 2008. He is currently
pursuing PhD degree in
computer system architecture
from National University
of Defense Technology of

China.

His research interests include High performance
computing, Computer architecture, GPGPU and Compiler
Optimization.

© 2013 NSP
Natural Sciences Publishing Cor.

