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Abstract: Analytical and numerical solutions are obtained for two-dimensional advection-diffusion equation, using Laplace

transformation technique and explicit finite difference method for the pollutant concentration in a river or in shallow aquifer with

time-dependent dispersion coefficients. We take two cases, first case: concentration of increasing nature (mixed type or third type)

is considered at the origin and initially the domain is solute free. Second case: the river’s water is polluted initially (at time t = 0 )

while at the origin, at time t > 0, the source of pollution is removed by releasing fresh water. We have proved mathematically the fact

that the high concentration of pollutant can be reduced by releasing adequate discharges from barrage in a river. Both the dispersion

coefficients, the velocity components and first order decay term are considered exponentially decreasing function of time. The different

effects of the parameters controlling the pollutant dispersion along the river at any time are studied separately with the help of figures.

The parameters that have a role in removing or reducing concentration of pollutant along the river have been studied in detail. When

comparing the analytical solution with the numerical solution, we found a very good agreement between them. For a real situation, our

simple model can provide decision support for planning restrictions to be imposed on farming and urban practices.

Keywords: Concentration of pollutant, Advection-diffusion equation, Explicit finite difference method, Laplace transformation,

Solutions of partial differential equations.

1 Introduction

Many rivers such as the river Nile in Egypt, the Tha Chin
River in Thailand [1] and, the Mississippi River in the
U.S.A. pass through agricultural and industrial areas and
through settled communities. These rivers are polluted
from the combined discharges of industrial, domestic, and
rural inflows before reaching the sea. Every year,
approximately 25 million persons die as a result of water
pollution[1]. Hence, water pollution is a major problem in
many countries. The advection-diffusion equation
describes the pollutant concentration distribution due to
the combined effect of diffusion and convection in a
porous medium.

The advection-diffusion equation is applicable in
many disciplines like groundwater hydrology, chemical
engineering, biosciences, environmental sciences and,

petroleum engineering [2]. Its solutions along with an
initial condition and two boundary conditions help to
understand the pollutant concentration distribution
behavior through an open medium like air, rivers, lakes
and, porous medium like an aquifer, on the basis of which
remedial processes to reduce or eliminate the damages
may be enforced, Kumar et al. [3]. Yadav et al. [4]
obtained an analytical solution for two-dimensional
dispersion through a semi-infinite homogeneous porous
medium when a point source concentration of pulse-type
is considered at the origin. Ibrahim et al. [5] investigated
pollution remediation in a river using unsteady aeration
with arbitrary initial and boundary conditions. Yadav and
Kumar [6] investigated analytical solutions for the
two-dimensional advection-dispersion equation in a
semi-infinite heterogeneous porous medium with a
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uniform nature pulse-type input point source for
conservative solute transport. Kumar et al. [7]
investigated solute dispersion in a semi-infinite porous
medium with a source/trough effect. Suryani et al. [8]
solved the diffusion-convection equation with variable
coefficients and for anisotropic media by using the
boundary element method. Manitcharoen and Pimpunchat
[9] used a mathematical model in a one-dimensional
advection-dispersion equation that included terms of
decay and enlargement process to study the motion of
flowing pollution. Saleh et al. [10] obtained analytical and
numerical solutions for a one-dimensional
advection-diffusion equation with constant coefficients,
the initial condition and the boundary condition at the
source of pollution were applied to describe the
exponential variation in pollutant concentration. They
proved mathematically the fact that the high
concentration of pollutants can be reduced with great
efficiency by releasing clean water discharges from
barrage in a river. The propagation of pollution in water
bodies can be studied in several ways [11], [12] and [13].

The objective of this study is to obtain an analytical
solution of the advection-dispersion equation by using
Laplace transformation and numerical solution by using
the explicit finite difference method. The flow is assumed
to be unsteady through the semi-infinite porous medium
x ≥ 0. Both components of dispersion coefficient and flow
velocity components in x and y directions are considered
as decreasing functions of time t. We take two cases, first
case: the concentration of increasing nature (mixed type
or third type) is considered at the origin and initially the
domain is solute-free. Second case: the river’s water is
polluted initially (at time t = 0 ) while at the origin, at
time t > 0, the source of pollution is removed by releasing
fresh water. Also, there is no pollutant concentration
exchange at end of both boundaries x and y. Four special
cases are obtained from the analytical solution.

2 Formulation of the problem

The general partial differential equation describing
hydrodynamic dispersion in a homogeneous, isotropic
porous media in two dimensions can be written as [4] and
[14].

R
∂C

∂ t
= Dx(t)

∂ 2C

∂x2
+Dy(t)

∂ 2C

∂y2
− u(t)

∂C

∂x

− v(t)
∂C

∂y
− γ(t)C

(1)

where R is the retardation coefficient accounting for
equilibrium linear sorption processes, C(x,y, t)

(

kg m−3
)

is the pollutant concentration which depends on the
longitudinal direction along the river x (m), the
transversal direction y(m) and time t(day ),Dx

(

m2day−1
)

and Dy

(

m2day−1
)

are the hydrodynamic dispersion
coefficients in x and y-directions respectively,

u(t)
(

m day−1
)

and v(t)
(

m day−1 ) are the average fluid
velocities in the x and y-directions respectively and γ(t)
(

day−1 ) is the first order decay term.Yadav et al. [4] and
Ebach and White [15] have established that the dispersion
coefficients vary approximately directly with flow
velocity for different types of the porous medium, hence:

Dx = Dx0
exp(−nt), Dy = Dy0

exp(−nt)
u = u0 exp(−nt), v = v0 exp(−nt),
γ = γ0 exp(−nt),







(2)

where u0

(

m day−1
)

and v0

(

m day−1
)

are initial velocity
components of the fluid along the x and y-directions
respectively, Dx0

= au0

(

m2day−1
)

,Dy0
= av0

(

m2day−1
)

are initial dispersion coefficient components along two
respective directions x and y, a (m) is a constant
depending upon pore geometry of the medium, n

(

day−1
)

is flow resistance constant-coefficient and γ0

(

day−1
)

is
the initial first-order decay term. By using equation (2),
equation (1) is solved by Yadav et al. [4] for the case of a
uniform pulse-type input point source condition.
Introducing a distance variable χ(m) and a time variable
T (day) defined by Crank [16], Kumar et al. [2], Jaiswal
et al. [17] and, Yadav et al. [4]

χ = x+ y

√

Dy0
Dx0

,

T =
∫ t

0
exp(−nt)

R
dt = 1

nR
[1− exp(−nt)].















(3)

The expression exp[−nt] = 1, for n = 0 or t = 0, thus the
new time variable T obtained from equation ( 3) satisfies
the conditions T = 0 for t = 0 and T = t/R for n = 0.
Equations (2) and (3) transform equation (1) into:

∂C

∂T
= D

∂ 2C

∂ χ2
−U

∂C

∂ χ
− γ0 C, (4)

where

D = Dx0

(

1+
D2

y0

D2
x0

)

, U =

(

u0 + v0

√

Dy0

Dx0

)

, (5)

such that D is new variable represents the dispersion and
U represents the velocity. We studied two different cases
where:
first case: C(x,y,0) = 0,C(0,0, t) 6= 0.
Second case: C(x,y,0) 6= 0,C(0,0, t) = 0.

Case study one: in our study, we will assume that the
river is initially free from the pollutant. The source of
input pollutant concentration may increase with time due
to a variety of reasons. This type of situation may be
described by a mixed type (third type). Also at infinity
from the source (x = y = 0), it is assumed that there is no
pollutant concentration exchange with the system. Hence
the initial and boundary conditions associated with
equation (1) are:

C(x,y, t) = 0 , x ≥ 0, y ≥ 0, t = 0, (6)
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−β



Dx
∂C

∂x
−

√

D3
y

Dx

∂C

∂y



+

[

u+ v

√

Dy

Dx

]

C

=

[

u+ v

√

Dy

Dx

]

C0, x = 0, y = 0, t > 0,

(7)

∂C

∂x
=

∂C

∂y
= 0, x → ∞, y → ∞, t ≥ 0, (8)

where C0 is constant at the inlet boundary and β is
constant. Equations (2),(3) and (5) transform equations
(6-8) into:

C(χ ,T ) = 0 , χ ≥ 0, T = 0, (9)

−β D
∂C

∂ χ
+UC =UC0 , χ = 0, T > 0, (10)

∂C

∂ χ
= 0, χ → ∞, T ≥ 0, (11)

Case study two: Assume that the river’s water is
polluted at the initial time (t = 0) along the river. Assume
also that at x = y = 0 at any time (t > 0), the source of
pollution is removed. Then the initial and boundary
conditions associated with equation (1) are: (Saleh et al.
[10], Hadhouda and Hassan [18])

C(x,y, t) =C1e

−
(

x+y

√

Dy0
Dx0

)

k , x ≥ 0, y ≥ 0, t = 0, (12)

C(x,y, t) = 0, x = y = 0, t > 0, (13)

∂C

∂x
=

∂C

∂y
= 0 , x → ∞, y → ∞, t ≥ 0, (14)

where C1

(

kg m−3
)

is the value of pollutant concentration
at x = y = 0 and t = 0, k( m) is the initial pollutant-decay
length. Equations (2) and (3) transform equations (12-14)
into:

C(χ ,T ) =C1 e
−χ
k , χ ≥ 0, T = 0, (15)

C(χ ,T ) = 0 , χ = 0, T > 0, (16)

∂C

∂ χ
= 0 , χ → ∞,T ≥ 0 (17)

3 The analytical solution

The solution of equation (4) can be suggested in the form
(Kumar et al. [2] and Yadav et al. [4])

C(χ ,T ) = K(χ ,T )exp

(

U

2D
χ −

(

U2

4D
+ γ0

)

T

)

. (18)

Equation (18) transforms equation (4) and equations (9-
11) into :

∂K

∂T
= D

∂ 2K

∂ χ2
. (19)

K(χ ,T ) = 0 , χ ≥ 0 , T = 0, (20)

−β D
∂K

∂ χ
+U

(

1− β

2

)

K

= UC0 exp

{[

U2

4D
+ γ0

]

T

}

, χ = 0, T > 0.

(21)

∂K

∂ χ
+

U

2D
K = 0 , χ → ∞ , T ≥ 0, (22)

Applying Laplace transformation on equations (19, 21 and
22) and using equation (20) gives:

D
d2K̄(χ ,P)

dχ2
= PK̄(χ ,P), (23)

−β D
dK̄(χ ,P)

dχ
+U

(

1− β

2

)

K̄(χ ,P)

=
UC0

P−α2
, χ = 0,

(24)

dK̄(χ ,P)

dχ
+

U

2D
K̄(χ ,P) = 0, χ → ∞, (25)

where, α is constant which is given by α2 =
(

U2

4D
+ γ0

)

and P is Laplace transform of the time t, which is a
complex variable and K̄ is Laplace transform of K. Thus,
the general solution of the ordinary differential equation
(23) subject to boundary conditions (24) and (25), may be
written as:

K̄(χ ,P) =
UC0

β D

exp
(

−χ
√

P
D

)

(P−α2)
[
√

P
D
+ U

β D

(

1− β
2

)] . (26)

Now, applying the inverse of Laplace transformation on
equation (26) and using equation (18), hence the
analytical solution of advection-diffusion equation (1)
associated with the initial and boundary conditions (6-8)
may be written in terms of (χ ,T ) as:

C(χ ,T ) =
1

2
UC0 exp

[

U

2D
χ

]

∗



















exp
[

− α√
D

χ
]

erfc
(

χ

2
√

DT
−α

√
T
)

(

U

(

1− β
2

)

+αβ
√

D

)

+
exp
[

α√
D

χ
]

erfc
(

χ

2
√

DT
+α

√
T
)

(

U
(

1− β
2

)

−αβ
√

D
)



















−
U2C0

(

1− β
2

)

erfc
(

χ

2
√

DT
+ U

β
√

D

(

1− β
2

)√
T
)

(

U2
(

1− β
2

)2

−α2D

)

∗ exp











(

U
2D

+ U
β D

(

1− β
2

))

χ

−
(

α2 − U2

β 2D

(

1− β
2

)2
)

T











,

(27)

where erfc is the complementary error function. The
solution given by equation (27) is the same as that given
by Cleary and Adrian [19] quoted as problem C7 for the
case of constant coefficients.
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4 Special cases

(I)Two- dimensional dispersion with constant coefficients
and input conditions of increasing nature: the special case
for which Dx,Dy,u,v and γ are constants can be derived by
substituting n= 0 in equation (2), thus T = t

R
and equation

(27) gives:

C(χ ,T ) =
1

2
UC0 exp

[

U

2D
χ

]

∗



















exp
[

− α√
D

χ
]

erfc
(

χ

2
√

DT
−α

√
T

)

(

U
(

1− β
2

)

+αβ
√

D
)

+
exp
[

α√
D

χ
]

erfc
(

χ

2
√

DT
+α

√
T
)

(

U
(

1− β
2

)

−αβ
√

D
)



















−
U2C0

(

1− β
2

)

erfc
(

χ

2
√

DT
+ U

β
√

D

(

1− β
2

)√
T
)

(

U2
(

1− β
2

)2

−α2D

)

∗ exp











(

U
2D

+ U
β D

(

1− β
2

))

χ

−
(

α2 − U2

β 2D

(

1− β
2

)2
)

T











.

(28)

(II) Two-dimensional dispersion solution for uniform
input condition (case β = 0 ): the special case for which
β = 0 is derived from equation (27) as:

C(χ ,T ) =
1

2
C0 exp

[

Uχ

2D

]































exp
[

− αχ√
D

]

∗

erfc
(

χ−2αT
√

D

2
√

DT

)

+exp
[

αχ√
D

]

∗

erfc
(

χ+2αT
√

D

2
√

DT

)































. (29)

(III) One-dimensional solution for input condition of
increasing nature: the solution for one-dimensional
dispersion can be derived by substituting Dy0

= 0 in
equations (3) and (5), thus: χ = x,D = Dx0

,U = u0. In
this case equation (27) by substituting β = 1 gives:

C(x,T ) =
1

2
u0 C0 exp

[

u0

2Dx0

x

]

∗























exp

[

− η√
Dx0

x

]

erfc

(

x
2
√

Dx0
T
−η

√
T

)

(

u0
2 +η

√
Dx0

)

+
exp

[

η√
Dx0

x

]

erfc

(

x
2
√

Dx0
T
+η

√
T

)

(

u0
2 −η

√
Dx0

)























−
0.5 u2

0 C0 erfc

(

x

2
√

Dx0
T
+ u0

2
√

Dx0

√
T

)

0.25 u2
0 −η2Dx0

∗ exp
{

u0 x
Dx0

− γ0 T
}

,

(30)

where η2 =
u2

0
4Dx0

+ γ0, equation (30) is the same as that

obtained by Kumar et al. [2].

(IV) One-dimensional solution for uniform input
condition (case β = 0 ): the solution for one-dimensional
dispersion can be derived by substituting Dy0

= 0 in
equations (3) and (5), thus equation (27) gives:

C(x,T ) =
1

2
C0 exp

[

u0 x

2 Dx0

]















































exp

[

− η x√
Dx0

]

∗

erfc

(

x−2η T
√

Dx0

2
√

Dx0
T

)

+exp

[

η x√
Dx0

]

∗

erfc

(

x+2η T
√

Dx0

2
√

Dx0
T

)















































(31)

Equation (31) agrees with that obtained by Kumar et al.
[2].

For Case study two: equation (1) associated with the
initial and boundary conditions (12-14) is solved
analytically, hence C(x,y, t) may be written in terms of
(χ ,T ) as:

C(χ ,T ) =
C1

2
exp

[

D T − k (−T U + χ + k T γ0)

2 D

]

∗



















−2+ erfc
(

1
2

(

− (2 D+k U)
√

T

k
√

D
+ χ√

D T

))

+exp
[

2 χ
k
+ U χ

D

]

∗erfc
[

1
2

(

(2 D+k U)
√

T

k
√

D
+ χ√

D T

)



















.

(32)

5 Numerical solution

In the one-dimensional case
(

Dy0
= 0 , then χ = x,D=Dx0

and U = u0). Hence equation (4) can be written as:

∂C

∂T
= D

∂ 2C

∂x2
−U

∂C

∂x
− γ0 C. (33)

The explicit finite difference method (EFDM) is applied
to solve equation (33). The central difference scheme was

used for ∂ 2C
∂x2 and ∂C

∂x
. The forward difference scheme was

used for ∂C
∂T

. With these substitutions, equation (33) can be
written as:

Ci, j+1 = r1 Ci+1, j + r2 Ci, j + r3 Ci−1, j , (34)

where i and j refer to the discrete step lengths ∆x and ∆T

for the coordinate x and time T , respectively, and:

r1 =
D ∆T
(∆x)2 − U ∆T

2 (∆x) , r2 = 1− 2 D ∆T
(∆x)2 − γ0 ∆T

2 (∆x) ,

r3 =
D ∆T
(∆x)2 +

U ∆T
2 (∆x) .

Equation (34) represents a formula for Ci, j+1 at the

(i, j+ 1)th mesh point in terms of known values along the
jth time row (Anderson [20]).

For case study one : the initial and boundary conditions
(9-11) for one-dimensional case (χ = x), for point source
concentration of uniform input condition (β = 0), can be
written in the finite difference form as:

Ci,0 = 0 , x ≥ 0, T = 0, (35)
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C0, j =C0 , x = 0, T > 0, (36)

CN, j =CN−1, j , x → ∞, T ≥ 0, (37)

where N = x∞
∆x

is the grid dimension in the x direction and
x∞ is the distance from x = 0 in the direction x at which
∂C
∂x

→ 0.
For case study two : The initial and boundary

conditions (15-17) for one-dimensional case (χ = x), can
be written in the finite difference form as:

Ci,0 =C1 e
xi
k , x ≥ 0 , T = 0, (38)

C0, j = 0 , x = 0 , T > 0, (39)

CN, j =CN−1, j , x → ∞, T ≥ 0. (40)

6 Results and discussions

The solution given by equation (27) is illustrated in
figures (1) and (2) for the values 0 ≤ x ≤ 1 m, 0 ≤ y ≤
1 m, R = 1,n = 1

(

day−1
)

,C0 = 0.1
(

kg m−3
)

,v0 =

0.095
(

m day−1
)

,Dx0
= 1.05

(

m2day−1
)

,Dy0
=

0.105
(

m2day−1
)

,γ0 = 0.4
(

day−1
)

and β = 1. Figure
(1), shows the variation of C(x,y,T ) with time for the
values T = 1,3( day ) and u0 = 0.95

(

m day−1
)

. From
figure (1), it is clear that:
1- C increases as T increases at any point of the domain
0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. This is due to the fact that at any
point (x,y), the accumulation of the pollutant increases
especially for small values of u0 and v0. This result agrees
with that obtained by Yadav et al. [4] and Dimain et al.
[21].
2- For any cross-section y = constant, as x increases, C

decreases. This result agrees with that obtained by
Andallah and Khatun [22] and Yaday and Kumar [23].
3- As expected the maximum value of C is at the origin
(0,0), while the minimum value of C is at the point (1,1).
This result agrees with that obtained by Yadav and Kumar
[23].
4- At the origin (0,0), for T = 1, the value of C is 0.06,
which is less than the value of C0 = 0.1. This is due to the
presence of the two positive terms in the left-hand side of
equation (10). Hence the value of the term

−D ∂C
∂ χ = 0.0392

(

kg m−2day−1
)

.

5- Numerical studies and figure (1) in general, show that
the decrease of C in the range 0 ≤ x ≤ 1 is much greater
than the corresponding decrease in the range 0 ≤ y ≤ 1.
This is due to the fact that u0 ≫ v0.

Figure (2), shows the variation of C with u0 for the
values u0 = 0.95,u0 = 2.5

(

m day−1
)

and T = 1(day).
From figure (2) it is clear that: at any fixed point (x,y),C
increases as u0 increases, this is due to the fact that the
releasing water at the origin (x = y = 0) is more polluted
than the water of the river.

The solution given by equation (32) is illustrated in
figures (3-5) for the values

0 ≤ x ≤ 10 m, 0 ≤ y ≤ 10 m, t = 1.5 (day), R = 1, n =
1(day−1), C1 = 0.2

(

kg m−3
)

,v0 =

0.095
(

m day−1
)

,Dx0
= 1.05

(

m2day−1
)

,Dy0
= 0.105

(

m2day−1
)

,γ0 = 0.4
(

day−1
)

and

k = 1
(

day−1
)

. Let the cross-section area of the river at
χ = 0 be A, then the flux of the water (the volume of
water crossing A every day) will be
Q = A U .Consequently increasing the value of U means
increasing the value of Q. Let the zone of clean water
measured from barrage (χ = 0) in the direction of the
flow be denoted by χ0. Let the maximum value of C be
denoted by Cm and the corresponding value of χ
associated with Cm be χm. Figures (3-5) show the
variation of C(x,y, t) with u0 for the values u0 = 0.95,5
and 10

(

m day−1
)

respectively. From figures (3-5) and
numerical results, it is clear that: Cm and χ0 increase as u0

increases, hence figures (3-5) emphasize the fact that the
zone of clean water measured form χ = 0 in the direction
of the flow increases as the quantity of the clean water Q

entering the cross- section A increases. This result agrees
with that obtained by Saleh et al. [10] and Hadhouda and
Hassan [18].

The solution given by equation (32) in the
one-dimensional case

(

Dy0
= 0,χ = x, D = Dx0

and
U = u0) is illustrated in figure (6) for the values
t = 0.1,0.2 and 0.4 (day), R = 1, 0 ≤ x ≤ 10 m, C1 =
0.2
(

kg m−3
)

,D = 1.05
(

m2day−1
)

,n = 1
(

day−1
)

,k =

1
(

day−1
)

, U = 2
(

m day−1
)

and γ0 = 0.4
(

day−1
)

. From
figure (6), it is clear that: as t increases the value of C

decreases along the river this is due to the fact that at any
point the accumulation of the clean water increases.

Numerical solution of equation (34) using explicit
finite difference method with the initial and boundary
conditions (35-37) is given in figure (7), for t = 0.02,0.04
and 0.06 (day). The input data are:
0 ≤ x ≤ 1 m, C0 = 0.1

(

kg m−3
)

,γ0 = 0.4
(

day−1
)

,u0 =

0.95
(

m day−1
)

,n = 1
(

day−1
)

,Dx0
= 1.05

(

m2day−1
)

and R = 1. In the numerical calculations, the step lengths
∆x = 0.1( m) and ∆T = 0.002 (day) have been used to
achieve the stability of the finite difference scheme [24].
From figure (7), it is clear that the pollutant concentration
increases as the time increases, this is due to the fact that
the releasing water at the origin (x = y = 0) is polluted.
This result agrees with that obtained by Kumar et al. [3]
and Dimian et al. [21]. To test the accuracy of the
numerical solution, a comparison between the analytical
solution given by equation (31) and the numerical
solution given from equation (34), associated with initial
and boundary conditions (35-37) is made. Also, it is clear
that the explicit finite difference method is effective and
accurate for solving the advection-diffusion equation for
point source concentration of uniform input condition,
which is especially important when arbitrary initial and
boundary conditions are required.

Numerical solution of equation (34) using explicit
finite difference method with the initial and boundary
conditions (38-40) is given in figure (6), for the values
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t = 0.1,0.2 and 0.4(day), R = 1, 0 ≤ x ≤ 10 m, C1 =
0.2
(

kg m−3
)

,D = 1.05
(

m2day−1
)

,n = 1
(

day−1
)

,k =

1
(

day−1
)

, U = 2
(

m day−1
)

and γ0 = 0.4
(

day−1
)

. In the
numerical calculation, the step lengths ∆x = 1(m) and
∆T = 0.06(day), have been used to achieve the stability
of the finite difference scheme [24]. To test the accuracy
of the numerical solution, a comparison between the
analytical solution given by equation (32) and the
numerical solution given from equation (34), associated
with initial and boundary conditions (38-40) is made and
illustrated in figure (6). From figure (6) it is clear that the
explicit finite difference method is effective and accurate
for solving advection-diffusion equation for point source
concentration of uniform input condition, which is
especially important when arbitrary initial and boundary
conditions are required.

Fig. 1: The variation of C(x,y, t) along the river with time for

the values T = 1,T = 3,R = 1, Dx0
= 1.05,u0 = 0.95,Dy0

=
0.105,v0 = 0.095, γ0 = 0.4,β = 1,Co = 0.1 and n = 1.

Fig. 2: The variation of C(x,y, t) along the river with u0 for the

values u0 = 0.95,u0 = 2.5,T = 1, Dx0
= 1.05,Dy0

= 0.105,v0 =
0.095, γ0 = 0.4,β = 1,C0 = 0.1,R = 1 and n = 1.

7 Conclusions

Analytical and numerical solutions are obtained for the
two-dimensional dispersion equation through the

Fig. 3: The variation of C(x,y, t) along the river for u0 =
0.95,R = 1, t = 1.5,Dx0

= 1.05,Dy0
= 0.105, v0 = 0.095,γ0 =

0.4,C1 = 0.2,n = 1 and k = 1.

Fig. 4: The variation of C(x,y, t) along the river for u0 = 5,R =
1, t = 1.5,Dx0

= 1.05,Dy0
= 0.105, v0 = 0.095,γ0 = 0.4,C1 =

0.2,n = 1 and k = 1.

semi-infinite homogeneous river or porous medium. The
concentration of increasing nature (mixed type or third
type) is considered at the origin. Both the dispersion
coefficients, the velocity components and, the first-order
decay term are considered exponentially decreasing
functions of time. We take two cases, the first case:
initially, the river is solute free. Second case: at the origin,
at any time, the source of pollution is removed. A
comparison between analytical solution and numerical
solution is made. The different effects of the parameters
controlling the pollutant dispersion along the river at any
time are studied separately with the help of figures. For a
real situation, our simple model can provide decision
support for planning restrictions to be imposed on
farming and urban practices. We deduced that the zone of
clean water measured from χ = 0 in the direction of the
flow increases as the quantity of the clean water Q

entering the cross-section A increases.
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Fig. 5: The variation of C(x,y, t) along the river for u0 = 10,R =
1, t = 1.5, Dx0

= 1.05,Dy0
= 0.105, v0 = 0.095,γ0 = 0.4,C1 =

0.2,n = 1 and k = 1.

Fig. 6: Comparison between the analytical solution (equation

(32)) and the numerical solution (equation (34)) for t = 0.1,0.2
and 0.4, R = 1, C1 = 0.2, D = 1.05, n = 1, k = 1, U = 2 and

γ0 = 0.4. (lines represent analytical solution).
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