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Abstract: Coning motion is a standard test input to evaluate the performance of the strapdown attitude algorithms. Angular-rate coning
algorithms error consists of two parts: drift error and approximation error. Traditional angular-rate coning algorithms usually improve
the algorithm performance by increasing the sampling number in one update period. However the increase of the sampling number can
only reduce the drift error, it has few effects on reducing approximation error. And the approximation error compensation is neglected
in traditional angular-rate coning algorithms. In this paper the calculation result shows that the approximation error is comparable
with drift error for the most general case, which means the approximation error can not be neglected in high-precision strapdown
navigation systems. A new angular-rate coning algorithm with an additional second-order noncommutativity error compensation term
is developed. Without increasing sampling number, the new angular-rate coning algorithm can reduce the approximationerror greatly.
Theoretical analyses and digital simulations indicate that the new algorithm has advantages over the traditional coning algorithms for
the general case.
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1 Introduction

In strapdown navigation systems, the rotation of a body is
measured and integrated to form an attitude matrix or
attitude quaternion which describes the attitude (head, roll
and pitch angles) of the body. But from the theory of
finite rotations we know that when the axis of rotation
changes directions, the attitude can not be determined by
direct integration of the body angular rate , otherwise
noncommutativity error will be caused. This is because
the attitude of a rotating body not only depends on the
magnitude, but also depends on the order of the rotations
[1]. To eliminate the noncommutativity error caused by
body rotation, rotation vector concept is developed. By
rotation vector we can describe the rotation of a body
accurately. The first-order solution to the rotation vector
differential equation is [2]:

Φ ≈
∫ t+H

t
ωdt+

1
2

∫ t+H

t
(Φ ×ω)dt = ∆θ + δΦ, (1)

whereH is the update period, andΦ is the rotation vector
defining the body attitude at timet+H relative to the body

attitude at timet. The first term of the Eq.(1) is the
integration of body angular rate vector. The second term
δΦ is the firtst-order noncommutativity error
compensation term by the rotation vector. Eq.(1) is a
theoretical equation. However the practical digital
rotation vector algorithms derived from Eq.(1) can take
various forms.

A classical coning motion is defined by quaternion as
[3]:

Q(t) = [cos
α
2
,0,sin

α
2

cosΩ t,sin
α
2

sinΩ t]. (2)

The body angular rateω in a coning environment
described by Eq.(2) is:

ω = 2Q−1(t)⊗ Q̇(t) =





−2Ωsin2 α
2

−Ω sinα sinΩ t
Ω sinα cosΩ t



 . (3)

Ref.[4] proved that when the aircraft is in a coning
environment, the noncommutativity compensation term of
the Eq.(1) has a maximum value. Hence coning motion is
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usually used as a standard input to test the attitude
integration algorithms based on rotation vector. In 1996,
Ignagni proved that attitude algorithms work satisfactorily
in a coning environment would satisfy most other
environments requirements[5]. Moreover, “Coning
motion is also a nonnegligible effect for fast, highly
maneuverable precision-pointing spacecraft and
alignment calibration for maneuvering spacecraft because
state propagation errors can bias the calibration
estimates”[6]. Hence the researches on coning algorithm
have great practical significance. In 1983 Miller proposed
the classical three-sample coning algorithm[3]. The
algorithm proposed by Miller uses a gyro with
incremental angle output (e.g. Ring laser gyro). Based on
Miller’s algorithm, other improved coning algorithms
using the gyro incremental angle output or angular rate
output are developed [7,8,9,10].The algorithm error of all
those coning algorithms consists of two parts: drift error
and approximation error. Drift error is caused by the
residual constant error on coning axis (x) in the derivation
of the coning algorithms. Approximation error is caused
by the approximations in the derivation of the coning
algorithms. Hence the approximation error, like the drift
error, is a theoretical error which can not be reduced by
the performance improvement of the navigation computer.

2 Error analysis of traditional angular-rate
coning algorithms

2.1 Derivation process of traditional coning
algorithms

For modern-day strapdown navigation systems, gyros
with angular rate output (e.g. fiber optic gyro) are widely
used. And the corresponding angular rate coning
algorithms have been developed. The famous algorithm is
the two-interval angular- rate coning algorithm[10]. The
derivation is as follows.

For a classical coning motion described by Eq.(2), the
corresponding truth value of updating quaternion is:

q(H) =









1−2sin2 α
2 sin2 ΩH

2
− sin2 α

2 sinΩH
−sinα sin(ΩH

2 )sinΩ(t + H
2 )

sinα sin(ΩH
2 )cosΩ(t + H

2 )









. (4)

The estimation value for updating quaternionq(H)
corresponding to the rotation vectorΦ is:

q̂(H) =







cos(|Φ|/2)
(Φx/|Φ|)sin(|Φ|/2)
(Φy/|Φ|)sin(|Φ|/2)
(Φz/|Φ|)sin(|Φ|/2)






=







C
ΦxS
ΦyS
ΦzS






, (5)

where Φ is the magnitude of rotation vector:
|Φ|=

√

Φ2
x+Φ2

y+Φ2
z. The error quaternion is:

q̃(H) = q(H)⊗
∧

q−1(H) =







q0C−S(−q1Φx−q2Φy−q3Φz)
q1C−S(q0Φx−q3Φy+q2Φz)
q2C−S(q3Φx+q0Φy−q1Φz)
q3C−S(−q2Φx+q1Φy+q0Φz)






,

(6)
whereq2, q3, Φy, Φz are all periodic, so ˜q2, q̃3 are also
periodic.q̃2, q̃3 contribute a reciprocating error which can
be canceled in the long run. But ˜q1 has nonperiodic term:
q1C-Sq0Φx. Nonperiodic error will cause drift error during
the quaternion update. So ˜q1 must be restrained.

To simplify the analysis, in traditional coning
algorithms some variables in Eq.(6) was approximated as
[3,10]:

C≈ 1,S≈ 1/2,q0 ≈ 1. (7)

Thenq̃1 can be simplified to the following form [3]:

q̃1(H)≈ q1−1/2Φx. (8)

From the first-order rotation vector equation (Eq.(1)),
a conclusion can be made that the two-interval first-order
angular-rate coning algorithm form is [10]:

Φ̂ = ∆θ + k1(ω1×ω3)H
2+ k2(ω2×ω3)H

2, (9)

where∆θ is the incremental angle vector over an update
interval (tm−1, tm), and H= tm-tm−1. Note that for a
two-interval algorithm under angular-rate condition, the
gyro has three outputs over (tm−1, tm) : ω1( t=tm−1), ω2
(t=tm−1/2), ω3 (t=tm). It can be calculated by the digital
integral of the angular rateωi from the gyro outputs

∆θ̂ = (ω1+4ω2+ω3)
H
6
. (10)

We substitute Eq.(3) into Eq.(9). Based on the
minimum error criteria, the optimal coefficientki are
achieved: k1=1/180, k2=7/45. So the two-interval
angular-rate coning algorithm is gotten:

Φ̂ =(ω1+4ω2+ω3)
H
6
+

H2

180
(ω1×ω3)+

7H2

45
(ω2×ω3).

(11)
It should be noted that in some published papers (e.g.

Ref.[10]), H was replaced by the subminor intervalh. For
a two-interval coning algorithm,H = 2h. So the Eq.47 in
Ref.[10] is:

Φ̂ =(ω1+4ω2+ω3)
H
6
+

1
45

(ω1×ω3)h
2+

28
45

(ω2×ω3)h
2.

(12)
It is obvious that Eq.(11) is as same as Eq.(12)

actually.The drift error (per unit time) of the coning
algorithm defined by Eq.(11) and Eq.(12) was given in
Ref.[10]:

Φε = sin2 α
2
[
(ΩH)7

20160
]/H ≈

Ω7H6

80640
sin2α. (13)
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But approximation error is not considered in Eq.(13).
And the complete algorithm error analysis (including both
drift error and approximation error) will be given in the
following discussion (Eq.(21)).

To further improve the algorithm accuracy, other
traditional algorithms usually increase the sampling
number of one attitude update period to reduce the drift
error. For example, when we use four gyro samples
(three-interval) in one attitude update period, the
three-interval angular-rate coning algorithm will be
gotten[10]:

Φ̂ = (ω1+3ω2+3ω3+ω4)
H
8 + 2619

2240(ω1×ω2)h2

+ 27
56(ω1×ω3)h2+ 87

2240(ω1×ω4)h2.
(14)

For a three-interval coning algorithm, there is:H = 3h.
The corresponding residual drift error (per unit time) is:

Φε =
Ω9H8

8899200
sin2α. (15)

Note that in practice the output data rate of a digital
gyro is usually fixed. So the increase of the sampling
number will cause a longer attitude update period. This
problem will be analyzed in the following section4
(below Table1).

2.2 Error analysis

As stated in section2.1 (Eq.(7)), there are some
approximations in the derivation of the traditional angular
rate coning algorithms. For those high-precision
strapdown navigation systems, the approximation error
can not be neglected.

To reduce the approximation error, Taylor series is
used:































C= cos|Φ |
2 = 1− |Φ |2

8 + . . .≈ 1− |Φ |2

8 ,

S=
sin |Φ|

2
|Φ | =

|Φ|
2 − 1

3! (
|Φ|
2 )

3

|Φ | + . . .≈ 1
2 −

|Φ |2

48 ,

q0 = 1−2sin2 α
2 sin2 ΩH

2 .

(16)

Substituting Eq.(16) into Eq.(6) gives:

q̃1 = q1C−S(q0Φ̂x−q3Φy+q2Φz)

=−sin2 α
2 sinΩH(1− |Φ̂ |2

8 )− (1
2 −

1
48|Φ̂|2)(1−2sin2 α

2
sin2 ΩH

2 )Φ̂x

=−sin2 α
2 sinΩH − Φ̂x

2 + |Φ̂ |2

8 sin2 α
2 sinΩH + |Φ̂ |2

48 Φ̂x

+ sin2 α
2 sin2 ΩH

2 Φ̂x.
(17)

From Eq.(11) we can get:

|Φ̂ |=
√

Φ̂2
x + Φ̂2

y + Φ̂2
z ≈ 4sin

α
2

sin
ΩH

2
. (18)

Substituting Eq.(18) into Eq.(17) gives:

q̃1 = (−sin2 α
2 sinΩH − Φ̂x

2 )+ (2sin4 α
2 sin2 ΩH

2 sinΩH

+ 4
3sin2 α

2 sin2 ΩH
2 Φ̂x).

(19)
We can substitute Eq.(11) into Eq.(19), and use Taylor

series to expand “ΩH” term:

q̃1 = sin2 α
2 [

1
40320(ΩH)7+ . . .]+ sin4 α

2 [
1
30(ΩH)5

− 23
5760(ΩH)7+ · · · ].

(20)

As is known from the Ref.[9], the coning algorithm
error equals twice of the quantization error. So the two-
interval coning algorithm error (per unit time) is:

−dri f terror − −approximation error−

Φε = {(sin2 α
2 )[

(ΩH)7

20160 + . . .]/H}+ {(sin4 α
2 )[

(ΩH)5

15

− 23(ΩH)7

2880 + . . .]/H}.
(21)

As is seen from Eq.(21), error of traditional
two-interval angular- rate coning algorithm consists of
two parts. On the right-hand side the term in the first
brace is the drift error (same to Eq.(13)). The term in the
second brace is the approximation error. The existing
coning algorithms (Ref.[7]-[10] usually reduce the
algorithm error by increasing the sampling number. But
the increase of sampling number can only reduce the drift
error. It has few improvements on approximation error.
But in fact approximation error can not be neglected for
the general case. For example, whenα = 1◦, Ω = 2π
rad/s, H=0.1s, the value of : “sin4(α/2)(Ω5H4)/15” is
3.79×10−10 rad/s, which is comparable with the value of
“sin2(α/2)(Ω7H6)/20160” (1.46 × 10−9 rad/s).
Therefore high-precision coning algorithms should also
compensate the approximation error. That means an
additional approximation error compensation term should
be added to the traditional two-interval angular-rate
coning algorithm. That is:

sin4 α
2
[

1
15

(ΩH)5−
23

2880
(ΩH)7+ . . .]. (22)

3 New second-order two-interval
angular-rate coning algorithm

To get higher precision algorithm, second-order rotation
vector equation is employed:

Φ = ∆θ +
1
2

∫ tm

tm−1

Φ ×ωdt+
1
12

∫ tm

tm−1

Φ × (Φ ×ω)dt.

(23)
As is stated in Eq.(1), from the traditional first-order

coning algorithm we can get:

Φ ≈ ∆θ + δΦ,δΦ =
1
2

∫ tm

tm−1

∆θ ×ωdt. (24)
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Substituting Eq.(24) into Eq.(23) gives:

Φ = ∆θ + 1
2

∫ tm
tm−1

(∆θ ×ω)dt+(1
4

∫ tm
tm−1

(
∫ tm
tm−1

∆θ ×ωdt)
×ωdt+ 1

12

∫ tm
tm−1

∆θ × (∆θ ×ω)dt)

= ∆θ + δΦ + δδΦ,
(25)

where δΦ is the first-order noncommutativity error
compensation term, its digital algorithm is the traditional
angular-rate coning algorithm (Eq.11, Eq.14). δδΦ is the
second-order noncommutativity error compensation term.
The digital algorithm ofδδΦ is discussed as follows.

Suppose that the body’s angular rate over an update
interval (tm−1,tm) is:

ω = a+2b(t− tm−1)+3c(t − tm−1)
2, t ∈ (tm−1, tm). (26)

So:






a= ω1,
bH = 1

2(−3ω1+4ω2−ω3),
cH2 = 2

3(ω1−2ω2+ω3),
(27)

where ω1,ω2,ω3 are the ideal gyro outputs at
tm−1, tm−1/2, tm. Substituting Eq.(26) into the δδΦ term
of Eq.(25) gives:

δδΦ
= 1

4

∫ tm
tm−1

(
∫ t
tm−1

∆θ ×ωdt)×ωdt+ 1
12

∫ tm
tm−1

∆θ × (∆θ ×ω)dt
=− 1

60b× (a×b)H5− 1
36c× (a×b)H6+ 1

120a× (a× c)H5

− 1
72b× (a× c)H6− 5

168c× (a× c)H7+ 1
180a× (b× c)H6

− 1
420b× (b× c)H7− 1

120c× (b× c)H8.
(28)

Substituting Eq.(27) into the first term of Eq.(28)
gives:

− 1
60 bh× (a×bh)H3 = 1

20ω1× (ω1×ω2)H3− 1
80ω1

×(ω1×ω3)H3− 1
15ω2× (ω1×ω2)H3+ 1

60ω2× (ω1

×ω3)H3+ 1
60ω3× (ω1×ω2)H3− 1

240ω3× (ω1×ω3)H3.
(29)

All other terms in Eq.(28) can also be processed into a
form like Eq.(29). Therefore the second-order coning
algorithm should consist of the sum of all possible
second-order cross products from the angular rate gyro
outputs over the update period. That is:

δδΦ̂ =
N+1

∑
i=1

N+1

∑
j=2

Ki j ωi × (ω1×ω j)H
3, N = 2, (30)

whereN is the subminor interval number. From Eq.(3), we
know that ideal gyro outputs over an update period are:

ωi =





−2Ωsin2(α
2 )

−Ω sinα sinΩ(t + i−1
N H)

Ω sinα cosΩ(t + i−1
N H)



 , i = 1,2. . .N+1.

(31)
Substituting Eq.(31) into Eq.(30) gives:

ωi × (ω1×ω j)H3
x

= 4(ΩH)3sin2αsin2 α
2 sin( j−1

2N ΩH)sin( j+1−2i
2N ΩH).

(32)

It can be easily seen that the value of Eq.(32) depends
on the value of| j − 1| and | j + 1− 2i|, there are three
different combinations all together:

ω1× (ω1×ω2)xH3 = 16(sin4 α
2 )(ΩH)3sin(ΩH

4 )sin(ΩH
4 ),

ω3× (ω1×ω2)xH3 =−16(sin4 α
2 )(ΩH)3 sin(ΩH

4 )sin(3ΩH
4 ),

ω1× (ω1×ω3)xH3 = 16(sin4 α
2 )(ΩH)3sin(ΩH

2 )sin(ΩH
2 ).

(33)
Note that “ω1 × (ω1×ω3)x” term in Eq.(33) can be

expressed by other two terms in Eq.(33):

sin(ΩH
2 )sin(ΩH

2 )

= sin(ΩH
4 )sin(ΩH

4 )+ sin(ΩH
4 )sin(3ΩH

4 ).
(34)

Therefore “ω1 × (ω1×ω3)x” term can be neglected.
The second-order compensation coning algorithm should
be:

δδΦ̂ = k112ω1× (ω1×ω2)H
3+ k312ω3× (ω1×ω2)H

3.
(35)

We substitute Eq.(33) into Eq.(35), and use Taylor
series to expand “(ΩH)” term:

δδΦ̂ = sin4 α
2 [(k112−3k312)(ΩH)5+(− 1

48k112

+ 5
16k312)(ΩH)7+ . . .].

(36)

As is stated in section2.2 (Eq.(22)), the second-order
noncommutativity error compensation term of new coning
algorithm should be equal to the approximation error of
the traditional angular-rate coning algorithm. That is:

{

(ΩH)5 : k112−3k312=
1
15,

(ΩH)7 : − 1
48k112+

5
16k312 =− 23

2880.
(37)

The solution is:k112 = -1/80,k312 = -19/720. Then the
second-order coning algorithm is achieved:

δδΦ̂ =−
1
80

ω1× (ω1×ω2)H
3−

19
720

ω3× (ω1×ω2)H
3.

(38)
Then the new second-order two-interval angular-rate

coning algorithm is:

Φ̂ = (ω1+4ω2+ω3)H
6 + H2

180(ω1×ω3)+
7H2

45 (ω2×ω3)

− H3

80 ω1× (ω1×ω2)−
19H3

720 ω3× (ω1×ω2).
(39)

Obviously the drift error of new algorithm is as same
as traditional two-interval angular-rate coning
algorithm(Eq.11), but from the Eq.(37) we can see that
approximation error has been reduced greatly to the order
of (ΩH)9:

Φε/tru = (sin4 α
2
) O(ΩH)9. (40)

4 Error comparison

Algorithm 1: Traditional two-interval angular-rate
coning algorithm (Eq.(11))
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Algorithm 1 is based on the first-order
noncommutativity error compensation model, the
algorithm error (per unit time)e1 consists of drift error
e1d and approximation errore1T . Both them have been
calculated in Eq.(21):

e1 :







e1d = Φε = sin2 α
2 [

(ΩH)7

20160]/H ≈ Ω7H7

80640 sin2α/H,

e1T = sin4 α
2 [

1
15(ΩH)5− 23

2880(ΩH)7 . . .]/H.
(41)

Algorithm 2: Traditional three-interval angular-rate
coning algorithm (Eq.(14))

Algorithm 2 is based on the first-order
noncommutativity error compensation model too. With
the increase of sampling number, the drift errore2d of
algorithm 2 has been reduced greatly (Eq.(15)). Similar to
Eq.(16)-Eq.(22), the exact value of approximation error
e2T can be calculated. For simplicity, it can approximately
be considered ase1T :

e2 :







e2d =
sin2αΩ9H9

8899200 /H,

e2T = sin4 α
2 [

1
15(ΩH)5+ . . .]/H.

(42)

Algorithm 3: New second-order two-interval angular-rate
coning algorithm (Eq.(39))

Algorithm 3 is based on the second-order
noncommutativity error compensation model. The
approximation errore3T is given in Eq.(40). From Eq.(40)
we can see that the approximation errore3T has been
reduced greatly. But the drift errore3d is unchanged (as
same as algorithm 1). Hence it has higher precision than
Algorithm 1 and 2.

e3 :







e3d = (sin2 α
2 )(

Ω7H7

21060)/H,

e3T ≈ sin4 α
2 [O(ΩH)9+ . . .]/H.

(43)

As a summarization of Eq.(41)-Eq.(43), the error
analyses (per unit time) of three coning algorithms are
listed in Table1. From Eq.(41)-Eq.(43) and Table1 we

Table 1: Error analyses of three coning algorithms (per unit time)
Algo. Φ X-axis algorithm error (rad/s)

1 Eq.(11) e1 = (sin2α)(Ω7H6

80640)+(sin4 α
2 )(

Ω5H4

15 )

2 Eq.(14) e2 = (sin4 α
2 )

Ω5H4

15 +(sin2α) Ω9H8

8899200

3 Eq.(39) e3 = (sin2α)(Ω7H6

80640)+(sin4 α
2 )O(Ω9H8)

can see that the approximation error (per unit time) of

traditional two-interval and three-interval coning
algorithms (1, 2) are the same: the order ofΩ5H4, which
means the approximation error is proportional to the
update periodH. In practical strapdown inertial systems,
the output data rate of a digital gyro is usually fixed by
manufacturer (generally is between 10-200Hz), so the
update periodH is proportional to the sampling number.
The approximation error of the three-interval algorithm is
larger than that of the two-interval algorithm actually.

Fox example in an inertial system with a gyro of 20Hz
output rate, the shortest update periodH of the
two-interval coning algorithm is 0.1s, the shortest update
periodH of the three-interval coning algorithm is 0.15s.
Whenα = 1◦, Ω = 2π rad/s, there is:

e1 ≈ 1.84×10−9rad/s,e2 ≈ 2.05×10−9rad/s,
e3 ≈ 1.46×10−9rad/s.

(44)

Nowadays in some high-precision navigation systems
(e.g. long-range bomber), the bias stability of the used
high quality gyro can be less than
0.005◦/hr ≈ 2.4e−008rad/s. So in these high-precision
systems, the approximation error of coning attitude
algorithm can not be neglected compared with the sensor
error. The coning attitude algorithm used in these systems
still needs further improvement. It can be seen from
Eq.(44) that the traditional two-interval coning algorithm
(algorithm 1) error is about 7.7% of 0.005◦/hr and the
traditional 3-interval coning algorithm (algorithm 2) error
is about 8.5% of 0.005◦/hr. But the developed
two-interval algorithm (algorithm 3) error is only about
6.1% of the same sensor error.The algorithm accuracy is
improved by more than 20%. So the developed coning
algorithm has the certainly practical value.

5 Digital Simulations

Validation of the new second-order strapdown attitude
integration algorithm is achieved in two steps: 1) To
verify the error analysis of the coning algorithms given in
Eq.(41)-(43) is correct; 2) To verify the advantage of the
new second-order angular-rate coning algorithm with
different angular rate and gyro output rate.

5.1 Verification of the correctness of error
analysis given in Eq. (41)-Eq.(43)

For this 60s duration test, a classical coning motion
described by Eq.(2) is used as a test input to verify the
correctness of error analysis given in Eq.(41)-Eq.(43).
The ideal gyro outputs in a classical coning environment
are given in Eq.(31). Three coning algorithms:1, 2, and 3
are defined in section4.

Rotation vectors calculated by algorithm 1, 2, and 3
separately, are compared with the truth value of rotation
vector generated by conversion from the attitude
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quaternionq(H) (Eq.(4)). The q(H) to Φ conversion
formula refers to Ref.[11](Sec. 3.2.4.5). Suppose that
three coning algorithms use a same gyro with a 20Hz
output data rate. So the shortest update periodH of
two-interval coning algorithms (1,3) is 0.1s, the update
periodH of algorithm 2 (three-interval) is 0.15s. Table 2
lists the error comparison (per unit time) of three coning
algorithms. The unit of the algorithm error mean (per unit
time) israd/s.

Table 2: Error Mean comparisons (per unit time)
α = 1◦ Algorithm 1 Algorithm 2 Algorithm 3

H = 0.1s H= 0.15s H= 0.1s
Ω = π /2 4.58e-013 1.86e-012 8.91e-014
Ω = π 2.31e-011 5.86e-011 1.14e-011
Ω = 2π 1.82e-009 1.85e-009 1.46e-009
Ω = 3π 2.75e-008 1.63e-008 2.49e-0084

As is seen from Table2, the simulation results are
similar to the analytical predictions given in
Eq.(41)-Eq.(43) and Table1. For example, whenα = 1◦,
Ω = 2π rad/s, the error mean of algorithm 1, 2, and 3 is
similar to the theoretical analysis in Eq.(44). These results
provide confidence in the validity of the accuracy analysis
for the new algorithm in Eq.(41)-Eq.(43) and Table1.

And from the column 3 of Table2, we can see that for
the most case the traditional three-interval angular-rate
coning algorithm performance is worse than two-interval
algorithms actually. The reason has already been given in
section4 (below the Table1). So a new three-interval
angular-rate coning algorithm with a second-order
noncommutativity error compensation term should be
developed in a same way to reduce the approximation
error and improve the three-interval coning algorithm
accuracy. For example, from Eq.(30) we can get:

δδΦ̂ =
N+1

∑
i=1

N+1

∑
j=2

Ki j ωi × (ω1×ω j)H
3, N = 3. (45)

Similar to the derivation of Eq.(31)-Eq.(38), the
optimal value of coefficientK can be calculated and the
new second-order three-interval angular-rate coning
algorithm will be developed.

5.2 Verification of the advantages for the new
second-order angular-rate strapdown attitude
integration algorithm

For this 60s duration test, the (per unit time ) errors of
three coning algorithms (1, 2, 3) with different angular
oscillations frequencyΩ are compared. The coning
half-angleα is 1◦. The simulations results are shown in
Fig.1. Fig.1 is a log-log plot.
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Fig. 1: Algorithm Error (per unit time) comparisions with
different angular oscillations frequencyΩ

From Fig.1 we can see that when the angular
oscillations frequencyΩ increases, the error of each
coning algorithm (1, 2, and 3) increases too. But if the
angular oscillations frequencyΩ is the same, the error of
the algorithm 3 (new two-interval coning algorithm) is far
smaller than that of the traditional algorithm 1 (traditional
two-interval coning algorithm), no matter the gyro output
rateh (i.e. subminor interval in one update period) is. And
the error of algorithm 3 is smaller than that of algorithm 2
(traditional 3-interval coning algorithm) too when
h = 0.05s & Ω < 2.5π (Fig.1.a), and whenh = 0.1s &
Ω < 1.2π (Fig.1.b). These results are close to the
theoretical predictions given in Eq.(41-Eq.(43).
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Fig. 2: Algorithm Error (per unit time) comparisions with
different gyro output rateh

Fig.2 is also a log-log plot. In the figure the error (per
unit time) comparison of the three algorithms with
different gyro output rates (i.e. subminor intervalh) is
shown. The coning half-angleα is 1◦. The simulation
time is 60s. From Fig.2 we can see that the new algorithm
3 performance is better than that of the traditional
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algorithm 1 in the whole gyro output rate range (no
matter the angular oscillations frequencyΩ is). And the
algorithm 3 performance is also better than algorithm 2 in
most cases (Fig.2a: when Ω = π , the suitable range
includes the entire general gyro output rate (10-200Hz);
Fig.2b: whenΩ = 2π , the suitable range of gyro output
rate is greater than 16Hz). These results are close to the
theoretical predictions given in Eq.(41)-Eq.(43) and
provide confidence in the validity of the error analysis for
the new algorithm in section4.

6 Conclusion

A second-order strapdown angular-rate attitude integration
algorithm is developed for strapdown inertial navigation
systems. The key contributions of the study are:

1) For the first time, the approximation error of the
angular-rate coning algorithm is calculated in this paper.
The calculation result shows that for the two (or
more)-interval angular-rate coning algorithms,
approximation error is comparable with drift error. So it
can not be neglected in high-precision strapdown
navigation systems.

2) A new second-order angular-rate coning algorithm
with an additional second-order noncommutativity error
compensation term has been developed. Comparing with
the traditional coning algorithms, the new algorithm can
effectively reduce the algorithm error without increasing
the sampling number. Simulations have been presented to
illustrate the advantages of the developed second-order
angular-rate attitude integration algorithm. The new
attitude integration algorithm can be applied to the
high-precision strapdown inertial navigation systems,
especially the navigation systems in an angular vibration
environment. Beyond that, the developed second-order
angular-rate coning attitude algorithm can also be applied
to highly maneuverable precision-pointing spacecraft,
alignment calibration for maneuvering spacecraft, and
rotation inertial navigation system because Ref.[12]-[16]
have demonstrated that in these cases coning motion is a
nonnegligible factor.
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