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Abstract: In this paper, the dispersion of plane harmonic waves in a thin flat homogeneous transversely isotropic plate of finite width
and infinite length permeated by a constant magnetic field is examined. The frequency equations corresponding to the magnetized
symmetric and anti-symmetric modes of vibration of the plates are obtained in the closed form, some limiting and special cases of the

frequency equations are then discussed and exhibied graphically. .
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1 Introduction

The magneto-elastic field is an important subject for
many structures and machines. In recent years numbers of
investigations are considered for studying the magnetism
magneto-elastic effect in engineering. Theoretical basics
concerning models of continuum mechanics, which take
account the effect of the magneto-elastic fields of diverse
physical nature are studied and presented by Altenbach et
al. [1], Ambarcumyan et al. [2], Dorfmann and Ogden([3].
Study of wave propagation with reference to the
propagation of magneto-elastic waves is of vital
importance in engineering and physical science and is the
source of diverse phenomena, such as vibrations, noises,
mechanical losses in magnetic circuits and other fields as
geophysics, optics, acoustics and  astrophysics.
Magneto-elastic waves are the outcome of the interaction
of the spin and elastic vibrations in ferromagnetic
materials. Knopoff [4] studied the propagation of plane
waves in magneto-elastics and revealed that uncoupled
waves, which are plane polarized, their polarizations
remain unchanged with wave propagation in the magnetic
fields. A review on wave motion in magnetizable
deformable solids is given in Maugin[5]. An analysis on
the behavior of magneto-elastic waves in ferromagnetic
plates and films is presented by authors Kaliski et al. [6]
and Chadwick [7]. Buchwald and Davis [8] studied that
approximate displacements in an infinite perfectly
conducting isotropic elastic medium at large distances

from a point source subjected to a uniform uni-axial
magnetic field. Dunkin and Eringen [9] explained the
coupling of electromagnetic and elastic waves in
linearized electromagnetic theory. Purushotham [10]
studied the Magneto-elastic coupling effects on the
propagation of harmonic waves in an electrically
conducting elastic plates. Abubakar [11]have considered
the vibration of a perfectly conducting plate in a uniform
magnetic field. Verma[12] and Verma and Hasebe [13]
considered problems of wave propagations in transversely
isotropic heat conducting plates with thermal relaxations.
Extensive literature, elastic waves propagation in layered
media are specified in Ewing [14]. In this paper
propagation of plane harmonic wave in an infinite
transversely isotropic plate of thickness 2d permeated by
a uniform, static magnetic field is considered and
discussed. The plate is assumed to be of an infinite
conductivity. It is revealed that only very large applied
magnetic fields produce appreciable effects, when it is
possible for conical propagation to occur. A lower limit
for the magnetic field is obtained above which conical
propagation takes place.

2 Equations of motion

Elastic  displacements are infinitesimal and the
displacement fluxes are insignificant in compared with the
conductivity currents according to Kaliski[6] assumption
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and the general form of the linearized magnetoelastic
equations for a perfectly conducting homogeneous
transversely isotropic body in the absence of body forces
are:
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where h. and E denote perturbations of the magnetic
and electric fields respectively, J is the electric current
density vector, H is the initial constant magnetic field, u
is the mechanical displacement vector, [, is the magnetic
permeability, and is the velocity of light. Equations
governing the propagation of small elastic disturbances in
a perfectly conducting anisotropic medium having
electromagnetic force J x B (the Lorentz force, J being
the electric current density and B being the magnetic
induction vector) as the only body forces are
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The well-known Maxwell’s equations governing the
electromagnetic field are:
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where E is the induced electric field, J is the current
density vector and magnetic field H includes both primary
and induced magnetic fields and o are the induced
permeability and conduction coefficient respectively.
Consider displacement vector u = (u,v,w), and the
constant applied magnetic field H = (H;,H,,H;) with
respect to the rectangular Cartesian coordinate system. If
H; = 0, then the motion represented by equation (1) can
be separated into purely horizontally polarized motion
corresponding to the SH motion and corresponding to the
P and SV type motion. Thus on considering H, = 0 in
equations (1)-(3) yields the two dimensional equation of
motions and the heat equation in the x — z plane as
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Here 0;; = Cjj€y. where C;j are the second order

elastic constants and € are the strain tensor defined as
& =% (‘;—')‘(’l‘ + g—;’;) The governing field equations for

displacement vector u (x,z,¢) = (,0,w) in the absence of
the body forces equations (4) and (5) become

Clillxx + Caall 2 + (€13 + cag)w . + (I X B) . = pii (6)

(€13 + Caa)it pz + Caaw e + c33w o + (I X B) . = piw, (7)

where C;; are the elastic parameters. The superposed dot
denotes time differentiation and the comma notation is
used for spatial derivatives. Equations (6) and(7) with (3)
can be written as
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For a plane harmonic wave travelling in the x-direction,
the solutions u, w. of equations (8) and (9) take the form

u= f(z)explik(x—V1)], (10)

w = g(z) explik(x — V1)]. (11)

where V (= @/k) and k are phase velocity and wave
number respectively;® is the circular frequency, and 1 =
A Substituting for from equations (10) and (11) into
equations (8) and (9), we have

[(cas+F3)D* = (c11+ Fs— pV?) K] f

(12)
+ [ik(c13+ caa) D~ F> (D* —k*)] g =0
[ik(c13+caa)D—F> (D* —K*)] f (13)
+ [(633 +F1)D2 — (C44+F1 —sz) kCzkz} g=0,
where
H? H?
F1:_15F2:%5F3:_3)
4w 4w 4w
N (14)
D= i D? = d_
Cd7T d?
Let
(f(2),8(2)) = (L,M)) €. (15)
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where L and M are constants. Substituting (15) into (12)
and (13) gives
[(cas+F3)s* = (e +F—pV?)] L

16
+[is(cl3+C44)D7F2(S271)}M:0 0

[i(Cl3+C44)S*F2 (szf 1)}L
+ (3 +F1)s* = (caa+ Fr —pV2) | M =0

In the following sections two cases of the applied magnetic
field are examined separately.

A7)

3 Particular Cases

Firstly consider the applied magnetic field H = (0,0, H3)
implies that F; = 0, consequently F> = 0 and therefore (16)
and (17) become

[(644 +F3)S2 — (C11 + F; —sz)} L

. (18)
+ [is(c13+ c44) D]M =0

[i(C[3+C44)S]L+ [C33S27 (C447PV2)]M:0. (19)
Eliminating L and M between (18) and (19) gives
Aps* +A1s* +A4, =0 (20)
where
Ao = (F3+caq) c33
A1 =F; (pV* —c33—caa) pV2+{(ci3+ caa)’
—c33(c11 — pV?) —caa (cas— pV?)}
Ay = (c11+F5—pV?) (cas — pV?).

ey

Let s7 and s3 be the roots of the equation (20). They are
given by

57,83 = (—A1 +1/A,2 —4A0A2)/(2A0) . (22)

From (18). we have

(caa+ F3)s3 — (c11+ F3— pV?)

mi=M/L =
! / —i(c13 4 caq)s;

,j=1,2.

(23)
Thus the corresponding expressions for the displacements
in the plate are

u = [Pyexp(—ksiz) + Prexp(—ks»z)
+ Q1exp(ks1z) + Qzexp(ksaz)]exp|ik(x — V)],
w = [m Py exp(—ks12) + maPs exp(—ks»2)

—my Q1 exp(ks1z) — maQrexp(ks2z)] explik(x — Vi)].
(24)

The components of Maxwell’s stresses in the elastic
medium are 7}, and 7);and in vacuum are given by

W 4m TF O Am

Let the faces of the plate be at z = Fd. Conditions that
satisfied at the plate vacuum interfaces are: the continuity
of the tangential component of the electric field, the
vector field and the total normal and shear stresses across
the interfaces. The total stress 7;; is stress is defined as the
sum of the elastic stresses o;; , and the electromagnetic
te (Hih; +H hi—Hhy8;;)

stress T;j = on neglecting second
order quantities. The stresses in the plate relevant to the
problem are

H;hs
T.. = — 26
@ = Ozt (26)

H3hy
T, = —= 27
= Ox + ar 27

where

Oz = C13Ux +C33W g, (28)
O = C44(“,z + W,x) (29)

4 Boundary Conditions

The boundary conditions involved in determining the
frequency vibrations of the plate are the continuity of the
normal and shear stresses across the plate-vacuum
interface. Further from equations (26)-(29) , it can be
understood that the continuity of the magnetic field vector
across the interface reduces the continuity of the stress to
that of the vanishing of o,, on the faces of the plate.
Hence at z = Fd, we have

Oz; = Oxz = 0 (30)

Substitution of expressions (24 for the displacement
components into equations (28), and (29), and using
boundary conditions (30, in the resulting stresses, yield
four equations involving the arbitrary constants P1,P2
and Q1,02 as

D][E; D]IEFL D[zE{ D]2E2+ Py
D”ElJr D E; Dlez+ D\E; I P, =0 (31)
Dy E; —DyE DnE;, —DnE;y |1 |01
D21E1+ —Dz]E; D22E£L —DzzE{ ()
where
- +
E; =exp(—kds;), E; =exp(kds,) (32)

D]j = iC]3 7633mj‘Sj,D2j = imj—sj
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5 Frequency Equation when H = (0,0, H3)

The consistency of (31),requires that the determinant of
the coefficients of the arbitrary constants in
simultaneously four equations (31),must vanish. This
provides the frequency equation of the plate vibrations.
The obtained frequency equation is further factorize into
two factors, each of which yields the equations

D11Dayosh(ksyz)ch(ks1z) = DyaDaysh(ks z)ch(ks»z),
(33)

D11D22Sh(kS12)Ch(kS2Z) = DlzDzlsh(kszz)ch(kslz).

(34)
These are the period equations which correspond to the
symmetric and antisymmetric motion of the plate with
respect to the medial plane z = 0. Evidently
(33),corresponds  to the symmetric motion and
(34),corresponds to the antisymmetric motion. Thus the
expression for the displacements in the symmetric
vibration to the plate are given by

u = [Wj cosh(ks;d) + Ws cosh(ksad)] explik(x — V)],
w = —[m; W sinh(ks|d) + maW, sinh(ksad)] exp[ik(x — V)]
(35

and in the antisymmetric motion by

u = [W; sinh(ks|d) + W, sinh(ks,d )] explik(x — V)],
w = —[m; W, cosh(ks;d) + myW, cosh(ks,d )] explik(x — V1))
(36)

If the applied magnetic field is zero then F3 = 0 and (33),)
and (34),reduce, respectively, to the equations studied by
Iya Abubakar [11]. The discussion of transcendental
equations (33),) and (34),general is difficult; we therefore,
consider the results for limiting cases.

5.1 Magnetoelastic Symmetric Waves

For waves long compared with the thickness 2d of the
plate, kd is small and consequently kds;,(j = 1, 2) may
be assumed small as long as V is finite. Hence the
hyperbolic function can be replaced by their arguments
[Ewing et. al,[14], Abubakar ,[11],] and from equation
(33) we then obtain
tkd 5 o 2 2

(st —53)[(Ms — pV*) My — (M + pV*) M4] = 0.

My = c33(F3 +cas), M3 = (c13+ ca4),

My =F;—c13—2c44, M5 = F3 + 1.
If s% = s%, the form of the original solution assumed,
cannot satisfy the boundary conditions. Hence equation

(39) holds. This equation gives the phase velocity of long
compressional or plate waves in magneto-elasticity.

1
F- 2 272
V= [(013+c33) 3+ ;16336344-1—611633—!—613 } . (40)
On putting 3 =0

1

Vo [2613644+611633+6132} f_ @n
pc33
If we take
=c33=A+2u,
Cl1 = €33 u (42)

cap=H,c3=47~

On using the isotropic relations (42) expression (40)
reduces to

24w A t2u+F)]?
V{ o (h+20) ] @
BECENEE o’ :
V_[ P } _4[3(52 1)’ (44)
a2:(1+2u) 32:2_”
p P

This equations (43) and (44) give the phase velocity
of long compressional or plate waves in magnetoelastic
medium and in the absence of magnetic field. For very
short waves and V such that sq,s, and are real, kd is large
and the hyperbolic functions tend to unity. Hence
equation (33) becomes

{en(i-1) (S -1} —s2) F

+ {(76‘336‘1] —8) (s% +s%) +S%S%Ss + 515287 +Sz} (s —s2) F3
+enVip?+ (53 +SIV2p) (s1—82) (s% +s%)

— (s15280+c13° +52) (s1 —52) V2p

+ (s%s%& + 515285 +S6) (Sl —57)=0.
(45)

Evidently (s; —s) is a factor. Therefore, from equation

E (45) we obtain
37) 2 2 2
Hence either ., {es(st—1)(s3—1)} F5
si—s53=0, (38) +{(*C33C” 751)(S%+S%)+S%S%SS+S1S2S7+SQ}F3
or 4.2 2 2,2
+c33Vip T+ (S3+S1Vop) (s7+s
(Ms—pV2) My — (M +pV2) My =0 (39) (S351V7) (s +52)
— (s15280 +c13°+82) Vp
where .
5 + 5715584 + 515255 + S = 0.
M| = —c33F3 — c11033 — €137 — €13C44, (46)
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where (s1 —s7) are roots of equation (20) and are given by

So =c33(c13+caa), S1 = c33¢44,

2
S = c13¢44 +2c33¢11 + €137,

83 = —C11€33C44,

S4 = c33¢44(c13 + 2c44),

Se = c11(c33cn +ci3cas +c13°), 47)
Ss = crie3a(c1z 4 caa) + (3cag + 1)ep3?
+2c13¢44%,

S7 = (c13+ caa)(c13+¢33),
Sg = (c13 + 3caa)c33.

Equation (46) can be identified as the phase velocity
equation for Rayleigh waves in transversely isotropic half-
space. If F3 = 0 then (46) reduces to

C33V4p2 — (S] §280 + 6132 + Sz) Vzp
+ (S34+81V2p) (st +53) + 575354 (48)
+ 515285+ S¢ = 0.

On using the isotropic relations (42) expression (46)
can be identified as the phase velocity equation for
Rayleigh waves in isotropic half space, which is in
agreement with the corresponding result of Nayfeh and
Nasser,[15].

5.2 Magnetoelastic Anti-symmetric Wavess

For waves long comparedwith thickness of the plate s;
and s, are real and then we may replace the hyperbolic
functions by the approximation

93
tanh(6) = 0 — 3 (49)
After some algebraic transformation and reductions, and
neglecting O [(kd)?] we obtain

Liop*V* + LygpV? + L (512 — %) Lika
V=) (2,
10P 20P 30 S152M32 3

(50)
.2 <72 S
+ (kd)? (bs]mgI\ZZ ) (%ikd) {Lop®VO + Lip?V* 4 LopV2 + 15} =0
This implies that either
2.2
)
(o =sr) > ) _o (51)
s152M3
Or
Liop?V* + LogpV?* + Ly
(52)

+ (kd)? <L0p3V6 FLip2VA 4 LypV? +L3) —0

where

Lo = Ni (N1 — My +c33) — c33My — My,
L = (2Ny — My + ¢33)No — N1 M
+ Ny (MsMy + caaMy + M)
+ c44 (M + c33My) + My (c33M5 — M)
+4MsM,
Ly = [Ny + (caa +Ms) My — MsN | M, (53)
+ (—4Mscas — 3Ms*) M,
+ (MsNo — caaMsNi — caac33Ms + caaNy) X
My — 2MsNi Ny + No* + MsNy,
Ly = 3c44Ms> My — MsNy? — caaMy
X (MsNo + MsMy) +MsNo(1 — M),

Ly = —3MN; +3M>M,; — 3c33M>

Log = 3M>(—No + MsNy — MyMs
— M| — casMy)

L3o = 3MoMs (M) + No + caaMa)

(54)

No = (€33 + caa) F3 — c13”> — 2¢13¢44 + C11033,

Ni = —(c33+cag+F3),

My = —c33(c11+F3) —ci3(c13+caq) s (55)

My = c33(cas + F3) ,M3 = (c13+caa)

My=—(c13+2c44+F3), Ms = (c11 + F3).
Equation (51) not satisfying the boundary conditions.
Hence equation (52) holds, and it is the dispersion
equation of long flexural waves and it can be seen that the
phase velocity decreases as the wavelength increases in
magneto-elasticity as the phase velocity tends to zero as

the wavelength increases. Using the isotropic
relations(42) equation (52) reduces to isotropic case [15].

(Q10P3V6 +Q20p?V* + Q30p V2 + Q40) (s1—52) (56)

where

010 = MyNy> + (—2MoMy + 2Mye33)Ny — My?

2 2 2 (57)
+ (My — My~ )c33” — AMaMyc3s + MoMy
0 = [-2Myc33 + (6'332 —2M5) cas — MsMs | My?
+ [4Myc33¢44 4 (Ca4 4 2M5) 2My Ny + (4c33Ms — 4My — 2No) Mo | My, 8
+2(c33 + N1 )MaNy — (¢33% 4+ 2N, 2 )Ms My + (M — c33Ms)2M, N,
+ (cas +2Ms) Mo? +2c33M Mo,
030 = MaNo® + (casMy + My — MsNy +MsMs — c33My) 2Ma Ny
— (M + caaMy) 2N\ Ms My + My*Mycas”
+ (M My — 2MsM>) 2Myc3scas +2MsMaMy®cay (59)

— 2MsM,? ¢y -+ 4Mo My M, c4q+4M; Mo My Ms
—2c33M MaMs — (M My ) — (MaMs)* + MaM, 2,

© 2024 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

K. L. Verma: On the Magneto-Elastic Waves in Transversely Isotropic Plates

Q40 = [(M1M4)2 + (MaMs)* — MaMyMs(2No + 4M; )} C44

— (Ml 2 2NoM; — Noz) MyMs — c4s>MsMyM,?
(60)

Equation (56) Rayleigh equation and the propagation
degenerates to Rayleigh waves associated with both
surfaces of the plate. If 3 = 0 then via equations (55) and
(54-60) equations (50) and(52) reduce to equations
obtained by Iya Abubakar [11].

6 Frequency Equation when H = (H,0,0)

Consider the applied field H = (H;,0,0) , in this case
F, = 0 and consequently F3 = 0, the consistency of (31)
require that the determinant of the coefficients of the
arbitrary constants in simultaneously four equations (31)
must vanish. This gives an equation for the frequency of
the plate oscillations. The frequency equation is found to
factorize into two factors, each of which yields the
equations this implies that F3 = 0 and consequently
F> = 0 and therefore (16) and (17) become

[644527 (C” 7pV2)}L+[iS(C|3+C44)]M:0. (61)

li(c13+caq) s L+ [(633 +Fp)s*— <C44 +F *PVz)] M =0.
(62)
Eliminating L and M between (61) and(62) gives

1 4 712

Ag's +Al's +A2/:0, (63)

Where
Ay = (Fi +c33) caa,
A =F (pVZ —cC11— C44) pVZ-i-
{(c13+cas)* — ¢33 (c11—pV?) —cas (cas— pV?)},

Ay = (cas+Fi—pV?) (en —pV?).
(64)

Let s/3 and 5’3 be the roots of the equation (20). They are
given by

5% = (A] +1/A2 4A0A2) /(2A0) (65)

From (18) we have

The boundary conditions are the same as for the case 1.

Dll/Er Dll/E]+ DIZ/E; DIZ/E; P/l
l)]l/ElJr Dll/Er I)IZ/EEL DIZ/E; P/z
Dy/'E; —D2'Ef Dn'Ey —Dx'EY | | Q)
Dy/'E{" —Dy/'E; D»'E, —D»'E, | LQ>

=0.

(66)
Thus following the above procedure as in case I we obtain
the frequency equation decoupled as:

D| ]/DQZ/Sh(kS/QZ)Ch(kS/]Z) = D[Z/DQ] /sh(ks/lz)ch(ks/zz],
(67)

D| ],Dzzlsh(ksl 1 Z)Ch(ks’zz) = D]Q’DQ],Sh(kSIQZ)Ch(kSIIZ).,
(68)
where

/ . / /i / . /
D]j =1C13 76331/}1]‘ Sj ,DZj :zmj 7Sj

E’;- = exp(—kds';), E’; = exp(kds' ;)

(69)

These are the period equations (67) and (68) correspond
to the symmetric and antisymmetric motion of the plate
with respect to the medial plane z = 0. In the absence of
the applied magnetic field | = 0 equations (67) and (68)
correspond to the symmetric and antisymmetric motion of
the plate with respect to the medial plane for the freely
vibrating unmagnified transversely isotropic plate.

6.1 Symmetric Waves when H = (H1,0,0)

Applying and following the same technique adopted in
case I it is found that for waves long compared with the
thickness 2d of the plate, kd is small, then from (67) , we
obtain
ikd
m (S% 7S%)[C]3 (c13+2¢4q) — (Cl 1 — sz) c33] =0.
(70)
This is the phase velocity of the plate waves and is
identical with the plate wave velocity for the unmagnified
transversely isotropic plate. Thus the applied magnet field
has no effect on the phase velocity of the plate wave. If
waves are short compared with the thickness of the plate,
that is Ed — oo, then (67) reduces approximately to

(s1—52) [C10p4V8 +C20p3V6 +C30p2V4 +C40PV2 +C50] =0,

2 > a1
C44Sj7(C]| 7PV )
mj' =M/L = e e where )
1371 C44)5 Cio=C) (cas —c33—F1) 33, C1 = cr13ca4(c13 4+ caa)”,

, —i(c13+caa)s'; .
mi! =M/L = J=1.2 2 2

! / F (s’?— 1)+C33S/5—(C44—pV2) 7= Coo = C1F1(2c13¢44 — c33¢44 + 311033 + 2013 + ¢33 + Fic33)

- c33C) (2611644 — 33044 —3C11033 — 2¢13 +4Ci4> )

®© 2024 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. Lett. 12, No. 2, 7-16 (2024) / www.naturalspublishing.com/Journals.asp

C30 = —(2c13¢33044 — 6%3644 - 633644 + 26%3633
+2¢11633)cas(crs +can) P

—4cky (cf3 = c33) (13 +cas)*Fy

— (4—2c33) c3cqs(crz + C44)2F1

— (4e13 — e33) crieszcia(crz + caa)*F

— (3611 + 36112 + 26‘%3) 6‘%36‘44(613 + C44)2F1

Cao = caa(ci3 + C44)2F1 2P+ caa(crz+ C44)2F1 V)

) (72)
+caa(c13+caa)Ps

where

2 2 4 2 2 2
Py =3c117¢33 +cy3 +4C11€13C33C4472C]]C33C44 +4613C44

3 2 2
+4CI3C44 — 2611613644 +4611613633

2.2 2 4 2.2 4
Py =c117c33" —4c11¢137€33C44 +C11C 3+ C117€337Ca4 + C13C33
3. 2.5, 22 N2 2.3
+4ci37cqs” +2c11 3033 H4cri (cr3cas)” +4ci3"cas
2 4 2.2 2 2
+2¢117¢13¢33C44 + €13 Ca4 — 8110337 C44” +4C11C73033

3 2 N2 2.2
+4ci3c44033 +4cricT3cas +4(c13c44) €33 + 3117 ¢33

2.2 2 3 2.2
Py =ci17c33” +4(c13¢44) €33 4 Ci3c44¢33 + 3C1170337Ca4
2 2 2.2 2. 2. 2
—4dcric137¢337Cas — 8110337 Cas” —4e117c337Caq
2 2 4 2.2
+4cr1c137 33044 + 11013 €33 — 8C11€13€337C44

22 2 2
+2c117¢c13033° +4cr10137C44C33

Csp = (613 dedyean —2e 1¢33) cascri(c13+ c44) R
—4cas) (CI3+C44) F?

2 2 202
—2ctjc13e33¢i4(C13 +caa) Fi

)
+erieizeay (en

+ (cas — en1) €11 633¢a(c13 + caa) ' F
+ —46116%36‘34(6‘13 + C44)2F1
+dcriciy (cr1?ess — esacts —ci3) (ci3 + caa)’Fi
+er1ciy (—61120332 - 0?3) (c13+ 044)2F1
+2c1133 (cr1ets — 2¢13) (e13+ caa)’Fy
— €33C44C11 (6112633 +2¢11¢73033 + 6?3) (c13+ C44)2F1
—c} chaedscislers + cas)’
+ (cf3 +2c13¢48 4 2¢34) €] cT3033¢0a (€13 + €a4)
— caseny (c13 +4cizcas +4cqy) (i3 + caa)’
This is the phase velocity equation for Rayleigh waves
associated with both the faces of the plate. On putting

F; =0, it reduces to (53) which is a the Rayleigh wave
equation in unmagnified plate.

6.2 Antisymmetric Waves when H = (H1,0,0)

For waves long compared with the plate thickness such

that kd is small, accordingly equation (68) approximately
becomes

(71 /3WspVE L WaF + Wi R ) (kd)?
+ (c13F %+ Wo + WaFy) (kd)*pV?

+ Wio(kd)*WeF| + WoF?

— (WsF, —Wg) pV2 + Wy =0,

(73)

where

2
Wi = c13” — ¢11€13 — €33C44 + C13C44,
Wa = 3c33¢44 + 3C13C44,

Wi =c132 + (26132 +2c13044 — 26442) €33

+3caq013” 4 2caa’crs — (3¢13 + caq) 11633,

Wy = (3c13+ caq) c33 — €13 — c13¢44,

Ws = 3c33caa, Wo = 3c33’caa +3 (3cizcas + 26442) ;
W7 =6 (ci3ca+ C442) 337, Ws = 3c33%caa,

Wo = (2¢13 + ca4) c33% — (26132 +2c13¢44 — 26442) €33,
Wio = (2¢13% + 6caa’c13 + Teaers?) o33

— (2¢13+ caa) cr1633°

(74)
2 2
. 2) 7 =%2?) (1, _pv?
2¢44 (3613 +pV ) 15013 (3lkd) (611 pV )
2 2
2\ (517 =52%) (1. A2 2
+c33 <C|1 —-pV ) 159013 (glkd) <L]] pV )(kd)
+pv2<2c,3+pv2)M Lika <c117pV2> (kd)?
sisac;3 \3
2
—7613(kd) ( s1s2 (—lkd) (cn—pvz)
_py2 L. a2
+2(611 pV ) S]S2C44 ( ) o pV )

) 7 1—52 1 2
*2613(013 PV S15cas (3 ) c1 PV>
—3c13C44 <2C44 +2c13—pV ) 0

(75)

whereas in the unmagnified plate the phase velocity tends
to zero as the wavelength increases to infinity, under the
applied magnetic field the phase velocity tends For waves
short compared with the thickness of the plate equation
(75) reduces to Rayleigh’s equation (71).

Ciop?VE + Coop VO + C3op?V* + CyopV? + Cs0 = 0]
(76)
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7 Result and Discussion

In the sections 5 and 6, analytic results obtained in
equations (32) and (66) for the frequency equations
corresponding to the applied magnetic H = (0,0, H3) and
H = (H,,0,0) are transcendental. Therefore, the general
discussion of waves in transversely isotropic plates in the
presence of applied magnet field is slight taxing.
Therefore the long and short waves are considered to find
numerical solution of the equations. Computation for the
symmetric and antisymmetric wave modes in the
presence of applied magnetic fields H = (0,0,H3;) and
H = (H,;,0,0) have been carried out for a transversely
isotropic plate whose physical data is given as:

e =3.07x 10M"Nm =2, ¢13 = 1.027 x 10" Nm ™2,
¢33 =3.581 x 10" Nm =2, c4q = 1.510 x 101" Nm 2,
p =8.636 x 10°Kgm >

7.1 Symmetric waves when applied magnetic
field is H= (0,0, H3)

For the waves long compared with the thickness 2d of the
plate, obtained equation (40) in this case is clearly depend
on the applied magnetic field, and observed that at the
lower values of the applied magnetic field there is
negligible impact on the phase velocity, whereas at higher
values it increases with the applied magnetic field as
exhibited in figure 1. In the absences of applied magnetic
field the phase velocity is V = 6920.329 m/sec, which is
the phase velocity of long compressional or plate waves.

6920529125 .*

Phase Velocity
L]
-

6920329127 .t

20320115 | } | | |
PRI 200 100 600 500 1000

Applisd Magnatic Fisld

Fig. 1: Variation of phase velocity of long wave modes,
compared with the thickness of the plate Vs applied magnetic
field H5.

Table 1: Longitudinal and Transverse wave modes Vs H3

Hs V.(m/sec) Vr(m/sec) V7 (m/sec)
(Longitudinal Transverse Transverse
mode) Model Mode 2
0 6570.93 6093.52 6093.52
1 10110.31 10110.31 6516.56
2 12887.14 12887.14 6467.01
3 18710.65 11447.88 6422.50
5 27822.57 9989.21 6382.85
6 31177.10 9374.48 6347.69
7 34173.76 9015.16 6316.53
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Fig. 2: Variation of phase velocity of short wave modes compared
with of the thickness Vs applied magnetic field H3 in the case of
symmetric waves

7.2 Antisymmetric waves when applied
magnetic field is H= (0,0, H3)

In this case for waves long compared with the thickness
2d of the plate, using equation (51) the results obtained
for the variations of phase velocity with wave number in
the presence and absence of applied magnetic field are
exhibited in the figure 2. It is observed that at lower and
higher limits of wave number there is no effect of applied
magnetic field. Also at large applied magnetic field phase
velocity decreases.

In this case for waves short compared with the
thickness 2d of the plate, results obtained in equation (53)
reduces to Rayleigh’s equation and the propagation
degenerates to waves associated with faces of the plate
just as for the symmetric vibration and is
Vr = 6353.72m/sec. It has also been observed that for
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Fig. 3: Variation of phase velocity of long wave modes compared
with the thickness of the plate Vs applied magnetic field H3 in the
case of antisymmetric waves

small values of applied magnetic fields Rayleigh waves
speed is not affected whereas at very large values of
applied magnetic fields Rayleigh waves speed is affected
and increases with increase of applied magnetic field.

7.3 Symmetric waves when applied magnetic
field is H= (H,,0,0)

For waves long compared with the thickness 2d of the
plate, from equation (70) simplifies to the phase velocity
of the plate waves which is Vp = 5110m/sec and it is alike
with the plate wave velocity for the unmagnified
transversely isotropic plate. Thus the applied magnetic
field has no effect on the phase velocity of the plate wave.

For waves short compared with the thickness 2d of
the plate, from equation (71) simplified and reduces to the
phase velocity equation for Rayleigh waves associated
with faces of the transversely isotropic plate and also
effected by the case in the presence of the applied
magnetic field as in the previous case..

7.4 Antisymmetric waves when applied
magnetic field is H= (Hy,0,0)

For waves long compared with the thickness 2d of the
plate, equation (73) reduces to the dispersion equation for
the long flexural waves in the transversely isotropic plate

in the magnified field. Phase velocity Vs wavenumber
dispersion curves in the magnified and unmagnified are
displayed in the figure 4. It is evident from the figure that
phase velocity is remain lower in the magnified than the
unmagnified transversely isotropic plate at low values of
wavenumber and converges at the higher values of
wavenumber.
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Wave number
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Fig. 4: Variation of phase velocity of long wave modes compared
with the thickness of the plate Vs applied magnetic field H in the
case of antisymmetric waves.

In the case of waves shortcompared with the thickness
2d of the plate, again equation (76) reduces to Rayleigh’s
equation, which is also discussed in the symmetric case.

8 Conclusion

Two special cases H = (0,0, H3) and H= (H,,0,0) of the
constant applied magnetic field H = (H,,H,,H3) are
considered in studying the Magneto-elastic waves in
transversely isotropic plates. On employing the boundary
conditions, continuity of the normal and shear stresses
across the plate-vacuum interface for both the cases,
frequency equations are obtained, which are further
factorized into the magnetized symmetric and
antisymmetric vibration modes equations of the plate. It is
found that the velocities of the long flexural wave in the
plate and that of the Rayleigh waves associated with the
free faces of the plate are affected by the magnetic field.
The velocity of the long compressional waves is only
affected when the applied magnetic field is normal to the
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direction of the propagation of the wave. Antisymmetric
short waves compared with the thickness of the plate
equation reduced to the Rayleigh’s equation.
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