
Appl. Math. Inf. Sci. 7, No. 2, 473-482 (2013) 473

Applied Mathematics & Information Sciences
An International Journal

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Implementing Sparse Matrix-Vector Multiplication with
QCSR on GPU
Jilin Zhang1, Enyi Liu1, Jian Wan1, Yongjian Ren1, Miao Yue 2 and Jue Wang3

1 Department of Computer and Technology, Hangzhou Dianzi University, 310018, Hangzhou, Zhejiang, China
2 Department of Architecture & Art, Zhejiang College of Construction, 311231, Hangzhou, Zhejiang, China
3 Supercomputing Center of Computer Network Information Center, Chinese Academy of Sciences, Beijing, China

Received: Jul 8, 2012; Revised Oct. 4, 2012; Accepted Oct. 6, 2012
Published online: 1 Mar. 2013

Abstract: We are going through the computation from single core to multicore architecture in parallel programming. Graphics Pro-
cessor Units (GPUs) have recently emerged as outstanding platforms for data parallel applications with regular data access patterns.
However, it is still challenging to optimize computations with irregular data access patterns like sparse matrix-vector multiplication
(SPMV). SPMV is one of the most important computational kernels in engineering practice and scientific computation. Various data
formats to store the sparse matrix have been implemented on GPUs to maximize the performance. In this paper, we propose and evalu-
ate a new implementation of SPMV on GPU based on QCSR storage format which combines the quadtree storage format and CSR
format. We also outline some optimization strategies to improve performance. In comparison with previously published implementa-
tion, it achieves higher overall performance than BCSR format. The results show that it achieves 1.15 speedup averagely than BCSR
format.
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1. Introduction

Recently, we are witnessing the emergence of massive mul-
ticore architecture. There is no doubt that the multicore
processors will compose the future supercomputers which
will allow applications to support higher peak operation
speed. GPU is one of powerful massively parallel systems
and its highly parallel structure makes it more effective
than CPU for algorithms which process large blocks of
data in parallel [1]. GPUs are initially used to accelerate
the memory-intensive work of texture mapping and ren-
dering polygons for image processing. With the opening
of its programmable interface and popularity of advanced
language, GPU is extensively used for general computing
because of its powerful parallel processing capabilities and
high memory bandwidth. For example, NVIDIA GeForce
GTX 285 peaks at 1063 GFLOPS in single precision and
159 GBytes/s memory bandwidth. Good results have been
achieved in appropriate compute-intensive tasks like sort-
ing [2], image processing, k-nearest neighbor search [3]
and data mining [4].

The sparse matrix-vector multiplication is recognized
as one of the most important numerical methods for sci-
ence and engineering in the next decade [5] and is widely
used in many scientific computing, such as Conjugate Gra-
dient or GMRES, large linear systems and eigenvalues prob-
lems. For example, solving a partial differential equation
using finite elements method boils down to solving a sys-
tem of linear equation Ax = b, where A is sparse matrix.
There are many zero elements in such matrices. It is ineffi-
cient as most calculations on zero elements are redundant
and sometimes even impractical due to large dimensions
of the matrix.

However, it is also well known that sparse matrix-vector
multiplication yields only a small part of machine peak
performance due to indirect and irregular memory accesses
[6]. Optimization of sparse matrix-vector multiplication
kernel has become increasingly significant and challeng-
ing for any architecture including GPU. Higher perfor-
mance for sparse matrix-vector multiplication computa-
tion requires optimizations to best utilize the properties of
the sparse matrix and system architecture. The storage for-
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mat of sparse matrix is also very important in determining
the performance. Traditional CSR storage format cannot
take full use of the efficiency of GPU when the the nonzero
values of a matrix. The transmission between CPU and
GPU and storage cost are usually too much.

In this paper, we present a new storage structure for
matrices called QCSR storage format which which com-
bines the quadtree storage format and CSR format. We
use recursive dividing method [7, 8, 9, 33] to generate
quadtree data structure, each leaf of which are consis-
tent with the cache capacity. Using this structure can not
only reduces the cache miss rate, but also efficiently im-
prove the data locality during execution. Moreover, this
structure makes it less nonsensitive to the distribution of
nonzero elements. In this way, it will increase the effi-
ciency in NVIDIA GPU. In order to achieve better perfor-
mance, we outline some optimization strategies to maxi-
mize its performance according to the GPU architecture
and its parallel programming model. Experiments show
that it has an average of 1.15 speedup in sparse matrix-
vector multiplication compared with traditional CSR for-
mat.

The rest of the paper is organized as follows. In section
2, related work on SPMV is described. In section 3, back-
ground on GPU architecture and parallel computing model
is given. Details of our implementation about QCSR stor-
age format are present in section 4 and some optimizations
are shown in section 5. Section 6 shows experimental re-
sults,while section 6 summarizes the conclusions and dis-
cusses future work.

2. Related Work

Since sparse matrix-vector multiplication is the core prob-
lem in many applications, there are a large number of re-
searches on this related subject.

Memory access is the bottleneck of sparse matrix-vector
multiplication and is more prominent in the multicore ar-
chitecture. In the CPU architecture, the primary mean is
to load local data into caches or registers [10]. One of
the GPU architecture characteristics is multi-level mem-
ory which is different from common architectures based
on cache. Therefore, fine grained thread parallel is more
suitable for GPU and different optimization strategies are
designed according to the characteristics of the problem
to take full use of its high memory bandwidth. Dehnavi, et
al.,used Prefetch CSR(PCSR) to accelerate finite-element
SPMV kernels on GT8800 [27].

Sparse matrix formats are strongly involved in achiev-
ing high performance because they define the matrix data
structure in memory. A variety of formats including Di-
agonal Format (DIA), ELLPACK Format (ELL), Coor-
dinate Format (COO), Compressed Sparse Row Format
(CSR), Hybrid Format (HY B) and Packet Format (PKT )
have been evaluated on NVIDIA GPUs. Bell and Garland
implemented several compressed storage formats and al-
gorithms [11]. They took the memory bound nature of SPMV
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Figure 1 CSR storage format representation of sparse matrix
A. The nonzero values is stored in an array val. An array col
stores the index of nonzero values and rowindex stores the first
value of each row in val.
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Figure 2 A basic CSR-based SPMV implementation.

into consideration, and successfully utilized large percent-
ages of peak bandwidth. Matrices in our research on the
whole are sparse but there may be small dense sub-matrices.
These dense sub-matrices help to improve data reuse. One
of the most used formats in sparse matrix applications is
CSR, as is illustrated in figure 1. This format compresses
each row of matrix A and stores the nonzero values in an
array val. An array col is created and stores each column
index of data. A last array rowindex stores the index of
the element in array val, which is the first nonzero value
of each row. The array rowindex size is row+1 in which
the number of nonzero values is stored at the last element.
Diagonal format and ELLPACK format are shown in fig-
ure 3 and figure 4.

Some of the first work on sparse matrix-vector mul-
tiplication on GPU architectures was by Bolz et al [26].
They implemented conjugate gradient and multigrid solvers
on GPU by using the graphics pipeline.

Volkov and Demmel presented an experimental study
of GPU memory subsystem and an efficient implementa-
tion of dense matrix-matrix multiplication [12]. F. Vazquez
and Demmel proposed ELLPACK-R format based on the
ELLPACK storage format, compared with CRS, ELL,
HY B format, it reduces the computation and data access.
But when the maximum number of nonzeros per row does
substantially differ from the average, threads for the ELLPACK-
R suffer from load imbalance [13].
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Figure 3 DIA storage format representation of sparse matrix.
The diagonals are laid out as columns in a dense matrix structure
(data), starting with the farthest sub-diagonal and ending with
the largest super diagonal. An additional vector (diag) is kept
which contains the offset of the diagonal represented by column
in data from the central diagonal. This storage format does not
require column offset or row pointer vectors like CSR, leading
to a lower storage overhead. The ∗ elements in the data matrix
represent unused elements that are needed to pad the diagonals
into full columns. Unlike CSR, the DIA matrix layout is more
efficient for diagonal matrices and allows contiguous memory
access when reading matrix elements along diagonals [30].
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Figure 4 ELLPACK storage format representation of sparse
matrix A. If K is the largest number of non-zero elements per
row of an N ∗M matrix,the ELLPACK format stores the ma-
trix as an N ∗K dense matrix (data), along with a column index
matrix (col) that stores the column index of each element. For
rows that contain less than K non-zero elements, the matrices
data and col are padded with unused elements. The ELLPACK
representation offers an efficient storage format if the maximum
number of non-zero elements in all rows is significantly less than
the number of columns in the sparse matrix [31].

Block Compressed Sparse Row (BCSR) format which
is a variant of CSR was investigated by using register and
cache blocking to reuse sparse matrix elements [14]. Both
SPARSITY and OSKI adopt a heuristic algorithm to de-
termine the optimal block size of sparse matrix to improve
the performance of SPMV [15, 16]. Some optimizations
were proposed to effectively develop a high-performance

Figure 5 Two different ways of matrix reading, (a) is row or
column oriented, (b) is block oriented.

Figure 6 BCSR format, the shaded boxes are zero-pading. It
stems from CSR format, but instead of storing and pointing to
individual elements of the matrix [32].
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SPMV kernel on NVIDIA GPUs: synchronization-free par-
allelism, thread mapping based on the affinity towards op-
timal memory access pattern, optimized off-chip memory
access to tolerate the high access latency, and exploiting
data reuse [17]. Choi et al proposed an auto-tuning frame-
work for sparse matrix-vector kernels using blocked CSR
and blocked ELLPACK format rearranges the rows of
the sparse matrix in decreasing order of the number of
non-zero elements [22]. The rows are then separated into
blocks, where each block is stored in the ELLPACK for-
mat.

3. GPU and Programming Model

In this section, we provide background information on GPU
architecture and programming model called Compute Uni-
fied Device Architecture (CUDA) for NVIDIA GPU.

In these years, GPUs are usually combined with CPUs
to constitute heterogeneous system for supercomputers. A
large quantity of researches have been investigated on this
architecture to achieve speedup in compute-intensive area
like medical imaging,molecular dynamics and financial sim-
ulation. GPUs are massively-threaded, many-core archi-
tecture with high computing power and memory bandwidth
and compared with CPUs, furthermore, they can also pro-
mote energy efficiency. But they are not comprehensive
like CPUs and are inferior in some processing methods es-
pecially in branch prediction. At present, GPUs will not
take place of the CPUs. It is much worthwhile to take
advantage of the CPUs and GPUs to accelerate existing
computing-intensive tasks.

The GPU parallel computing architecture mainly con-
sists of two important components,processor units and mem-
ory hierarchy [28].

GPU consists of multiprocessor units called streaming
multiprocessors (SMs), each one of which contains a set
of processor cores called streaming processors (SPs). As
is shown in figure 8. There are various memories available
including global memory, local memory, shared memory,
constant memory, texture memory and registers on GPU.
Computations are launched in a parallel manner, with all
threads executing the same function called a kernel and the
threads are partitioned into blocks. Threads within a block
have access to shared memory. Threads within a block can
also be synchronized by using barriers [18]. Figure 9 de-
picts the overall flow. The task partition will greatly af-
fect the implementation performance. It is well-advised to
choose the number of blocks and threads of each block
based on the task characteristics and GPU itself hardware
characteristics.

CUDA is general parallel programming model to be
used on NVIDA GPUs. As illustrated in figure 10, CUDA
programming model regard CPU as host and GPU as de-
vice. Parallel computation function on GPU is called ker-
nel which is executed on a set of threads. Firstly data will
be copied from CPU to GPU and then from GPU to CPU
after the kernel is over. CUDA model allows programmers

Figure 8 SM structure graph. Streaming multiprocessor consists
of streaming processors (SP) and other resources. SP is basic pro-
cessing unit. The number of SPs and SMs on different GPUs is
not the same.

Figure 9 Memory model. Parallel computation function on GPU
is called kernel and will be executed on a set of threads in the
form of blocks to compose the grid. Each thread has access to
global memory but the access latency is big. It also has a read-
only constant memory and texture memory that are shared by all
the threads. Only the threads in the same block can be synchro-
nized and own the shared memory. The shared memory access
speed is almost equal to the register memory access speed,which
is the least access latency.
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Figure 10 The general process of the GPU programming. CPU
is taken as host and GPU is device. Parallel computation function
called kernel is to be executed on GPU.

to better exploit the parallel power of the GPU for general
purpose computing.

When programming kernels on GPU, we should take
measures to optimize the kernels because there are sev-
eral inefficiencies that are somewhat unique to GPU archi-
tectures. Although GPU devices provide very high mem-
ory bandwidth, it is only achieved with coalesced access.
Memory requests are serviced for halves of a warp (32
threads in a block) at a time. To achieve highest mem-
ory throughput, memory access pattern must follow co-
alescing rules: accessed addresses must fit into a 64 or
128 byte window which must be aligned. To fully exploit
the massive computing resources of the GPUs, the mem-
ory latency needs to be efficiently hidden. Additionally,
the shared memory is a banked memory architecture. If
concurrently executing threads in a block make request to
shared memory locations in the same bank, a bank conflict
will occur and the requests will be serialized. Therefore,
to achieve efficient access to shared memory ,concurrently
executing threads should access memory belonging to dif-
ferent banks. Finally, all concurrently executing threads in
a block must issue the same instruction to the streaming
processors to avoid divergent control flow [25].

4. QCSR Storage Format

4.1. The implementation of QCSR storage
format

The performance of sparse matrix-vector multiplication de-
pends strongly on the used matrix storage format. Sparse
matrices often contain dense sub-matrices, so various block-
ing formats were designed to accelerate matrix operations
[19]. Compared to the CSR format, the aim of these for-
mats is to consume less memory. Storing a matrix as a set

of small dense blocks can significantly improve the perfor-
mance. Algorithms for the multiplication of such blocks
can be fine tuned for a specific architecture. But it still suf-
fers from large transformation overhead.

We introduce a new sparse matrix storage format called
QCSR storage format which combines quadtree storage
format and CSR. To improve generation process of quadtree,
traditional tree generation algorithms (such as depth-first
search and breadth-first search) are not suitable here, be-
cause of large numbers of traversal, search and stack over-
heads in such algorithms [29].

Using quadtree storage format, a matrix is divide into
four same-size sub-regions from top to bottom, and each
sub-region is divided into four regions recursively. The de-
composition continues until the length of sub-region reaches
a given limit d. Figure 11 details the process of recursively
decomposing a sparse matrix. The sparse matrix can be re-
cursively decomposed into a number of sub-regions. Obvi-
ously, in order to improve the cache data locality, the best
case is that data loaded into the cache can complete all
of its operations. It can not be fully achieved, but we can
adjust the region length d to approximate this ideal. There-
fore, an appropriate selection d can help to decompose the
matrix into independent operations of various sub-regions,
which is not bigger than the cache capacity. This process
can be expressed as the recursive generation of a quadtree,
as is shown in figure 12. There are two kinds of nodes
in this quadtree. One is called empty-region (expressed
as E), which doesn’t contain nonzero elements. The other
is called mixed-region (expressed as M), which contains
nonzero elements and can be decomposed continually. In
this way, quadtree stores all useful information in its leaf
nodes and the nodes can be indexed without traversing all
values of matrix while processing the matrix multiplica-
tion[24]. Algorithm 1 shows the quadtree generation algo-
rithm. In the worst case, the total number of intermediate
nodes is (4log2(n/d) − 1)/3 and the decomposition com-
plexity after the transformation is O(2n/d). Obviously, the
time complexity of transformation is much less than that
of multiplication. When storing a leaf node, up to d*d el-
ements need to be located. These elements can be located
by binary search since the elements in each sub-region are
stored orderly.

Although the total complexity of this algorithm is higher
than time complexity of a single matrix-vector multipli-
cation, considering the matrix-vector multiplication usu-
ally takes more than thousands of iterations in practical
applications, the performance of quadtree based algorithm
is better than traditional multiplication algorithm due to
amortization. Table 1 shows the performance ratio between
transformation and matrix-vector multiplication. As it shows,
the cost of transformation has a direct ratio with the dimen-
sion size, the larger dimension the matrix has, the larger
cost the transformation uses, and the larger region size the
transformation algorithm uses, the less time cost it will be.

This quadtree storage structure has these following char-
acteristics:
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Table 1 The performance ratio between transformation and
SPMV

Region size 715176 × 715176 34920 × 34920
256 251.128 144.092
1024 210.342 112.227
8192 160.653 61.301
32768 120.84 23.1371
131072 75.345 6.793

Figure 11 A sparse matrix in the quadtree storage format. Empty
nodes with zero elements are marked E. Mix nodes with zero
elements and nonzero elements are marked M.

(1) If the size of matrix is n× n and the size of the
target region is d× d, the maximum depth of the tree is
Dep = logdn and the maximum number of intermediate
nodes is N = O(4Dep−1);

(2) The overhead of storing block information and in-
termediate node. During the process of generating the quadtree
structure, each intermediate node contains an index pointer
(x, y) to a relate region (occupy a storage space SI ) and
the region length d (occupy a storage space SD). The max-
imum additional space overhead of quadtree is

CS = (2SI + SD)×O(4Dep−1). However, this part
of overhead is in the process of transformation, organiza-
tion and representation of the matrix, not in the multiplica-
tion process, and it does not increase the time complexity
of computation.

(3) Lower compression ratio. Compared to the tradi-
tional CSR storage format, the QCSR storage format re-
quires less total memory to store the sparse matrix. This is
particular important on GPU with limited memory. Mean-
while, lower sparsity representation also enables us to elim-
inate the useless computation that results from the zero
values.

(4) Elimination of the possible impact of the distribu-
tion of nonzero elements in the multiplication. The origi-
nal multiplication has been divided into independent oper-
ations for sub-regions. Most of these sub-regions are dense
form, based on which the algorithm is more general.

(5) Easy to programming. This data structure reflects
the process of recursive decomposition. It is suitable for
the block matrix multiplication algorithm.

4.2. The effects of matrix feature for efficiency

The number of nonzero elements which is determined by
the size and sparsity of a matrix, and the distribution of

Figure 12 A schematic diagram of matrix division process into
a quadtree for matrix storage format.

nonzero elements define the space complexity. For n × n
matrices under the same distribution, a higher sparsity ma-
trix can get a smaller amount of target regions, therefore,
it contributes to less storage overhead and better perfor-
mance. When the sparsity of a matrix decreases within a
certain range, the number of target regions may not in-
crease largely, which means the additional overhead will
not increase significantly. Due to the preservation of data
locality, the greater the density of a target region is, the
better performance the program has. When the sparsity
continues to decrease, the number of target regions will in-
crease apparently, as well as the additional space overhead.
Since target regions are independent within each other, the
overall program performance will not decline significantly.
When the size and sparsity of a matrix have been deter-
mined, the distribution of nonzero elements only affects
the generation speed of a quadtree and the processing stor-
age space, but has little influence on the efficiency of mul-
tiplication processing. Therefore, matrix multiplication al-
gorithm based on quadtree storage format could works ef-
ficiently for all general cases.

5. Optimization Strategies

Although modern processors integrated with many pro-
cessing cores enable the high performance of programs, it
highlights the memory bottleneck, especially for SPMV in
which data loaded from the memory mainly are computed
only once. Moreover, multilevel memory system and ac-
cess and size limitation make it much more difficult for the
Single Instruction Multiply Thread (SIMT) architecture of
GPU. In this paper, we investigate some optimizations on
thread mappingdata reuse, data access and data transform
to achieve better performance [20, 21].
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Input:
pseudo code.
matrix A in CSR for the transformation;
n0=the number of nonzero elements in matrix A;
n1=the order of matrix A;

Output:
the pointer for the root of the quadtree;

1: if(n0==0)
2: {
3: return NULL;
4: }
5:
6: if(n1 > tile size)
7: {
8: create M , the leaf of type ”Mixed”;
9: M is the parent node of M1, M2, M3, M4;

10: divide matrix M into four submatrix A1, A2, A3, A4;
11: M1=Transf(A1);
12: M2=Transf(A2);
13: M3=Transf(A3);
14: M4=Transf(A4);
15: return M ;
16: }
17:
18: else
19: {
20: density=n0/(n1 ∗ n1)
21: if (density > fill in ratio)
22: {
23: transform the matrix A to the leaf F of type ”Full”;
24: return F;
25: }
26: else
27: {
28: transform the matrix A to the leaf S of type ”Sparse”;
29: return S;
30: }
31: }

5.1. Thread mapping

The most natural idea is that each element of the result
vector is calculated by a thread. Each thread is responsible
for each row of the input sparse matrix and vector multi-
plication. However, this way is more suitable for relatively
small processor cores and the threads scheduling indepen-
dently in parallel computing platform but not for GPU. In
GPU architecture, thread blocks are divided into warps in
SM and the threads in the same warp are naturally syn-
chronized. If the number of nonzero differs quite for each
thread in the same warp, it would cause conditional branch
which will not take full use of computing resources of
many threads to hide the access latency of global memory.
According to the characteristic that threads in the block
can be parallelized in GPU, each block is responsible for
each row is a suitable method. But, each block also pos-
sess many threads, when the number of nonzero elements
in a row cannot be exactly divided by the total number

Algorithm 1
Trans(startRow, endRow, startColumn, endColumn)
Input:

The first row of sub-matrix, startRow;
The last row of sub-matrix, endRow;
The first column of sub-matrix, startColumn;
The last column of sub-matrix, endColumn;
The size of target region, d;

Output:
The quadtree structure;
midRow = (endRow - startRow) / 2;

2: midColumn = (endColumn - startColumn) / 2;
detRow = endRow - startRow;

4: detColumn = endColumn - startColumn;
if(detRow > d and detColumn > d)

6: {
Trans(startRow, midRow, startColumn, midColumn);

8: Trans(midRow, endRow, startColumn, midColumn);
Trans(startRow, midRow, midColumn, endColumn);

10: Trans(midRow, endRow, midColumn, endColumn);
}

12:
else if(detColumn > d)

14: {
Trans(startRow, endRow, startColumn, midColumn)

16: Trans(startRow, endRow, midColumn, endColumn)
}

18:
else if(detRow > d)

20: {
Trans(startRow, midRow, startColumn, endColumn)

22: Trans(midRow, endRow, startColumn, endColumn)
}

24:
else

26: {
TREE.SAVE(startRow, endRow, startColumn, endColumn)

28: }

of threads in the block, there will be high probabilities of
resulting in a number of threads have nothing to do and
thread synchronization overhead.

Based on the above strategy and considering the co-
alescing access, we calculate a row of sparse matrix and
vector multiplication in half-warp to further reduce the num-
ber of threads for each row. Obviously, the defects will
arise again when the number of nonzero elements in adja-
cent rows differs largely. Although the thread idling cannot
be absolutely avoided, it can reduce the synchronization
waiting in warp.

5.2. Data Access

The starting nonzero of a row is always in non-aligned
position in the value array that stores the nonzero of the
sparse matrix. If the alignment is not adjusted, it might re-
sult in the entire row being accessed in a non-optimal man-
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ner and eventually increasing memory access cost. So, the
starting address alignment and coalescing access are the
keys to optimize GPU data access. Coalescing access is
that threads in half-warp visit altogether memory and ad-
jacent threads access the adjacent data. Therefore, data is
stored by row priority to meet the requirement of coalesc-
ing access. Therefore, we pick up but not compute the sur-
plus part of a row to next row and compute each row in the
number of a multiple of 16. At the last, zeros are padded
to ensure this optimization.

5.3. Data Reuse

In GPU architecture, the global memory access latency is
very high. In this paper, data will be loaded into shared
memory while the input vector will be put into the texture
memory to reduce the high latency of global memory.

5.4. Data Transform

GPU offers high memory bandwidth, but maximizing the
achievable bandwidth is usually a hard problem. Since the
sparse matrix-vector multiplication kernels have little reuse
across the data arrays, it is significant to optimize the ker-
nel to maximize the bandwidth while reading matrix ele-
ments. The transformation between CPU and GPU is over-
head for general computing based on GPU. CUDA enables
us to allocate and use zero-copy memory to reduce the data
transform time. But when the matrix is too large to put
into this memory, the performance will not be so excellent.
So we should selectively use this paged-lock transform for
different matrices.

6. Experiment Result

Our experiments are carried out on Intel i5-2400 CPU@3.1
GHz with 4GB memory and G100. We choose CUDA 4.0
in Windows 7 with 64bit as compiler. The experimental
data are from realistic scientific computing and engineer-
ing fields. The data can be obtained from the University
of Florida sparse matrix collection [23]. The properties of
these matrices are shown in table 2. Using the above op-
timization strategies and QCSR storage format, SPMV
can get better performance compared with BCSR stor-
age format, as illustrated in figure 13. The results show
that averagely 1.15 speedup can be achieved. But we also
can see that the speedup is affected by the matrix struc-
tures. Matrix 2D54019highK possess high dimension and
much more nonzero than matrix add32, but high speedup
is achieved because it has obvious appropriate matrix struc-
ture for QCSR. Comparing these matrix structures, we
can see higher speedup can be achieved for a matrix con-
sisted of more blocks marked E. Generally, good results
can be achieved compared to BCSR.

Table 2 Matrix benchmark suites which are selected from dif-
ferent matrix structure.

matrix id dimension nonzeros
/2D54019highK 1 54,019 486,129

Hamm/add32 2 4,960 19,848
QY/case9 3 14,454 147,972

GHSindef/aug3d 4 24,300 69,984
Hollinger/g7jac060 5 17,730 183,325

TKK/g3rmt3m3 6 5,357 207,695
Pajek/foldoc 7 13,356 120,238

1 2 3 4 5 6 700.20.40.60.811.21.41.6

Matrix id
Speedup

Figure 13 Speedup of QCSR to BCSR. Averagely 1.15 speedup
can be achieved.

7. Conclusion and Future Work

In this paper, we propose a new storage format called QCSR
based on quadtree storage format and CSR and discuss
some optimization strategies of sparse matrix-vector mul-
tiplication on NVIDIA GPU using CUDA programming
model. Although outstanding performance improvements
are obtained over BCSR storage format, the best case
is to load data into the cache to complete all of its op-
erations which can significantly improve the cache data
locality. Therefore, an appropriate selection of target re-
gion length d can help to decompose the matrix into in-
dependent operations of various sub-regions. Moreover,
compared with other implementations, high speedup for
QCSR is achieved for specialized matrices with appro-
priate distribution of nonzero elements. It is also affected
by selection d. Therefore the next step for tuning d is very
important.
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